]> git.zerfleddert.de Git - proxmark3-svn/blob - tools/nonce2key/crapto1.c
CHG: Updated the crapto1 imp to latest vesion3.3 ( Thanks @blapost !)
[proxmark3-svn] / tools / nonce2key / crapto1.c
1 /* crapto1.c
2
3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
7
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
12
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
17
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>
19 */
20 #include "crapto1.h"
21 #include <stdlib.h>
22
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut[1 << 20];
25 static void __attribute__((constructor)) fill_lut()
26 {
27 uint32_t i;
28 for(i = 0; i < 1 << 20; ++i)
29 filterlut[i] = filter(i);
30 }
31 #define filter(x) (filterlut[(x) & 0xfffff])
32 #endif
33
34 static void quicksort(uint32_t* const start, uint32_t* const stop)
35 {
36 uint32_t *it = start + 1, *rit = stop, t;
37
38 if(it > rit)
39 return;
40
41 while(it < rit)
42 if(*it <= *start)
43 ++it;
44 else if(*rit > *start)
45 --rit;
46 else
47 t = *it, *it = *rit, *rit = t;
48
49 if(*rit >= *start)
50 --rit;
51 if(rit != start)
52 t = *rit, *rit = *start, *start = t;
53
54 quicksort(start, rit - 1);
55 quicksort(rit + 1, stop);
56 }
57 /** binsearch
58 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
59 */
60 static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
61 {
62 uint32_t mid, val = *stop & 0xff000000;
63 while(start != stop)
64 if(start[mid = (stop - start) >> 1] > val)
65 stop = &start[mid];
66 else
67 start += mid + 1;
68
69 return start;
70 }
71
72 /** update_contribution
73 * helper, calculates the partial linear feedback contributions and puts in MSB
74 */
75 static inline void
76 update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
77 {
78 uint32_t p = *item >> 25;
79
80 p = p << 1 | parity(*item & mask1);
81 p = p << 1 | parity(*item & mask2);
82 *item = p << 24 | (*item & 0xffffff);
83 }
84
85 /** extend_table
86 * using a bit of the keystream extend the table of possible lfsr states
87 */
88 static inline void
89 extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
90 {
91 in <<= 24;
92 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
93 if(filter(*tbl) ^ filter(*tbl | 1)) {
94 *tbl |= filter(*tbl) ^ bit;
95 update_contribution(tbl, m1, m2);
96 *tbl ^= in;
97 } else if(filter(*tbl) == bit) {
98 *++*end = tbl[1];
99 tbl[1] = tbl[0] | 1;
100 update_contribution(tbl, m1, m2);
101 *tbl++ ^= in;
102 update_contribution(tbl, m1, m2);
103 *tbl ^= in;
104 } else
105 *tbl-- = *(*end)--;
106 }
107 /** extend_table_simple
108 * using a bit of the keystream extend the table of possible lfsr states
109 */
110 static inline void
111 extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
112 {
113 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
114 if(filter(*tbl) ^ filter(*tbl | 1)) {
115 *tbl |= filter(*tbl) ^ bit;
116 } else if(filter(*tbl) == bit) {
117 *++*end = *++tbl;
118 *tbl = tbl[-1] | 1;
119 } else
120 *tbl-- = *(*end)--;
121 }
122 /** recover
123 * recursively narrow down the search space, 4 bits of keystream at a time
124 */
125 static struct Crypto1State*
126 recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
127 uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
128 struct Crypto1State *sl, uint32_t in)
129 {
130 uint32_t *o, *e, i;
131
132 if(rem == -1) {
133 for(e = e_head; e <= e_tail; ++e) {
134 *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
135 for(o = o_head; o <= o_tail; ++o, ++sl) {
136 sl->even = *o;
137 sl->odd = *e ^ parity(*o & LF_POLY_ODD);
138 sl[1].odd = sl[1].even = 0;
139 }
140 }
141 return sl;
142 }
143
144 for(i = 0; i < 4 && rem--; i++) {
145 oks >>= 1;
146 eks >>= 1;
147 in >>= 2;
148 extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
149 LF_POLY_ODD << 1, 0);
150 if(o_head > o_tail)
151 return sl;
152
153 extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
154 LF_POLY_EVEN << 1 | 1, in & 3);
155 if(e_head > e_tail)
156 return sl;
157 }
158
159 quicksort(o_head, o_tail);
160 quicksort(e_head, e_tail);
161
162 while(o_tail >= o_head && e_tail >= e_head)
163 if(((*o_tail ^ *e_tail) >> 24) == 0) {
164 o_tail = binsearch(o_head, o = o_tail);
165 e_tail = binsearch(e_head, e = e_tail);
166 sl = recover(o_tail--, o, oks,
167 e_tail--, e, eks, rem, sl, in);
168 }
169 else if(*o_tail > *e_tail)
170 o_tail = binsearch(o_head, o_tail) - 1;
171 else
172 e_tail = binsearch(e_head, e_tail) - 1;
173
174 return sl;
175 }
176 /** lfsr_recovery
177 * recover the state of the lfsr given 32 bits of the keystream
178 * additionally you can use the in parameter to specify the value
179 * that was fed into the lfsr at the time the keystream was generated
180 */
181 struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
182 {
183 struct Crypto1State *statelist;
184 uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
185 uint32_t *even_head = 0, *even_tail = 0, eks = 0;
186 int i;
187
188 for(i = 31; i >= 0; i -= 2)
189 oks = oks << 1 | BEBIT(ks2, i);
190 for(i = 30; i >= 0; i -= 2)
191 eks = eks << 1 | BEBIT(ks2, i);
192
193 odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
194 even_head = even_tail = malloc(sizeof(uint32_t) << 21);
195 statelist = malloc(sizeof(struct Crypto1State) << 18);
196 if(!odd_tail-- || !even_tail-- || !statelist) {
197 free(statelist);
198 statelist = 0;
199 goto out;
200 }
201
202 statelist->odd = statelist->even = 0;
203
204 for(i = 1 << 20; i >= 0; --i) {
205 if(filter(i) == (oks & 1))
206 *++odd_tail = i;
207 if(filter(i) == (eks & 1))
208 *++even_tail = i;
209 }
210
211 for(i = 0; i < 4; i++) {
212 extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
213 extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
214 }
215
216 in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
217 recover(odd_head, odd_tail, oks,
218 even_head, even_tail, eks, 11, statelist, in << 1);
219
220 out:
221 free(odd_head);
222 free(even_head);
223 return statelist;
224 }
225
226 static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
227 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
228 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
229 static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
230 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
231 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
232 0x7EC7EE90, 0x7F63F748, 0x79117020};
233 static const uint32_t T1[] = {
234 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
235 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
236 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
237 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
238 static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
239 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
240 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
241 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
242 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
243 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
244 static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
245 static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
246 /** Reverse 64 bits of keystream into possible cipher states
247 * Variation mentioned in the paper. Somewhat optimized version
248 */
249 struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
250 {
251 struct Crypto1State *statelist, *sl;
252 uint8_t oks[32], eks[32], hi[32];
253 uint32_t low = 0, win = 0;
254 uint32_t *tail, table[1 << 16];
255 int i, j;
256
257 sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
258 if(!sl)
259 return 0;
260 sl->odd = sl->even = 0;
261
262 for(i = 30; i >= 0; i -= 2) {
263 oks[i >> 1] = BEBIT(ks2, i);
264 oks[16 + (i >> 1)] = BEBIT(ks3, i);
265 }
266 for(i = 31; i >= 0; i -= 2) {
267 eks[i >> 1] = BEBIT(ks2, i);
268 eks[16 + (i >> 1)] = BEBIT(ks3, i);
269 }
270
271 for(i = 0xfffff; i >= 0; --i) {
272 if (filter(i) != oks[0])
273 continue;
274
275 *(tail = table) = i;
276 for(j = 1; tail >= table && j < 29; ++j)
277 extend_table_simple(table, &tail, oks[j]);
278
279 if(tail < table)
280 continue;
281
282 for(j = 0; j < 19; ++j)
283 low = low << 1 | parity(i & S1[j]);
284 for(j = 0; j < 32; ++j)
285 hi[j] = parity(i & T1[j]);
286
287 for(; tail >= table; --tail) {
288 for(j = 0; j < 3; ++j) {
289 *tail = *tail << 1;
290 *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
291 if(filter(*tail) != oks[29 + j])
292 goto continue2;
293 }
294
295 for(j = 0; j < 19; ++j)
296 win = win << 1 | parity(*tail & S2[j]);
297
298 win ^= low;
299 for(j = 0; j < 32; ++j) {
300 win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
301 if(filter(win) != eks[j])
302 goto continue2;
303 }
304
305 *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
306 sl->odd = *tail ^ parity(LF_POLY_ODD & win);
307 sl->even = win;
308 ++sl;
309 sl->odd = sl->even = 0;
310 continue2:;
311 }
312 }
313 return statelist;
314 }
315
316 /** lfsr_rollback_bit
317 * Rollback the shift register in order to get previous states
318 */
319 uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
320 {
321 int out;
322 uint8_t ret;
323 uint32_t t;
324
325 s->odd &= 0xffffff;
326 t = s->odd, s->odd = s->even, s->even = t;
327
328 out = s->even & 1;
329 out ^= LF_POLY_EVEN & (s->even >>= 1);
330 out ^= LF_POLY_ODD & s->odd;
331 out ^= !!in;
332 out ^= (ret = filter(s->odd)) & !!fb;
333
334 s->even |= parity(out) << 23;
335 return ret;
336 }
337 /** lfsr_rollback_byte
338 * Rollback the shift register in order to get previous states
339 */
340 uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
341 {
342 int i, ret = 0;
343 for (i = 7; i >= 0; --i)
344 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
345 return ret;
346 }
347 /** lfsr_rollback_word
348 * Rollback the shift register in order to get previous states
349 */
350 uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
351 {
352 int i;
353 uint32_t ret = 0;
354 for (i = 31; i >= 0; --i)
355 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
356 return ret;
357 }
358
359 /** nonce_distance
360 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
361 */
362 static uint16_t *dist = 0;
363 int nonce_distance(uint32_t from, uint32_t to)
364 {
365 uint16_t x, i;
366 if(!dist) {
367 dist = malloc(2 << 16);
368 if(!dist)
369 return -1;
370 for (x = i = 1; i; ++i) {
371 dist[(x & 0xff) << 8 | x >> 8] = i;
372 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
373 }
374 }
375 return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
376 }
377
378
379 static uint32_t fastfwd[2][8] = {
380 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
381 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
382
383
384 /** lfsr_prefix_ks
385 *
386 * Is an exported helper function from the common prefix attack
387 * Described in the "dark side" paper. It returns an -1 terminated array
388 * of possible partial(21 bit) secret state.
389 * The required keystream(ks) needs to contain the keystream that was used to
390 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
391 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
392 */
393 uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
394 {
395 uint32_t c, entry, *candidates = malloc(4 << 10);
396 int i, size = 0, good;
397
398 if(!candidates)
399 return 0;
400
401 for(i = 0; i < 1 << 21; ++i) {
402 for(c = 0, good = 1; good && c < 8; ++c) {
403 entry = i ^ fastfwd[isodd][c];
404 good &= (BIT(ks[c], isodd) == filter(entry >> 1));
405 good &= (BIT(ks[c], isodd + 2) == filter(entry));
406 }
407 if(good)
408 candidates[size++] = i;
409 }
410
411 candidates[size] = -1;
412
413 return candidates;
414 }
415
416 /** check_pfx_parity
417 * helper function which eliminates possible secret states using parity bits
418 */
419 static struct Crypto1State*
420 check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
421 uint32_t odd, uint32_t even, struct Crypto1State* sl)
422 {
423 uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
424
425 for(c = 0; good && c < 8; ++c) {
426 sl->odd = odd ^ fastfwd[1][c];
427 sl->even = even ^ fastfwd[0][c];
428
429 lfsr_rollback_bit(sl, 0, 0);
430 lfsr_rollback_bit(sl, 0, 0);
431
432 ks3 = lfsr_rollback_bit(sl, 0, 0);
433 ks2 = lfsr_rollback_word(sl, 0, 0);
434 ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
435
436 nr = ks1 ^ (prefix | c << 5);
437 rr = ks2 ^ rresp;
438
439 good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
440 good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
441 good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
442 good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
443 good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
444 }
445
446 return sl + good;
447 }
448
449
450 /** lfsr_common_prefix
451 * Implentation of the common prefix attack.
452 * Requires the 28 bit constant prefix used as reader nonce (pfx)
453 * The reader response used (rr)
454 * The keystream used to encrypt the observed NACK's (ks)
455 * The parity bits (par)
456 * It returns a zero terminated list of possible cipher states after the
457 * tag nonce was fed in
458 */
459 struct Crypto1State*
460 lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
461 {
462 struct Crypto1State *statelist, *s;
463 uint32_t *odd, *even, *o, *e, top;
464
465 odd = lfsr_prefix_ks(ks, 1);
466 even = lfsr_prefix_ks(ks, 0);
467
468 s = statelist = malloc((sizeof *statelist) << 20);
469 if(!s || !odd || !even) {
470 free(statelist);
471 statelist = 0;
472 goto out;
473 }
474
475 for(o = odd; *o + 1; ++o)
476 for(e = even; *e + 1; ++e)
477 for(top = 0; top < 64; ++top) {
478 *o += 1 << 21;
479 *e += (!(top & 7) + 1) << 21;
480 s = check_pfx_parity(pfx, rr, par, *o, *e, s);
481 }
482
483 s->odd = s->even = 0;
484 out:
485 free(odd);
486 free(even);
487 return statelist;
488 }
Impressum, Datenschutz