]>
Commit | Line | Data |
---|---|---|
eb191de6 | 1 | //----------------------------------------------------------------------------- |
ba1a299c | 2 | // Copyright (C) 2014 |
eb191de6 | 3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
1e090a61 | 8 | // Low frequency demod/decode commands |
eb191de6 | 9 | //----------------------------------------------------------------------------- |
eb191de6 | 10 | #include "lfdemod.h" |
6426f6ba | 11 | |
a126332a | 12 | //un_comment to allow debug print calls when used not on device |
6426f6ba | 13 | void dummy(char *fmt, ...){} |
14 | ||
e977fb0d | 15 | |
6426f6ba | 16 | #ifndef ON_DEVICE |
e977fb0d | 17 | # include "ui.h" |
18 | # include "cmdparser.h" | |
19 | # include "cmddata.h" | |
20 | # define prnt PrintAndLog | |
6426f6ba | 21 | #else |
a126332a | 22 | uint8_t g_debugMode=0; |
e977fb0d | 23 | # define prnt dummy |
6426f6ba | 24 | #endif |
6426f6ba | 25 | |
2dcf60f3 | 26 | //test samples are not just noise |
27 | uint8_t justNoise(uint8_t *bits, size_t size) { | |
28 | #define THRESHOLD 123 | |
29 | uint8_t val = 1; | |
30 | for(size_t idx=0; idx < size && val ;idx++) | |
31 | val = bits[idx] < THRESHOLD; | |
32 | return val; | |
a1d17964 | 33 | } |
34 | ||
1e090a61 | 35 | //by marshmellow |
872e3d4d | 36 | //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise |
1e090a61 | 37 | int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) |
38 | { | |
39 | *high=0; | |
40 | *low=255; | |
41 | // get high and low thresholds | |
2eec55c8 | 42 | for (size_t i=0; i < size; i++){ |
1e090a61 | 43 | if (BitStream[i] > *high) *high = BitStream[i]; |
44 | if (BitStream[i] < *low) *low = BitStream[i]; | |
45 | } | |
46 | if (*high < 123) return -1; // just noise | |
75cbbe9a | 47 | *high = ((*high-128)*fuzzHi + 12800)/100; |
48 | *low = ((*low-128)*fuzzLo + 12800)/100; | |
1e090a61 | 49 | return 1; |
50 | } | |
51 | ||
a1d17964 | 52 | // by marshmellow |
53 | // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType | |
54 | // returns 1 if passed | |
55 | uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) | |
56 | { | |
57 | uint8_t ans = 0; | |
58 | for (uint8_t i = 0; i < bitLen; i++){ | |
59 | ans ^= ((bits >> i) & 1); | |
60 | } | |
4ac9f078 | 61 | if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits); |
a1d17964 | 62 | return (ans == pType); |
63 | } | |
64 | ||
a126332a | 65 | //by marshmellow |
66 | // takes a array of binary values, start position, length of bits per parity (includes parity bit), | |
c728b2b4 | 67 | // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run) |
a126332a | 68 | size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) |
69 | { | |
70 | uint32_t parityWd = 0; | |
71 | size_t j = 0, bitCnt = 0; | |
c08c796e | 72 | for (int word = 0; word < (bLen); word += pLen){ |
a126332a | 73 | for (int bit=0; bit < pLen; bit++){ |
74 | parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; | |
75 | BitStream[j++] = (BitStream[startIdx+word+bit]); | |
76 | } | |
5215a874 | 77 | if (word+pLen > bLen) break; |
4ac9f078 | 78 | |
a126332a | 79 | j--; // overwrite parity with next data |
80 | // if parity fails then return 0 | |
c728b2b4 | 81 | switch (pType) { |
11dee3d5 | 82 | case 3: if (BitStream[j]==1) { return 0; } break; //should be 0 spacer bit |
83 | case 2: if (BitStream[j]==0) { return 0; } break; //should be 1 spacer bit | |
3c654208 | 84 | default: if (parityTest(parityWd, pLen, pType) == 0) { return 0; } break; //test parity |
a126332a | 85 | } |
c08c796e | 86 | bitCnt += (pLen-1); |
a126332a | 87 | parityWd = 0; |
88 | } | |
89 | // if we got here then all the parities passed | |
90 | //return ID start index and size | |
91 | return bitCnt; | |
92 | } | |
93 | ||
94 | // by marshmellow | |
95 | // takes a array of binary values, length of bits per parity (includes parity bit), | |
0d2c5909 | 96 | // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run) |
c728b2b4 | 97 | // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added |
a126332a | 98 | size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType) |
99 | { | |
100 | uint32_t parityWd = 0; | |
101 | size_t j = 0, bitCnt = 0; | |
102 | for (int word = 0; word < sourceLen; word+=pLen-1) { | |
103 | for (int bit=0; bit < pLen-1; bit++){ | |
104 | parityWd = (parityWd << 1) | BitSource[word+bit]; | |
105 | dest[j++] = (BitSource[word+bit]); | |
106 | } | |
0d2c5909 | 107 | |
a126332a | 108 | // if parity fails then return 0 |
0d2c5909 | 109 | switch (pType) { |
110 | case 3: dest[j++]=0; break; // marker bit which should be a 0 | |
111 | case 2: dest[j++]=1; break; // marker bit which should be a 1 | |
112 | default: | |
113 | dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1; | |
114 | break; | |
a126332a | 115 | } |
116 | bitCnt += pLen; | |
117 | parityWd = 0; | |
118 | } | |
119 | // if we got here then all the parities passed | |
120 | //return ID start index and size | |
121 | return bitCnt; | |
122 | } | |
123 | ||
124 | uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) | |
125 | { | |
126 | uint32_t num = 0; | |
0d2c5909 | 127 | for(int i = 0 ; i < numbits ; i++) { |
a126332a | 128 | num = (num << 1) | (*src); |
129 | src++; | |
130 | } | |
131 | return num; | |
132 | } | |
133 | ||
134 | //least significant bit first | |
135 | uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) | |
136 | { | |
137 | uint32_t num = 0; | |
6b6815bc | 138 | for(int i = 0 ; i < numbits ; i++) { |
a126332a | 139 | num = (num << 1) | *(src + (numbits-(i+1))); |
140 | } | |
141 | return num; | |
142 | } | |
143 | ||
8ad1e731 | 144 | //by marshmellow |
145 | // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) | |
146 | bool preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx){ | |
147 | return preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false); | |
148 | } | |
a1d17964 | 149 | //by marshmellow |
2147c307 | 150 | //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length |
8ad1e731 | 151 | // param @findone: look for a repeating preamble or only the first. |
152 | // em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits | |
153 | bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone) | |
a1d17964 | 154 | { |
5735cfa5 | 155 | // Sanity check. If preamble length is bigger than bitstream length. |
8ad1e731 | 156 | if ( *size <= pLen ) return false; |
5735cfa5 | 157 | |
56d0fb8e | 158 | uint8_t foundCnt = 0; |
159 | for (int idx = 0; idx < *size - pLen; idx++){ | |
e0165dcf | 160 | if (memcmp(BitStream+idx, preamble, pLen) == 0){ |
5215a874 | 161 | if (g_debugMode) prnt("DEBUG: preamble found at %i", idx); |
e0165dcf | 162 | //first index found |
163 | foundCnt++; | |
164 | if (foundCnt == 1){ | |
165 | *startIdx = idx; | |
8ad1e731 | 166 | if (findone) return true; |
e0165dcf | 167 | } |
168 | if (foundCnt == 2){ | |
169 | *size = idx - *startIdx; | |
8ad1e731 | 170 | return true; |
e0165dcf | 171 | } |
172 | } | |
173 | } | |
8ad1e731 | 174 | return false; |
175 | } | |
176 | ||
177 | // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup. | |
178 | size_t findModStart(uint8_t dest[], size_t size, uint8_t threshold_value, uint8_t expWaveSize) { | |
179 | size_t i = 0; | |
180 | size_t waveSizeCnt = 0; | |
181 | uint8_t thresholdCnt = 0; | |
182 | bool isAboveThreshold = dest[i++] >= threshold_value; | |
183 | for (; i < size-20; i++ ) { | |
184 | if(dest[i] < threshold_value && isAboveThreshold) { | |
185 | thresholdCnt++; | |
186 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
187 | isAboveThreshold = false; | |
188 | waveSizeCnt = 0; | |
189 | } else if (dest[i] >= threshold_value && !isAboveThreshold) { | |
190 | thresholdCnt++; | |
191 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
192 | isAboveThreshold = true; | |
193 | waveSizeCnt = 0; | |
194 | } else { | |
195 | waveSizeCnt++; | |
196 | } | |
197 | if (thresholdCnt > 10) break; | |
198 | } | |
199 | if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt); | |
200 | return i; | |
a1d17964 | 201 | } |
202 | ||
2147c307 | 203 | //by marshmellow |
204 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
8ad1e731 | 205 | // actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future |
a8fd088d | 206 | int Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) |
2147c307 | 207 | { |
5215a874 | 208 | // sanity check |
a8fd088d | 209 | if (BitStream[1] > 1) return -1; |
8ad1e731 | 210 | |
5215a874 | 211 | uint8_t fmtlen; |
e0165dcf | 212 | *startIdx = 0; |
8ad1e731 | 213 | |
214 | // preamble 0111111111 | |
215 | // include 0 in front to help get start pos | |
216 | uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; | |
217 | if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx)) | |
a8fd088d | 218 | return -2; |
219 | if (*size < 64) return -3; | |
8ad1e731 | 220 | |
5215a874 | 221 | fmtlen = (*size == 110) ? 22 : 10; |
8ad1e731 | 222 | |
5215a874 | 223 | //skip last 4bit parity row for simplicity |
224 | *size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, fmtlen * 5); | |
225 | ||
226 | switch (*size) { | |
227 | case 40: { | |
228 | // std em410x format | |
229 | *hi = 0; | |
230 | *lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32)); | |
231 | break; | |
232 | } | |
233 | case 88: { | |
234 | // long em format | |
235 | *hi = (bytebits_to_byte(BitStream, 24)); | |
236 | *lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32)); | |
237 | break; | |
238 | } | |
a8fd088d | 239 | default: return -4; |
e0165dcf | 240 | } |
8ad1e731 | 241 | return 1; |
2147c307 | 242 | } |
243 | ||
fef74fdc | 244 | //by marshmellow |
245 | //demodulates strong heavily clipped samples | |
23f0a7d8 | 246 | int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) |
247 | { | |
248 | size_t bitCnt=0, smplCnt=0, errCnt=0; | |
249 | uint8_t waveHigh = 0; | |
23f0a7d8 | 250 | for (size_t i=0; i < *size; i++){ |
251 | if (BinStream[i] >= high && waveHigh){ | |
252 | smplCnt++; | |
253 | } else if (BinStream[i] <= low && !waveHigh){ | |
254 | smplCnt++; | |
255 | } else { //transition | |
256 | if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ | |
81e82dfe | 257 | |
23f0a7d8 | 258 | if (smplCnt > clk-(clk/4)-1) { //full clock |
a38f5a07 | 259 | if (smplCnt > clk + (clk/4)+1) { //too many samples |
23f0a7d8 | 260 | errCnt++; |
05164399 | 261 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
81e82dfe | 262 | BinStream[bitCnt++] = 7; |
23f0a7d8 | 263 | } else if (waveHigh) { |
264 | BinStream[bitCnt++] = invert; | |
265 | BinStream[bitCnt++] = invert; | |
266 | } else if (!waveHigh) { | |
267 | BinStream[bitCnt++] = invert ^ 1; | |
268 | BinStream[bitCnt++] = invert ^ 1; | |
269 | } | |
270 | waveHigh ^= 1; | |
271 | smplCnt = 0; | |
272 | } else if (smplCnt > (clk/2) - (clk/4)-1) { | |
273 | if (waveHigh) { | |
274 | BinStream[bitCnt++] = invert; | |
275 | } else if (!waveHigh) { | |
276 | BinStream[bitCnt++] = invert ^ 1; | |
277 | } | |
278 | waveHigh ^= 1; | |
279 | smplCnt = 0; | |
280 | } else if (!bitCnt) { | |
281 | //first bit | |
282 | waveHigh = (BinStream[i] >= high); | |
283 | smplCnt = 1; | |
284 | } else { | |
285 | smplCnt++; | |
286 | //transition bit oops | |
287 | } | |
288 | } else { //haven't hit new high or new low yet | |
289 | smplCnt++; | |
290 | } | |
291 | } | |
292 | } | |
293 | *size = bitCnt; | |
294 | return errCnt; | |
295 | } | |
296 | ||
eb191de6 | 297 | //by marshmellow |
fef74fdc | 298 | void askAmp(uint8_t *BitStream, size_t size) |
299 | { | |
9686a8d4 | 300 | uint8_t last = 128; |
301 | for(size_t i = 1; i < size; ++i){ | |
302 | if (BitStream[i]-BitStream[i-1] >= 30) //large jump up | |
303 | last = 255; | |
304 | else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down | |
305 | last = 0; | |
306 | ||
307 | BitStream[i] = last; | |
fef74fdc | 308 | } |
fef74fdc | 309 | } |
310 | ||
311 | //by marshmellow | |
312 | //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester | |
313 | int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) | |
eb191de6 | 314 | { |
fef74fdc | 315 | if (*size==0) return -1; |
6e984446 | 316 | int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default |
bd09006a | 317 | |
2eec55c8 | 318 | if (*clk==0 || start < 0) return -3; |
fef74fdc | 319 | if (*invert != 1) *invert = 0; |
320 | if (amp==1) askAmp(BinStream, *size); | |
a38f5a07 | 321 | if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp); |
fef74fdc | 322 | |
2eec55c8 | 323 | uint8_t initLoopMax = 255; |
324 | if (initLoopMax > *size) initLoopMax = *size; | |
ba1a299c | 325 | // Detect high and lows |
fef74fdc | 326 | //25% clip in case highs and lows aren't clipped [marshmellow] |
2eec55c8 | 327 | int high, low; |
fef74fdc | 328 | if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) |
329 | return -2; //just noise | |
ba1a299c | 330 | |
fef74fdc | 331 | size_t errCnt = 0; |
23f0a7d8 | 332 | // if clean clipped waves detected run alternate demod |
333 | if (DetectCleanAskWave(BinStream, *size, high, low)) { | |
05164399 | 334 | if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod"); |
fef74fdc | 335 | errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); |
336 | if (askType) //askman | |
337 | return manrawdecode(BinStream, size, 0); | |
81e82dfe | 338 | //askraw |
339 | return errCnt; | |
23f0a7d8 | 340 | } |
05164399 | 341 | if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod"); |
23f0a7d8 | 342 | |
fef74fdc | 343 | int lastBit; //set first clock check - can go negative |
344 | size_t i, bitnum = 0; //output counter | |
345 | uint8_t midBit = 0; | |
2eec55c8 | 346 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave |
fef74fdc | 347 | if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely |
05164399 | 348 | size_t MaxBits = 3072; //max bits to collect |
6e984446 | 349 | lastBit = start - *clk; |
fef74fdc | 350 | |
6e984446 | 351 | for (i = start; i < *size; ++i) { |
fef74fdc | 352 | if (i-lastBit >= *clk-tol){ |
353 | if (BinStream[i] >= high) { | |
354 | BinStream[bitnum++] = *invert; | |
355 | } else if (BinStream[i] <= low) { | |
356 | BinStream[bitnum++] = *invert ^ 1; | |
357 | } else if (i-lastBit >= *clk+tol) { | |
358 | if (bitnum > 0) { | |
05164399 | 359 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
fef74fdc | 360 | BinStream[bitnum++]=7; |
361 | errCnt++; | |
362 | } | |
363 | } else { //in tolerance - looking for peak | |
364 | continue; | |
365 | } | |
366 | midBit = 0; | |
2eec55c8 | 367 | lastBit += *clk; |
fef74fdc | 368 | } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){ |
369 | if (BinStream[i] >= high) { | |
370 | BinStream[bitnum++] = *invert; | |
371 | } else if (BinStream[i] <= low) { | |
372 | BinStream[bitnum++] = *invert ^ 1; | |
373 | } else if (i-lastBit >= *clk/2+tol) { | |
374 | BinStream[bitnum] = BinStream[bitnum-1]; | |
375 | bitnum++; | |
376 | } else { //in tolerance - looking for peak | |
377 | continue; | |
378 | } | |
379 | midBit = 1; | |
2eec55c8 | 380 | } |
381 | if (bitnum >= MaxBits) break; | |
ba1a299c | 382 | } |
2eec55c8 | 383 | *size = bitnum; |
6e984446 | 384 | return errCnt; |
eb191de6 | 385 | } |
eb191de6 | 386 | //by marshmellow |
387 | //take 10 and 01 and manchester decode | |
388 | //run through 2 times and take least errCnt | |
81e82dfe | 389 | int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert){ |
5f5b83b7 | 390 | int errCnt = 0, bestErr = 1000; |
391 | uint16_t bitnum = 0, MaxBits = 512, bestRun = 0; | |
81e82dfe | 392 | size_t i, k; |
fef74fdc | 393 | if (*size < 16) return -1; |
2767fc02 | 394 | //find correct start position [alignment] |
81e82dfe | 395 | for (k=0; k < 2; ++k){ |
396 | for (i=k; i<*size-3; i += 2) | |
397 | if (BitStream[i] == BitStream[i+1]) | |
ba1a299c | 398 | errCnt++; |
2eec55c8 | 399 | |
81e82dfe | 400 | if (bestErr > errCnt){ |
401 | bestErr = errCnt; | |
402 | bestRun = k; | |
ba1a299c | 403 | } |
404 | errCnt=0; | |
405 | } | |
2767fc02 | 406 | //decode |
81e82dfe | 407 | for (i=bestRun; i < *size-3; i += 2){ |
408 | if (BitStream[i] == 1 && (BitStream[i+1] == 0)){ | |
409 | BitStream[bitnum++] = invert; | |
410 | } else if ((BitStream[i] == 0) && BitStream[i+1] == 1){ | |
411 | BitStream[bitnum++] = invert^1; | |
23f0a7d8 | 412 | } else { |
81e82dfe | 413 | BitStream[bitnum++] = 7; |
ba1a299c | 414 | } |
81e82dfe | 415 | if (bitnum>MaxBits) break; |
ba1a299c | 416 | } |
23f0a7d8 | 417 | *size=bitnum; |
2eec55c8 | 418 | return bestErr; |
f822a063 | 419 | } |
420 | ||
1d0ccbe0 | 421 | uint32_t manchesterEncode2Bytes(uint16_t datain) { |
422 | uint32_t output = 0; | |
423 | uint8_t curBit = 0; | |
424 | for (uint8_t i=0; i<16; i++) { | |
425 | curBit = (datain >> (15-i) & 1); | |
426 | output |= (1<<(((15-i)*2)+curBit)); | |
427 | } | |
428 | return output; | |
429 | } | |
430 | ||
fef74fdc | 431 | //by marshmellow |
432 | //encode binary data into binary manchester | |
433 | int ManchesterEncode(uint8_t *BitStream, size_t size) | |
434 | { | |
435 | size_t modIdx=20000, i=0; | |
436 | if (size>modIdx) return -1; | |
437 | for (size_t idx=0; idx < size; idx++){ | |
438 | BitStream[idx+modIdx++] = BitStream[idx]; | |
439 | BitStream[idx+modIdx++] = BitStream[idx]^1; | |
440 | } | |
441 | for (; i<(size*2); i++){ | |
442 | BitStream[i] = BitStream[i+20000]; | |
443 | } | |
444 | return i; | |
445 | } | |
446 | ||
f822a063 | 447 | //by marshmellow |
2147c307 | 448 | //take 01 or 10 = 1 and 11 or 00 = 0 |
449 | //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 | |
13d77ef9 | 450 | //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding |
1e090a61 | 451 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) |
f822a063 | 452 | { |
2eec55c8 | 453 | uint16_t bitnum = 0; |
454 | uint16_t errCnt = 0; | |
455 | size_t i = offset; | |
2147c307 | 456 | uint16_t MaxBits=512; |
457 | //if not enough samples - error | |
458 | if (*size < 51) return -1; | |
459 | //check for phase change faults - skip one sample if faulty | |
460 | uint8_t offsetA = 1, offsetB = 1; | |
461 | for (; i<48; i+=2){ | |
462 | if (BitStream[i+1]==BitStream[i+2]) offsetA=0; | |
463 | if (BitStream[i+2]==BitStream[i+3]) offsetB=0; | |
464 | } | |
465 | if (!offsetA && offsetB) offset++; | |
466 | for (i=offset; i<*size-3; i+=2){ | |
467 | //check for phase error | |
13d77ef9 | 468 | if (BitStream[i+1]==BitStream[i+2]) { |
2767fc02 | 469 | BitStream[bitnum++]=7; |
2147c307 | 470 | errCnt++; |
471 | } | |
ba1a299c | 472 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ |
1e090a61 | 473 | BitStream[bitnum++]=1^invert; |
ba1a299c | 474 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ |
1e090a61 | 475 | BitStream[bitnum++]=invert; |
ba1a299c | 476 | } else { |
2767fc02 | 477 | BitStream[bitnum++]=7; |
ba1a299c | 478 | errCnt++; |
479 | } | |
6de43508 | 480 | if(bitnum>MaxBits) break; |
ba1a299c | 481 | } |
482 | *size=bitnum; | |
483 | return errCnt; | |
eb191de6 | 484 | } |
485 | ||
fef74fdc | 486 | // by marshmellow |
11081e04 | 487 | // demod gProxIIDemod |
488 | // error returns as -x | |
489 | // success returns start position in BitStream | |
490 | // BitStream must contain previously askrawdemod and biphasedemoded data | |
491 | int gProxII_Demod(uint8_t BitStream[], size_t *size) | |
492 | { | |
493 | size_t startIdx=0; | |
494 | uint8_t preamble[] = {1,1,1,1,1,0}; | |
495 | ||
8ad1e731 | 496 | if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx)) |
497 | return -3; //preamble not found | |
498 | ||
11081e04 | 499 | if (*size != 96) return -2; //should have found 96 bits |
8ad1e731 | 500 | |
11081e04 | 501 | //check first 6 spacer bits to verify format |
502 | if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ | |
503 | //confirmed proper separator bits found | |
504 | //return start position | |
505 | return (int) startIdx; | |
506 | } | |
7fa7e812 | 507 | return -5; //spacer bits not found - not a valid gproxII |
11081e04 | 508 | } |
509 | ||
7fa7e812 | 510 | //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq]) |
f822a063 | 511 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 512 | { |
2eec55c8 | 513 | size_t last_transition = 0; |
514 | size_t idx = 1; | |
ba1a299c | 515 | if (fchigh==0) fchigh=10; |
516 | if (fclow==0) fclow=8; | |
84871873 | 517 | //set the threshold close to 0 (graph) or 128 std to avoid static |
518 | uint8_t threshold_value = 123; | |
ac2df346 | 519 | size_t preLastSample = 0; |
520 | size_t LastSample = 0; | |
521 | size_t currSample = 0; | |
4ac9f078 | 522 | if ( size < 1024 ) return 0; // not enough samples |
523 | ||
8ad1e731 | 524 | //find start of modulating data in trace |
525 | idx = findModStart(dest, size, threshold_value, fchigh); | |
ba1a299c | 526 | |
527 | // Need to threshold first sample | |
4ac9f078 | 528 | if(dest[idx] < threshold_value) dest[0] = 0; |
ba1a299c | 529 | else dest[0] = 1; |
4ac9f078 | 530 | idx++; |
ba1a299c | 531 | |
532 | size_t numBits = 0; | |
533 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
cd0bed3c | 534 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere |
ba1a299c | 535 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 |
7fa7e812 | 536 | // (could also be fc/5 && fc/7 for fsk1 = 4-9) |
4ac9f078 | 537 | for(; idx < size-20; idx++) { |
ba1a299c | 538 | // threshold current value |
539 | ||
540 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
541 | else dest[idx] = 1; | |
542 | ||
543 | // Check for 0->1 transition | |
7fa7e812 | 544 | if (dest[idx-1] < dest[idx]) { |
ac2df346 | 545 | preLastSample = LastSample; |
546 | LastSample = currSample; | |
547 | currSample = idx-last_transition; | |
6426f6ba | 548 | if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3) |
ba1a299c | 549 | //do nothing with extra garbage |
7fa7e812 | 550 | } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5) |
551 | //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5) | |
4ac9f078 | 552 | if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){ |
7fa7e812 | 553 | dest[numBits-1]=1; |
ac2df346 | 554 | } |
2eec55c8 | 555 | dest[numBits++]=1; |
ac2df346 | 556 | |
4ac9f078 | 557 | } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage |
558 | //do nothing with beginning garbage and reset.. should be rare.. | |
559 | numBits = 0; | |
7fa7e812 | 560 | } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's) |
ac2df346 | 561 | dest[numBits++]=1; |
7fa7e812 | 562 | } else { //9+ = 10 sample waves (or 6+ = 7) |
2eec55c8 | 563 | dest[numBits++]=0; |
ba1a299c | 564 | } |
565 | last_transition = idx; | |
ba1a299c | 566 | } |
567 | } | |
568 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
eb191de6 | 569 | } |
570 | ||
ba1a299c | 571 | //translate 11111100000 to 10 |
7fa7e812 | 572 | //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock |
2eec55c8 | 573 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, |
e0165dcf | 574 | uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 575 | { |
ba1a299c | 576 | uint8_t lastval=dest[0]; |
2eec55c8 | 577 | size_t idx=0; |
ba1a299c | 578 | size_t numBits=0; |
579 | uint32_t n=1; | |
ba1a299c | 580 | for( idx=1; idx < size; idx++) { |
13d77ef9 | 581 | n++; |
a38f5a07 | 582 | if (dest[idx]==lastval) continue; //skip until we hit a transition |
2eec55c8 | 583 | |
7fa7e812 | 584 | //find out how many bits (n) we collected |
ba1a299c | 585 | //if lastval was 1, we have a 1->0 crossing |
13d77ef9 | 586 | if (dest[idx-1]==1) { |
75cbbe9a | 587 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 588 | } else {// 0->1 crossing |
75cbbe9a | 589 | n = (n * fchigh + rfLen/2) / rfLen; |
ba1a299c | 590 | } |
591 | if (n == 0) n = 1; | |
592 | ||
7fa7e812 | 593 | //add to our destination the bits we collected |
2eec55c8 | 594 | memset(dest+numBits, dest[idx-1]^invert , n); |
595 | numBits += n; | |
ba1a299c | 596 | n=0; |
597 | lastval=dest[idx]; | |
598 | }//end for | |
13d77ef9 | 599 | // if valid extra bits at the end were all the same frequency - add them in |
75cbbe9a | 600 | if (n > rfLen/fchigh) { |
13d77ef9 | 601 | if (dest[idx-2]==1) { |
75cbbe9a | 602 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 603 | } else { |
75cbbe9a | 604 | n = (n * fchigh + rfLen/2) / rfLen; |
13d77ef9 | 605 | } |
2eec55c8 | 606 | memset(dest+numBits, dest[idx-1]^invert , n); |
13d77ef9 | 607 | numBits += n; |
608 | } | |
ba1a299c | 609 | return numBits; |
eb191de6 | 610 | } |
6426f6ba | 611 | |
eb191de6 | 612 | //by marshmellow (from holiman's base) |
613 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
f822a063 | 614 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 615 | { |
ba1a299c | 616 | // FSK demodulator |
617 | size = fsk_wave_demod(dest, size, fchigh, fclow); | |
2eec55c8 | 618 | size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow); |
ba1a299c | 619 | return size; |
eb191de6 | 620 | } |
a1d17964 | 621 | |
eb191de6 | 622 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
ec75f5c1 | 623 | int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
eb191de6 | 624 | { |
e0165dcf | 625 | if (justNoise(dest, *size)) return -1; |
626 | ||
337f7036 | 627 | size_t numStart=0, size2 = *size, startIdx=0; |
e0165dcf | 628 | // FSK demodulator |
629 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a | |
2eec55c8 | 630 | if (*size < 96*2) return -2; |
e0165dcf | 631 | // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
632 | uint8_t preamble[] = {0,0,0,1,1,1,0,1}; | |
8ad1e731 | 633 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
634 | return -3; //preamble not found | |
e0165dcf | 635 | |
636 | numStart = startIdx + sizeof(preamble); | |
637 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
638 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
639 | if (dest[idx] == dest[idx+1]){ | |
640 | return -4; //not manchester data | |
641 | } | |
642 | *hi2 = (*hi2<<1)|(*hi>>31); | |
643 | *hi = (*hi<<1)|(*lo>>31); | |
644 | //Then, shift in a 0 or one into low | |
81b7e894 | 645 | *lo <<= 1; |
e0165dcf | 646 | if (dest[idx] && !dest[idx+1]) // 1 0 |
81b7e894 | 647 | *lo |= 1; |
e0165dcf | 648 | else // 0 1 |
81b7e894 | 649 | *lo |= 0; |
e0165dcf | 650 | } |
651 | return (int)startIdx; | |
eb191de6 | 652 | } |
653 | ||
ec75f5c1 | 654 | // loop to get raw paradox waveform then FSK demodulate the TAG ID from it |
a1d17964 | 655 | int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
ec75f5c1 | 656 | { |
a1d17964 | 657 | if (justNoise(dest, *size)) return -1; |
658 | ||
337f7036 | 659 | size_t numStart=0, size2 = *size, startIdx=0; |
ec75f5c1 | 660 | // FSK demodulator |
a1d17964 | 661 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a |
662 | if (*size < 96) return -2; | |
ec75f5c1 | 663 | |
a1d17964 | 664 | // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
665 | uint8_t preamble[] = {0,0,0,0,1,1,1,1}; | |
8ad1e731 | 666 | if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
667 | return -3; //preamble not found | |
a1d17964 | 668 | |
669 | numStart = startIdx + sizeof(preamble); | |
670 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
671 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
672 | if (dest[idx] == dest[idx+1]) | |
673 | return -4; //not manchester data | |
674 | *hi2 = (*hi2<<1)|(*hi>>31); | |
675 | *hi = (*hi<<1)|(*lo>>31); | |
676 | //Then, shift in a 0 or one into low | |
677 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
678 | *lo=(*lo<<1)|1; | |
679 | else // 0 1 | |
680 | *lo=(*lo<<1)|0; | |
ec75f5c1 | 681 | } |
a1d17964 | 682 | return (int)startIdx; |
ec75f5c1 | 683 | } |
684 | ||
eb191de6 | 685 | int IOdemodFSK(uint8_t *dest, size_t size) |
686 | { | |
a1d17964 | 687 | if (justNoise(dest, size)) return -1; |
ba1a299c | 688 | //make sure buffer has data |
a1d17964 | 689 | if (size < 66*64) return -2; |
ba1a299c | 690 | // FSK demodulator |
a1d17964 | 691 | size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 |
692 | if (size < 65) return -3; //did we get a good demod? | |
ba1a299c | 693 | //Index map |
694 | //0 10 20 30 40 50 60 | |
695 | //| | | | | | | | |
696 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
697 | //----------------------------------------------------------------------------- | |
698 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
699 | // | |
700 | //XSF(version)facility:codeone+codetwo | |
701 | //Handle the data | |
a1d17964 | 702 | size_t startIdx = 0; |
703 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; | |
8ad1e731 | 704 | if (! preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx)) |
705 | return -4; //preamble not found | |
eb191de6 | 706 | |
a1d17964 | 707 | if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ |
708 | //confirmed proper separator bits found | |
709 | //return start position | |
710 | return (int) startIdx; | |
1e090a61 | 711 | } |
a1d17964 | 712 | return -5; |
1e090a61 | 713 | } |
714 | ||
70459879 | 715 | // by marshmellow |
716 | // find viking preamble 0xF200 in already demoded data | |
717 | int VikingDemod_AM(uint8_t *dest, size_t *size) { | |
70459879 | 718 | //make sure buffer has data |
719 | if (*size < 64*2) return -2; | |
70459879 | 720 | size_t startIdx = 0; |
721 | uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
8ad1e731 | 722 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
723 | return -4; //preamble not found | |
724 | ||
c0afa86f | 725 | uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ |
726 | bytebits_to_byte(dest+startIdx+8,8) ^ | |
727 | bytebits_to_byte(dest+startIdx+16,8) ^ | |
728 | bytebits_to_byte(dest+startIdx+24,8) ^ | |
729 | bytebits_to_byte(dest+startIdx+32,8) ^ | |
730 | bytebits_to_byte(dest+startIdx+40,8) ^ | |
731 | bytebits_to_byte(dest+startIdx+48,8) ^ | |
732 | bytebits_to_byte(dest+startIdx+56,8); | |
733 | if ( checkCalc != 0xA8 ) return -5; | |
57c7b44b | 734 | if (*size != 64) return -6; |
70459879 | 735 | //return start position |
deba67ab | 736 | return (int)startIdx; |
70459879 | 737 | } |
738 | ||
5daad826 | 739 | // by iceman |
740 | // find Visa2000 preamble in already demoded data | |
741 | int Visa2kDemod_AM(uint8_t *dest, size_t *size) { | |
371a40bf | 742 | if (*size < 96) return -1; //make sure buffer has data |
5daad826 | 743 | size_t startIdx = 0; |
744 | uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0}; | |
8ad1e731 | 745 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
746 | return -2; //preamble not found | |
5daad826 | 747 | if (*size != 96) return -3; //wrong demoded size |
748 | //return start position | |
deba67ab | 749 | return (int)startIdx; |
5daad826 | 750 | } |
207fc33a | 751 | // by iceman |
752 | // find Noralsy preamble in already demoded data | |
753 | int NoralsyDemod_AM(uint8_t *dest, size_t *size) { | |
7d269265 | 754 | if (*size < 96) return -1; //make sure buffer has data |
207fc33a | 755 | size_t startIdx = 0; |
756 | uint8_t preamble[] = {1,0,1,1,1,0,1,1,0,0,0,0}; | |
8ad1e731 | 757 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
758 | return -2; //preamble not found | |
207fc33a | 759 | if (*size != 96) return -3; //wrong demoded size |
760 | //return start position | |
deba67ab | 761 | return (int)startIdx; |
207fc33a | 762 | } |
4469412e | 763 | // find presco preamble 0x10D in already demoded data |
764 | int PrescoDemod(uint8_t *dest, size_t *size) { | |
d48175d4 | 765 | if (*size < 128*2) return -1; //make sure buffer has data |
4469412e | 766 | size_t startIdx = 0; |
d48175d4 | 767 | uint8_t preamble[] = {0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0}; |
8ad1e731 | 768 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
769 | return -2; //preamble not found | |
d48175d4 | 770 | if (*size != 128) return -3; //wrong demoded size |
4469412e | 771 | //return start position |
deba67ab | 772 | return (int)startIdx; |
4469412e | 773 | } |
774 | ||
615f21dd | 775 | // Ask/Biphase Demod then try to locate an ISO 11784/85 ID |
0df669a2 | 776 | // BitStream must contain previously askrawdemod and biphasedemoded data |
deba67ab | 777 | int FDXBdemodBI(uint8_t *dest, size_t *size) { |
778 | if (*size < 128*2) return -1; //make sure buffer has enough data | |
615f21dd | 779 | size_t startIdx = 0; |
0df669a2 | 780 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; |
8ad1e731 | 781 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
782 | return -2; //preamble not found | |
deba67ab | 783 | if (*size != 128) return -3; //wrong demoded size |
784 | //return start position | |
615f21dd | 785 | return (int)startIdx; |
786 | } | |
1e090a61 | 787 | |
6c283951 | 788 | // ASK/Diphase fc/64 (inverted Biphase) |
789 | // Note: this i s not a demod, this is only a detection | |
790 | // the parameter *dest needs to be demoded before call | |
deba67ab | 791 | // 0xFFFF preamble, 64bits |
6c283951 | 792 | int JablotronDemod(uint8_t *dest, size_t *size){ |
deba67ab | 793 | if (*size < 64*2) return -1; //make sure buffer has enough data |
6c283951 | 794 | size_t startIdx = 0; |
deba67ab | 795 | uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; |
8ad1e731 | 796 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
797 | return -2; //preamble not found | |
deba67ab | 798 | if (*size != 64) return -3; // wrong demoded size |
6c283951 | 799 | |
29ce214c | 800 | uint8_t checkchksum = 0; |
6c283951 | 801 | for (int i=16; i < 56; i += 8) { |
29ce214c | 802 | checkchksum += bytebits_to_byte(dest+startIdx+i,8); |
6c283951 | 803 | } |
29ce214c | 804 | checkchksum ^= 0x3A; |
29ce214c | 805 | uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8); |
deba67ab | 806 | if ( checkchksum != crc ) return -5; |
6c283951 | 807 | return (int)startIdx; |
808 | } | |
809 | ||
1e090a61 | 810 | // by marshmellow |
811 | // FSK Demod then try to locate an AWID ID | |
a1d17964 | 812 | int AWIDdemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 813 | { |
a1d17964 | 814 | //make sure buffer has enough data |
815 | if (*size < 96*50) return -1; | |
816 | ||
817 | if (justNoise(dest, *size)) return -2; | |
1e090a61 | 818 | |
819 | // FSK demodulator | |
a1d17964 | 820 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 |
821 | if (*size < 96) return -3; //did we get a good demod? | |
822 | ||
823 | uint8_t preamble[] = {0,0,0,0,0,0,0,1}; | |
824 | size_t startIdx = 0; | |
8ad1e731 | 825 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
826 | return -4; //preamble not found | |
a1d17964 | 827 | if (*size != 96) return -5; |
828 | return (int)startIdx; | |
1e090a61 | 829 | } |
830 | ||
831 | // by marshmellow | |
6426f6ba | 832 | // FSK Demod then try to locate a Farpointe Data (pyramid) ID |
a1d17964 | 833 | int PyramiddemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 834 | { |
f3bf15e4 | 835 | //make sure buffer has data |
836 | if (*size < 128*50) return -5; | |
a1d17964 | 837 | |
f3bf15e4 | 838 | //test samples are not just noise |
839 | if (justNoise(dest, *size)) return -1; | |
1e090a61 | 840 | |
f3bf15e4 | 841 | // FSK demodulator |
842 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 | |
843 | if (*size < 128) return -2; //did we get a good demod? | |
a1d17964 | 844 | size_t startIdx = 0; |
8ad1e731 | 845 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}; |
846 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) | |
847 | return -4; //preamble not found | |
a1d17964 | 848 | if (*size != 128) return -3; |
849 | return (int)startIdx; | |
1e090a61 | 850 | } |
851 | ||
0cbe0cb8 | 852 | // find nedap preamble in already demoded data |
56bbb25a | 853 | int NedapDemod(uint8_t *dest, size_t *size) { |
854 | //make sure buffer has data | |
855 | if (*size < 128) return -3; | |
96faed21 | 856 | |
56bbb25a | 857 | size_t startIdx = 0; |
15d49e82 | 858 | //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1}; |
859 | uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0}; | |
8ad1e731 | 860 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
861 | return -4; //preamble not found | |
56bbb25a | 862 | return (int) startIdx; |
863 | } | |
864 | ||
3acac886 | 865 | // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits |
866 | // by iceman | |
867 | int IdteckDemodPSK(uint8_t *dest, size_t *size) { | |
868 | //make sure buffer has data | |
869 | if (*size < 64*2) return -1; | |
870 | size_t startIdx = 0; | |
871 | uint8_t preamble[] = {0,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,0,1,1}; | |
8ad1e731 | 872 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
873 | return -2; //preamble not found | |
3acac886 | 874 | if (*size != 64) return -3; // wrong demoded size |
875 | return (int) startIdx; | |
876 | } | |
877 | ||
fef74fdc | 878 | // by marshmellow |
879 | // to detect a wave that has heavily clipped (clean) samples | |
cc15a118 | 880 | uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) |
6de43508 | 881 | { |
6426f6ba | 882 | bool allArePeaks = true; |
6de43508 | 883 | uint16_t cntPeaks=0; |
6426f6ba | 884 | size_t loopEnd = 512+160; |
1fbf8956 | 885 | if (loopEnd > size) loopEnd = size; |
6426f6ba | 886 | for (size_t i=160; i<loopEnd; i++){ |
6de43508 | 887 | if (dest[i]>low && dest[i]<high) |
6426f6ba | 888 | allArePeaks = false; |
6de43508 | 889 | else |
890 | cntPeaks++; | |
891 | } | |
6426f6ba | 892 | if (!allArePeaks){ |
893 | if (cntPeaks > 300) return true; | |
6de43508 | 894 | } |
6426f6ba | 895 | return allArePeaks; |
6de43508 | 896 | } |
2eec55c8 | 897 | // by marshmellow |
898 | // to help detect clocks on heavily clipped samples | |
cc15a118 | 899 | // based on count of low to low |
900 | int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low) | |
13d77ef9 | 901 | { |
cc15a118 | 902 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; |
903 | size_t startwave; | |
6426f6ba | 904 | size_t i = 100; |
cc15a118 | 905 | size_t minClk = 255; |
906 | // get to first full low to prime loop and skip incomplete first pulse | |
907 | while ((dest[i] < high) && (i < size)) | |
908 | ++i; | |
909 | while ((dest[i] > low) && (i < size)) | |
910 | ++i; | |
911 | ||
912 | // loop through all samples | |
913 | while (i < size) { | |
914 | // measure from low to low | |
915 | while ((dest[i] > low) && (i < size)) | |
916 | ++i; | |
917 | startwave= i; | |
918 | while ((dest[i] < high) && (i < size)) | |
919 | ++i; | |
920 | while ((dest[i] > low) && (i < size)) | |
921 | ++i; | |
922 | //get minimum measured distance | |
923 | if (i-startwave < minClk && i < size) | |
924 | minClk = i - startwave; | |
13d77ef9 | 925 | } |
cc15a118 | 926 | // set clock |
a126332a | 927 | if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk); |
cc15a118 | 928 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { |
929 | if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1) | |
930 | return fndClk[clkCnt]; | |
13d77ef9 | 931 | } |
cc15a118 | 932 | return 0; |
13d77ef9 | 933 | } |
934 | ||
eb191de6 | 935 | // by marshmellow |
936 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
937 | // maybe somehow adjust peak trimming value based on samples to fix? | |
6de43508 | 938 | // return start index of best starting position for that clock and return clock (by reference) |
939 | int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) | |
eb191de6 | 940 | { |
6e984446 | 941 | size_t i=1; |
cc15a118 | 942 | uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255}; |
943 | uint8_t clkEnd = 9; | |
2eec55c8 | 944 | uint8_t loopCnt = 255; //don't need to loop through entire array... |
6426f6ba | 945 | if (size <= loopCnt+60) return -1; //not enough samples |
946 | size -= 60; //sometimes there is a strange end wave - filter out this.... | |
6e984446 | 947 | //if we already have a valid clock |
948 | uint8_t clockFnd=0; | |
cc15a118 | 949 | for (;i<clkEnd;++i) |
950 | if (clk[i] == *clock) clockFnd = i; | |
6e984446 | 951 | //clock found but continue to find best startpos |
e0165dcf | 952 | |
953 | //get high and low peak | |
954 | int peak, low; | |
2eec55c8 | 955 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1; |
e0165dcf | 956 | |
957 | //test for large clean peaks | |
cc15a118 | 958 | if (!clockFnd){ |
959 | if (DetectCleanAskWave(dest, size, peak, low)==1){ | |
960 | int ans = DetectStrongAskClock(dest, size, peak, low); | |
a126332a | 961 | if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans); |
cc15a118 | 962 | for (i=clkEnd-1; i>0; i--){ |
963 | if (clk[i] == ans) { | |
964 | *clock = ans; | |
965 | //clockFnd = i; | |
966 | return 0; // for strong waves i don't use the 'best start position' yet... | |
967 | //break; //clock found but continue to find best startpos [not yet] | |
968 | } | |
e0165dcf | 969 | } |
970 | } | |
971 | } | |
2eec55c8 | 972 | uint8_t ii; |
973 | uint8_t clkCnt, tol = 0; | |
974 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
975 | uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; | |
976 | size_t errCnt = 0; | |
977 | size_t arrLoc, loopEnd; | |
6e984446 | 978 | |
cc15a118 | 979 | if (clockFnd>0) { |
980 | clkCnt = clockFnd; | |
981 | clkEnd = clockFnd+1; | |
81e82dfe | 982 | } else { |
983 | clkCnt=1; | |
cc15a118 | 984 | } |
cc15a118 | 985 | |
986 | //test each valid clock from smallest to greatest to see which lines up | |
81e82dfe | 987 | for(; clkCnt < clkEnd; clkCnt++) { |
988 | if (clk[clkCnt] <= 32) { | |
e0165dcf | 989 | tol=1; |
81e82dfe | 990 | } else { |
e0165dcf | 991 | tol=0; |
992 | } | |
2767fc02 | 993 | //if no errors allowed - keep start within the first clock |
81e82dfe | 994 | if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) |
995 | loopCnt = clk[clkCnt] * 2; | |
996 | ||
997 | bestErr[clkCnt] = 1000; | |
998 | ||
6e984446 | 999 | //try lining up the peaks by moving starting point (try first few clocks) |
cc15a118 | 1000 | for (ii=0; ii < loopCnt; ii++){ |
2eec55c8 | 1001 | if (dest[ii] < peak && dest[ii] > low) continue; |
1002 | ||
81e82dfe | 1003 | errCnt = 0; |
2eec55c8 | 1004 | // now that we have the first one lined up test rest of wave array |
1005 | loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; | |
1006 | for (i=0; i < loopEnd; ++i){ | |
1007 | arrLoc = ii + (i * clk[clkCnt]); | |
1008 | if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ | |
1009 | }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ | |
1010 | }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ | |
1011 | }else{ //error no peak detected | |
1012 | errCnt++; | |
e0165dcf | 1013 | } |
1014 | } | |
cc15a118 | 1015 | //if we found no errors then we can stop here and a low clock (common clocks) |
2eec55c8 | 1016 | // this is correct one - return this clock |
81e82dfe | 1017 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d", clk[clkCnt], errCnt, ii, i); |
1018 | if (errCnt==0 && clkCnt<7) { | |
cc15a118 | 1019 | if (!clockFnd) *clock = clk[clkCnt]; |
2eec55c8 | 1020 | return ii; |
1021 | } | |
1022 | //if we found errors see if it is lowest so far and save it as best run | |
81e82dfe | 1023 | if (errCnt < bestErr[clkCnt]) { |
1024 | bestErr[clkCnt] = errCnt; | |
1025 | bestStart[clkCnt] = ii; | |
2eec55c8 | 1026 | } |
e0165dcf | 1027 | } |
1028 | } | |
81e82dfe | 1029 | uint8_t k; |
1030 | uint8_t best = 0; | |
1031 | for (k=1; k < clkEnd; ++k){ | |
1032 | if (bestErr[k] < bestErr[best]){ | |
1033 | if (bestErr[k] == 0) bestErr[k]=1; | |
e0165dcf | 1034 | // current best bit to error ratio vs new bit to error ratio |
81e82dfe | 1035 | if ( (size/clk[best])/bestErr[best] < (size/clk[k])/bestErr[k] ){ |
1036 | best = k; | |
e0165dcf | 1037 | } |
1038 | } | |
81e82dfe | 1039 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d", clk[k], bestErr[k], clk[best], bestStart[best]); |
e0165dcf | 1040 | } |
cc15a118 | 1041 | if (!clockFnd) *clock = clk[best]; |
e0165dcf | 1042 | return bestStart[best]; |
eb191de6 | 1043 | } |
ba1a299c | 1044 | |
1045 | //by marshmellow | |
6de43508 | 1046 | //detect psk clock by reading each phase shift |
1047 | // a phase shift is determined by measuring the sample length of each wave | |
1048 | int DetectPSKClock(uint8_t dest[], size_t size, int clock) | |
ba1a299c | 1049 | { |
e0165dcf | 1050 | uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock |
1051 | uint16_t loopCnt = 4096; //don't need to loop through entire array... | |
1052 | if (size == 0) return 0; | |
6426f6ba | 1053 | if (size<loopCnt) loopCnt = size-20; |
e0165dcf | 1054 | |
1055 | //if we already have a valid clock quit | |
1056 | size_t i=1; | |
1057 | for (; i < 8; ++i) | |
1058 | if (clk[i] == clock) return clock; | |
1059 | ||
1060 | size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
1061 | uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1; | |
1062 | uint16_t peakcnt=0, errCnt=0, waveLenCnt=0; | |
1063 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
1064 | uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0}; | |
2eec55c8 | 1065 | fc = countFC(dest, size, 0); |
1066 | if (fc!=2 && fc!=4 && fc!=8) return -1; | |
a126332a | 1067 | if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc); |
e0165dcf | 1068 | |
1069 | //find first full wave | |
6426f6ba | 1070 | for (i=160; i<loopCnt; i++){ |
e0165dcf | 1071 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1072 | if (waveStart == 0) { | |
1073 | waveStart = i+1; | |
6426f6ba | 1074 | //prnt("DEBUG: waveStart: %d",waveStart); |
e0165dcf | 1075 | } else { |
1076 | waveEnd = i+1; | |
6426f6ba | 1077 | //prnt("DEBUG: waveEnd: %d",waveEnd); |
e0165dcf | 1078 | waveLenCnt = waveEnd-waveStart; |
1079 | if (waveLenCnt > fc){ | |
1080 | firstFullWave = waveStart; | |
1081 | fullWaveLen=waveLenCnt; | |
1082 | break; | |
1083 | } | |
1084 | waveStart=0; | |
1085 | } | |
1086 | } | |
1087 | } | |
a126332a | 1088 | if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); |
e0165dcf | 1089 | |
1090 | //test each valid clock from greatest to smallest to see which lines up | |
1091 | for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ | |
1092 | lastClkBit = firstFullWave; //set end of wave as clock align | |
1093 | waveStart = 0; | |
1094 | errCnt=0; | |
1095 | peakcnt=0; | |
a126332a | 1096 | if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); |
e0165dcf | 1097 | |
1098 | for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ | |
1099 | //top edge of wave = start of new wave | |
1100 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1101 | if (waveStart == 0) { | |
1102 | waveStart = i+1; | |
1103 | waveLenCnt=0; | |
1104 | } else { //waveEnd | |
1105 | waveEnd = i+1; | |
1106 | waveLenCnt = waveEnd-waveStart; | |
1107 | if (waveLenCnt > fc){ | |
1108 | //if this wave is a phase shift | |
a126332a | 1109 | if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc); |
e0165dcf | 1110 | if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit |
1111 | peakcnt++; | |
1112 | lastClkBit+=clk[clkCnt]; | |
1113 | } else if (i<lastClkBit+8){ | |
1114 | //noise after a phase shift - ignore | |
1115 | } else { //phase shift before supposed to based on clock | |
1116 | errCnt++; | |
1117 | } | |
1118 | } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){ | |
1119 | lastClkBit+=clk[clkCnt]; //no phase shift but clock bit | |
1120 | } | |
1121 | waveStart=i+1; | |
1122 | } | |
1123 | } | |
1124 | } | |
1125 | if (errCnt == 0){ | |
1126 | return clk[clkCnt]; | |
1127 | } | |
1128 | if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; | |
1129 | if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; | |
1130 | } | |
1131 | //all tested with errors | |
1132 | //return the highest clk with the most peaks found | |
1133 | uint8_t best=7; | |
1134 | for (i=7; i>=1; i--){ | |
1135 | if (peaksdet[i] > peaksdet[best]) { | |
1136 | best = i; | |
1137 | } | |
a126332a | 1138 | if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]); |
e0165dcf | 1139 | } |
1140 | return clk[best]; | |
ba1a299c | 1141 | } |
1142 | ||
6426f6ba | 1143 | int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){ |
1144 | //find shortest transition from high to low | |
1145 | size_t i = 0; | |
1146 | size_t transition1 = 0; | |
1147 | int lowestTransition = 255; | |
1148 | bool lastWasHigh = false; | |
1149 | ||
1150 | //find first valid beginning of a high or low wave | |
1151 | while ((dest[i] >= peak || dest[i] <= low) && (i < size)) | |
1152 | ++i; | |
1153 | while ((dest[i] < peak && dest[i] > low) && (i < size)) | |
1154 | ++i; | |
1155 | lastWasHigh = (dest[i] >= peak); | |
1156 | ||
1157 | if (i==size) return 0; | |
1158 | transition1 = i; | |
1159 | ||
1160 | for (;i < size; i++) { | |
1161 | if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) { | |
1162 | lastWasHigh = (dest[i] >= peak); | |
1163 | if (i-transition1 < lowestTransition) lowestTransition = i-transition1; | |
1164 | transition1 = i; | |
1165 | } | |
1166 | } | |
6426f6ba | 1167 | if (lowestTransition == 255) lowestTransition = 0; |
a126332a | 1168 | if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition); |
6426f6ba | 1169 | return lowestTransition; |
1170 | } | |
1171 | ||
6de43508 | 1172 | //by marshmellow |
1173 | //detect nrz clock by reading #peaks vs no peaks(or errors) | |
1174 | int DetectNRZClock(uint8_t dest[], size_t size, int clock) | |
ba1a299c | 1175 | { |
2eec55c8 | 1176 | size_t i=0; |
1177 | uint8_t clk[]={8,16,32,40,50,64,100,128,255}; | |
1178 | size_t loopCnt = 4096; //don't need to loop through entire array... | |
e0165dcf | 1179 | if (size == 0) return 0; |
6426f6ba | 1180 | if (size<loopCnt) loopCnt = size-20; |
e0165dcf | 1181 | //if we already have a valid clock quit |
1182 | for (; i < 8; ++i) | |
1183 | if (clk[i] == clock) return clock; | |
1184 | ||
1185 | //get high and low peak | |
1186 | int peak, low; | |
2eec55c8 | 1187 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0; |
e0165dcf | 1188 | |
6426f6ba | 1189 | int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low); |
2eec55c8 | 1190 | size_t ii; |
e0165dcf | 1191 | uint8_t clkCnt; |
1192 | uint8_t tol = 0; | |
6426f6ba | 1193 | uint16_t smplCnt = 0; |
1194 | int16_t peakcnt = 0; | |
1195 | int16_t peaksdet[] = {0,0,0,0,0,0,0,0}; | |
1196 | uint16_t maxPeak = 255; | |
1197 | bool firstpeak = false; | |
e0165dcf | 1198 | //test for large clipped waves |
1199 | for (i=0; i<loopCnt; i++){ | |
1200 | if (dest[i] >= peak || dest[i] <= low){ | |
6426f6ba | 1201 | if (!firstpeak) continue; |
1202 | smplCnt++; | |
e0165dcf | 1203 | } else { |
6426f6ba | 1204 | firstpeak=true; |
1205 | if (smplCnt > 6 ){ | |
1206 | if (maxPeak > smplCnt){ | |
1207 | maxPeak = smplCnt; | |
1208 | //prnt("maxPk: %d",maxPeak); | |
1209 | } | |
1210 | peakcnt++; | |
1211 | //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt); | |
1212 | smplCnt=0; | |
e0165dcf | 1213 | } |
e0165dcf | 1214 | } |
1215 | } | |
6426f6ba | 1216 | bool errBitHigh = 0; |
1217 | bool bitHigh = 0; | |
1218 | uint8_t ignoreCnt = 0; | |
1219 | uint8_t ignoreWindow = 4; | |
1220 | bool lastPeakHigh = 0; | |
1221 | int lastBit = 0; | |
e0165dcf | 1222 | peakcnt=0; |
1223 | //test each valid clock from smallest to greatest to see which lines up | |
1224 | for(clkCnt=0; clkCnt < 8; ++clkCnt){ | |
6426f6ba | 1225 | //ignore clocks smaller than smallest peak |
1226 | if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue; | |
e0165dcf | 1227 | //try lining up the peaks by moving starting point (try first 256) |
6426f6ba | 1228 | for (ii=20; ii < loopCnt; ++ii){ |
e0165dcf | 1229 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ |
1230 | peakcnt=0; | |
6426f6ba | 1231 | bitHigh = false; |
1232 | ignoreCnt = 0; | |
1233 | lastBit = ii-clk[clkCnt]; | |
1234 | //loop through to see if this start location works | |
1235 | for (i = ii; i < size-20; ++i) { | |
1236 | //if we are at a clock bit | |
1237 | if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) { | |
1238 | //test high/low | |
1239 | if (dest[i] >= peak || dest[i] <= low) { | |
1240 | //if same peak don't count it | |
1241 | if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) { | |
e0165dcf | 1242 | peakcnt++; |
6426f6ba | 1243 | } |
1244 | lastPeakHigh = (dest[i] >= peak); | |
1245 | bitHigh = true; | |
1246 | errBitHigh = false; | |
1247 | ignoreCnt = ignoreWindow; | |
1248 | lastBit += clk[clkCnt]; | |
1249 | } else if (i == lastBit + clk[clkCnt] + tol) { | |
1250 | lastBit += clk[clkCnt]; | |
1251 | } | |
1252 | //else if not a clock bit and no peaks | |
1253 | } else if (dest[i] < peak && dest[i] > low){ | |
1254 | if (ignoreCnt==0){ | |
1255 | bitHigh=false; | |
1256 | if (errBitHigh==true) peakcnt--; | |
1257 | errBitHigh=false; | |
1258 | } else { | |
1259 | ignoreCnt--; | |
1260 | } | |
1261 | // else if not a clock bit but we have a peak | |
1262 | } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) { | |
1263 | //error bar found no clock... | |
1264 | errBitHigh=true; | |
e0165dcf | 1265 | } |
1266 | } | |
1267 | if(peakcnt>peaksdet[clkCnt]) { | |
1268 | peaksdet[clkCnt]=peakcnt; | |
1269 | } | |
1270 | } | |
1271 | } | |
1272 | } | |
1273 | int iii=7; | |
2eec55c8 | 1274 | uint8_t best=0; |
e0165dcf | 1275 | for (iii=7; iii > 0; iii--){ |
6426f6ba | 1276 | if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) { |
1277 | if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) { | |
1278 | best = iii; | |
1279 | } | |
1280 | } else if (peaksdet[iii] > peaksdet[best]){ | |
e0165dcf | 1281 | best = iii; |
1282 | } | |
a126332a | 1283 | if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition); |
e0165dcf | 1284 | } |
6426f6ba | 1285 | |
e0165dcf | 1286 | return clk[best]; |
ba1a299c | 1287 | } |
1288 | ||
04d2721b | 1289 | // by marshmellow |
1290 | // convert psk1 demod to psk2 demod | |
1291 | // only transition waves are 1s | |
4ac9f078 | 1292 | void psk1TOpsk2(uint8_t *bits, size_t size) { |
1293 | uint8_t lastBit = bits[0]; | |
1294 | for (size_t i = 1; i < size; i++){ | |
1295 | //ignore errors | |
1296 | if (bits[i] == 7) continue; | |
1297 | ||
1298 | if (lastBit != bits[i]){ | |
1299 | lastBit = bits[i]; | |
1300 | bits[i] = 1; | |
04d2721b | 1301 | } else { |
4ac9f078 | 1302 | bits[i] = 0; |
04d2721b | 1303 | } |
1304 | } | |
04d2721b | 1305 | } |
ba1a299c | 1306 | |
3bc66a96 | 1307 | // by marshmellow |
1308 | // convert psk2 demod to psk1 demod | |
1309 | // from only transition waves are 1s to phase shifts change bit | |
4ac9f078 | 1310 | void psk2TOpsk1(uint8_t *bits, size_t size) { |
1311 | uint8_t phase = 0; | |
1312 | for (size_t i = 0; i < size; i++){ | |
1313 | if (bits[i] == 1){ | |
1314 | phase ^= 1; | |
3bc66a96 | 1315 | } |
4ac9f078 | 1316 | bits[i] = phase; |
3bc66a96 | 1317 | } |
3bc66a96 | 1318 | } |
1319 | ||
04d2721b | 1320 | // redesigned by marshmellow adjusted from existing decode functions |
1321 | // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more | |
ba1a299c | 1322 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) |
1323 | { | |
1324 | //26 bit 40134 format (don't know other formats) | |
57c7b44b | 1325 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
1326 | uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; | |
1327 | size_t startidx = 0; | |
1328 | if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){ | |
1329 | // if didn't find preamble try again inverting | |
1330 | if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1; | |
1331 | *invert ^= 1; | |
1332 | } | |
1333 | if (*size != 64 && *size != 224) return -2; | |
1334 | if (*invert==1) | |
1335 | for (size_t i = startidx; i < *size; i++) | |
1336 | bitStream[i] ^= 1; | |
ba1a299c | 1337 | |
57c7b44b | 1338 | return (int) startidx; |
ba1a299c | 1339 | } |
1340 | ||
05164399 | 1341 | // by marshmellow - demodulate NRZ wave - requires a read with strong signal |
04d2721b | 1342 | // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak |
6426f6ba | 1343 | int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){ |
e0165dcf | 1344 | if (justNoise(dest, *size)) return -1; |
1345 | *clk = DetectNRZClock(dest, *size, *clk); | |
1346 | if (*clk==0) return -2; | |
2eec55c8 | 1347 | size_t i, gLen = 4096; |
6426f6ba | 1348 | if (gLen>*size) gLen = *size-20; |
e0165dcf | 1349 | int high, low; |
1350 | if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low | |
6426f6ba | 1351 | |
1352 | uint8_t bit=0; | |
1353 | //convert wave samples to 1's and 0's | |
1354 | for(i=20; i < *size-20; i++){ | |
1355 | if (dest[i] >= high) bit = 1; | |
1356 | if (dest[i] <= low) bit = 0; | |
1357 | dest[i] = bit; | |
e0165dcf | 1358 | } |
6426f6ba | 1359 | //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit) |
1360 | size_t lastBit = 0; | |
1361 | size_t numBits = 0; | |
1362 | for(i=21; i < *size-20; i++) { | |
1363 | //if transition detected or large number of same bits - store the passed bits | |
1364 | if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) { | |
1365 | memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk); | |
1366 | numBits += (i - lastBit + (*clk/4)) / *clk; | |
1367 | lastBit = i-1; | |
e0165dcf | 1368 | } |
e0165dcf | 1369 | } |
6426f6ba | 1370 | *size = numBits; |
1371 | return 0; | |
ba1a299c | 1372 | } |
1373 | ||
1e090a61 | 1374 | //by marshmellow |
03e6bb4a | 1375 | //detects the bit clock for FSK given the high and low Field Clocks |
1376 | uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) | |
1e090a61 | 1377 | { |
e0165dcf | 1378 | uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; |
1379 | uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1380 | uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1381 | uint8_t rfLensFnd = 0; | |
2eec55c8 | 1382 | uint8_t lastFCcnt = 0; |
1383 | uint16_t fcCounter = 0; | |
e0165dcf | 1384 | uint16_t rfCounter = 0; |
1385 | uint8_t firstBitFnd = 0; | |
1386 | size_t i; | |
1387 | if (size == 0) return 0; | |
1388 | ||
6426f6ba | 1389 | uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2); |
e0165dcf | 1390 | rfLensFnd=0; |
1391 | fcCounter=0; | |
1392 | rfCounter=0; | |
1393 | firstBitFnd=0; | |
a38f5a07 | 1394 | //prnt("DEBUG: fcTol: %d",fcTol); |
6426f6ba | 1395 | // prime i to first peak / up transition |
1396 | for (i = 160; i < size-20; i++) | |
e0165dcf | 1397 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) |
1398 | break; | |
1399 | ||
6426f6ba | 1400 | for (; i < size-20; i++){ |
2eec55c8 | 1401 | fcCounter++; |
1402 | rfCounter++; | |
1403 | ||
1404 | if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) | |
1405 | continue; | |
1406 | // else new peak | |
1407 | // if we got less than the small fc + tolerance then set it to the small fc | |
8ad1e731 | 1408 | // if it is inbetween set it to the last counter |
1409 | if (fcCounter < fcHigh && fcCounter > fcLow) | |
1410 | fcCounter = lastFCcnt; | |
1411 | else if (fcCounter < fcLow+fcTol) | |
2eec55c8 | 1412 | fcCounter = fcLow; |
1413 | else //set it to the large fc | |
1414 | fcCounter = fcHigh; | |
1415 | ||
1416 | //look for bit clock (rf/xx) | |
1417 | if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ | |
1418 | //not the same size as the last wave - start of new bit sequence | |
1419 | if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit | |
1420 | for (int ii=0; ii<15; ii++){ | |
6426f6ba | 1421 | if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){ |
2eec55c8 | 1422 | rfCnts[ii]++; |
1423 | rfCounter = 0; | |
1424 | break; | |
e0165dcf | 1425 | } |
e0165dcf | 1426 | } |
2eec55c8 | 1427 | if (rfCounter > 0 && rfLensFnd < 15){ |
a38f5a07 | 1428 | //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); |
2eec55c8 | 1429 | rfCnts[rfLensFnd]++; |
1430 | rfLens[rfLensFnd++] = rfCounter; | |
1431 | } | |
1432 | } else { | |
1433 | firstBitFnd++; | |
e0165dcf | 1434 | } |
2eec55c8 | 1435 | rfCounter=0; |
1436 | lastFCcnt=fcCounter; | |
e0165dcf | 1437 | } |
2eec55c8 | 1438 | fcCounter=0; |
e0165dcf | 1439 | } |
1440 | uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; | |
1441 | ||
1442 | for (i=0; i<15; i++){ | |
e0165dcf | 1443 | //get highest 2 RF values (might need to get more values to compare or compare all?) |
1444 | if (rfCnts[i]>rfCnts[rfHighest]){ | |
1445 | rfHighest3=rfHighest2; | |
1446 | rfHighest2=rfHighest; | |
1447 | rfHighest=i; | |
1448 | } else if(rfCnts[i]>rfCnts[rfHighest2]){ | |
1449 | rfHighest3=rfHighest2; | |
1450 | rfHighest2=i; | |
1451 | } else if(rfCnts[i]>rfCnts[rfHighest3]){ | |
1452 | rfHighest3=i; | |
1453 | } | |
a126332a | 1454 | if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]); |
e0165dcf | 1455 | } |
1456 | // set allowed clock remainder tolerance to be 1 large field clock length+1 | |
1457 | // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off | |
1458 | uint8_t tol1 = fcHigh+1; | |
1459 | ||
a126332a | 1460 | if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); |
e0165dcf | 1461 | |
1462 | // loop to find the highest clock that has a remainder less than the tolerance | |
1463 | // compare samples counted divided by | |
6426f6ba | 1464 | // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less) |
e0165dcf | 1465 | int ii=7; |
6426f6ba | 1466 | for (; ii>=2; ii--){ |
e0165dcf | 1467 | if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ |
1468 | if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ | |
1469 | if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ | |
a126332a | 1470 | if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]); |
e0165dcf | 1471 | break; |
1472 | } | |
1473 | } | |
1474 | } | |
1475 | } | |
1476 | ||
8ad1e731 | 1477 | if (ii<2) return 0; // oops we went too far |
e0165dcf | 1478 | |
1479 | return clk[ii]; | |
03e6bb4a | 1480 | } |
1e090a61 | 1481 | |
03e6bb4a | 1482 | //by marshmellow |
1483 | //countFC is to detect the field clock lengths. | |
1484 | //counts and returns the 2 most common wave lengths | |
6de43508 | 1485 | //mainly used for FSK field clock detection |
2eec55c8 | 1486 | uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) |
03e6bb4a | 1487 | { |
6426f6ba | 1488 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
1489 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
e0165dcf | 1490 | uint8_t fcLensFnd = 0; |
1a4b9073 | 1491 | uint8_t lastFCcnt = 0; |
2eec55c8 | 1492 | uint8_t fcCounter = 0; |
e0165dcf | 1493 | size_t i; |
1a4b9073 | 1494 | if (size < 180) return 0; |
e0165dcf | 1495 | |
1496 | // prime i to first up transition | |
6426f6ba | 1497 | for (i = 160; i < size-20; i++) |
e0165dcf | 1498 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) |
1499 | break; | |
1500 | ||
6426f6ba | 1501 | for (; i < size-20; i++){ |
e0165dcf | 1502 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ |
1503 | // new up transition | |
1504 | fcCounter++; | |
2eec55c8 | 1505 | if (fskAdj){ |
1506 | //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) | |
1507 | if (lastFCcnt==5 && fcCounter==9) fcCounter--; | |
1508 | //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) | |
1509 | if ((fcCounter==9) || fcCounter==4) fcCounter++; | |
e0165dcf | 1510 | // save last field clock count (fc/xx) |
2eec55c8 | 1511 | lastFCcnt = fcCounter; |
1512 | } | |
e0165dcf | 1513 | // find which fcLens to save it to: |
6426f6ba | 1514 | for (int ii=0; ii<15; ii++){ |
e0165dcf | 1515 | if (fcLens[ii]==fcCounter){ |
1516 | fcCnts[ii]++; | |
1517 | fcCounter=0; | |
1518 | break; | |
1519 | } | |
1520 | } | |
6426f6ba | 1521 | if (fcCounter>0 && fcLensFnd<15){ |
e0165dcf | 1522 | //add new fc length |
1523 | fcCnts[fcLensFnd]++; | |
1524 | fcLens[fcLensFnd++]=fcCounter; | |
1525 | } | |
1526 | fcCounter=0; | |
1527 | } else { | |
1528 | // count sample | |
1529 | fcCounter++; | |
1530 | } | |
1531 | } | |
1532 | ||
6426f6ba | 1533 | uint8_t best1=14, best2=14, best3=14; |
e0165dcf | 1534 | uint16_t maxCnt1=0; |
1535 | // go through fclens and find which ones are bigest 2 | |
6426f6ba | 1536 | for (i=0; i<15; i++){ |
e0165dcf | 1537 | // get the 3 best FC values |
1538 | if (fcCnts[i]>maxCnt1) { | |
1539 | best3=best2; | |
1540 | best2=best1; | |
1541 | maxCnt1=fcCnts[i]; | |
1542 | best1=i; | |
1543 | } else if(fcCnts[i]>fcCnts[best2]){ | |
1544 | best3=best2; | |
1545 | best2=i; | |
1546 | } else if(fcCnts[i]>fcCnts[best3]){ | |
1547 | best3=i; | |
1548 | } | |
a126332a | 1549 | if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]); |
e0165dcf | 1550 | } |
6426f6ba | 1551 | if (fcLens[best1]==0) return 0; |
e0165dcf | 1552 | uint8_t fcH=0, fcL=0; |
1553 | if (fcLens[best1]>fcLens[best2]){ | |
1554 | fcH=fcLens[best1]; | |
1555 | fcL=fcLens[best2]; | |
1556 | } else{ | |
1557 | fcH=fcLens[best2]; | |
1558 | fcL=fcLens[best1]; | |
1559 | } | |
a126332a | 1560 | if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) { |
1561 | if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]); | |
1562 | return 0; //lots of waves not psk or fsk | |
1563 | } | |
e0165dcf | 1564 | // TODO: take top 3 answers and compare to known Field clocks to get top 2 |
1565 | ||
1566 | uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; | |
2eec55c8 | 1567 | if (fskAdj) return fcs; |
1568 | return fcLens[best1]; | |
6de43508 | 1569 | } |
1570 | ||
1571 | //by marshmellow - demodulate PSK1 wave | |
1572 | //uses wave lengths (# Samples) | |
1573 | int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) | |
1574 | { | |
e0165dcf | 1575 | if (size == 0) return -1; |
2eec55c8 | 1576 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf | 1577 | if (*size<loopCnt) loopCnt = *size; |
1578 | ||
6426f6ba | 1579 | size_t numBits=0; |
e0165dcf | 1580 | uint8_t curPhase = *invert; |
4ac9f078 | 1581 | size_t i=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; |
8ad1e731 | 1582 | uint16_t fc=0, fullWaveLen=0, tol=1; |
1583 | uint16_t errCnt=0, waveLenCnt=0, errCnt2=0; | |
1584 | fc = countFC(dest, *size, 1); | |
1585 | uint8_t fc2 = fc >> 8; | |
1586 | if (fc2 == 10) return -1; //fsk found - quit | |
1587 | fc = fc & 0xFF; | |
e0165dcf | 1588 | if (fc!=2 && fc!=4 && fc!=8) return -1; |
a38f5a07 | 1589 | //prnt("DEBUG: FC: %d",fc); |
e0165dcf | 1590 | *clock = DetectPSKClock(dest, *size, *clock); |
2eec55c8 | 1591 | if (*clock == 0) return -1; |
4ac9f078 | 1592 | |
8ad1e731 | 1593 | //find start of modulating data in trace |
1594 | uint8_t threshold_value = 123; //-5 | |
1595 | i = findModStart(dest, *size, threshold_value, fc); | |
4ac9f078 | 1596 | |
e0165dcf | 1597 | //find first phase shift |
8ad1e731 | 1598 | int avgWaveVal=0, lastAvgWaveVal=0; |
1599 | waveStart = i; | |
4ac9f078 | 1600 | for (; i<loopCnt; i++){ |
8ad1e731 | 1601 | // find peak |
e0165dcf | 1602 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1603 | waveEnd = i+1; | |
4ac9f078 | 1604 | if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd, waveStart); |
e0165dcf | 1605 | waveLenCnt = waveEnd-waveStart; |
4ac9f078 | 1606 | if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+3)){ //not first peak and is a large wave but not out of whack |
e0165dcf | 1607 | lastAvgWaveVal = avgWaveVal/(waveLenCnt); |
1608 | firstFullWave = waveStart; | |
1609 | fullWaveLen=waveLenCnt; | |
8ad1e731 | 1610 | //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting) |
1611 | if (lastAvgWaveVal > threshold_value) curPhase ^= 1; | |
e0165dcf | 1612 | break; |
1613 | } | |
1614 | waveStart = i+1; | |
1615 | avgWaveVal = 0; | |
1616 | } | |
2eec55c8 | 1617 | avgWaveVal += dest[i+2]; |
e0165dcf | 1618 | } |
6426f6ba | 1619 | if (firstFullWave == 0) { |
1620 | // no phase shift detected - could be all 1's or 0's - doesn't matter where we start | |
1621 | // so skip a little to ensure we are past any Start Signal | |
1622 | firstFullWave = 160; | |
1623 | memset(dest, curPhase, firstFullWave / *clock); | |
1624 | } else { | |
1625 | memset(dest, curPhase^1, firstFullWave / *clock); | |
1626 | } | |
1627 | //advance bits | |
1628 | numBits += (firstFullWave / *clock); | |
1629 | //set start of wave as clock align | |
1630 | lastClkBit = firstFullWave; | |
7fa7e812 | 1631 | if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen); |
8ad1e731 | 1632 | if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc); |
e0165dcf | 1633 | waveStart = 0; |
e0165dcf | 1634 | dest[numBits++] = curPhase; //set first read bit |
2eec55c8 | 1635 | for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ |
e0165dcf | 1636 | //top edge of wave = start of new wave |
1637 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1638 | if (waveStart == 0) { | |
1639 | waveStart = i+1; | |
2eec55c8 | 1640 | waveLenCnt = 0; |
e0165dcf | 1641 | avgWaveVal = dest[i+1]; |
1642 | } else { //waveEnd | |
1643 | waveEnd = i+1; | |
1644 | waveLenCnt = waveEnd-waveStart; | |
1645 | lastAvgWaveVal = avgWaveVal/waveLenCnt; | |
1646 | if (waveLenCnt > fc){ | |
a38f5a07 | 1647 | //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); |
2eec55c8 | 1648 | //this wave is a phase shift |
a38f5a07 | 1649 | //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); |
e0165dcf | 1650 | if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit |
2eec55c8 | 1651 | curPhase ^= 1; |
e0165dcf | 1652 | dest[numBits++] = curPhase; |
1653 | lastClkBit += *clock; | |
2eec55c8 | 1654 | } else if (i < lastClkBit+10+fc){ |
e0165dcf | 1655 | //noise after a phase shift - ignore |
1656 | } else { //phase shift before supposed to based on clock | |
1657 | errCnt++; | |
2767fc02 | 1658 | dest[numBits++] = 7; |
e0165dcf | 1659 | } |
1660 | } else if (i+1 > lastClkBit + *clock + tol + fc){ | |
1661 | lastClkBit += *clock; //no phase shift but clock bit | |
1662 | dest[numBits++] = curPhase; | |
8ad1e731 | 1663 | } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often) |
1664 | errCnt2++; | |
1665 | if(errCnt2 > 101) return errCnt2; | |
e0165dcf | 1666 | } |
2eec55c8 | 1667 | avgWaveVal = 0; |
1668 | waveStart = i+1; | |
e0165dcf | 1669 | } |
1670 | } | |
2eec55c8 | 1671 | avgWaveVal += dest[i+1]; |
e0165dcf | 1672 | } |
1673 | *size = numBits; | |
1674 | return errCnt; | |
6de43508 | 1675 | } |
05164399 | 1676 | |
1677 | //by marshmellow | |
1678 | //attempt to identify a Sequence Terminator in ASK modulated raw wave | |
1679 | bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) { | |
1680 | size_t bufsize = *size; | |
1681 | //need to loop through all samples and identify our clock, look for the ST pattern | |
1682 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; | |
1683 | int clk = 0; | |
1684 | int tol = 0; | |
1685 | int i, j, skip, start, end, low, high, minClk, waveStart; | |
1686 | bool complete = false; | |
a38f5a07 | 1687 | int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured |
1688 | int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed... | |
05164399 | 1689 | size_t testsize = (bufsize < 512) ? bufsize : 512; |
1690 | int phaseoff = 0; | |
1691 | high = low = 128; | |
1692 | memset(tmpbuff, 0, sizeof(tmpbuff)); | |
a38f5a07 | 1693 | memset(waveLen, 0, sizeof(waveLen)); |
05164399 | 1694 | |
a38f5a07 | 1695 | |
05164399 | 1696 | if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) { |
1697 | if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting"); | |
1698 | return false; //just noise | |
1699 | } | |
1700 | i = 0; | |
1701 | j = 0; | |
1702 | minClk = 255; | |
1703 | // get to first full low to prime loop and skip incomplete first pulse | |
1704 | while ((buffer[i] < high) && (i < bufsize)) | |
1705 | ++i; | |
1706 | while ((buffer[i] > low) && (i < bufsize)) | |
1707 | ++i; | |
1708 | skip = i; | |
1709 | ||
1710 | // populate tmpbuff buffer with pulse lengths | |
1711 | while (i < bufsize) { | |
1712 | // measure from low to low | |
1713 | while ((buffer[i] > low) && (i < bufsize)) | |
1714 | ++i; | |
1715 | start= i; | |
1716 | while ((buffer[i] < high) && (i < bufsize)) | |
1717 | ++i; | |
1718 | //first high point for this wave | |
1719 | waveStart = i; | |
1720 | while ((buffer[i] > low) && (i < bufsize)) | |
1721 | ++i; | |
a38f5a07 | 1722 | if (j >= (bufsize/32)) { |
05164399 | 1723 | break; |
1724 | } | |
1725 | waveLen[j] = i - waveStart; //first high to first low | |
1726 | tmpbuff[j++] = i - start; | |
1727 | if (i-start < minClk && i < bufsize) { | |
1728 | minClk = i - start; | |
1729 | } | |
1730 | } | |
1731 | // set clock - might be able to get this externally and remove this work... | |
1732 | if (!clk) { | |
1733 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { | |
1734 | tol = fndClk[clkCnt]/8; | |
1735 | if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { | |
1736 | clk=fndClk[clkCnt]; | |
1737 | break; | |
1738 | } | |
1739 | } | |
1740 | // clock not found - ERROR | |
1741 | if (!clk) { | |
1742 | if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting"); | |
1743 | return false; | |
1744 | } | |
1745 | } else tol = clk/8; | |
1746 | ||
1747 | *foundclock = clk; | |
1748 | ||
1749 | // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2) | |
1750 | start = -1; | |
1751 | for (i = 0; i < j - 4; ++i) { | |
1752 | skip += tmpbuff[i]; | |
1753 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior | |
1754 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 | |
1755 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
1756 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
1757 | start = i + 3; | |
1758 | break; | |
1759 | } | |
1760 | } | |
1761 | } | |
1762 | } | |
1763 | } | |
1764 | // first ST not found - ERROR | |
1765 | if (start < 0) { | |
1766 | if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting"); | |
1767 | return false; | |
a38f5a07 | 1768 | } else { |
1769 | if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j); | |
05164399 | 1770 | } |
1771 | if (waveLen[i+2] > clk*1+tol) | |
1772 | phaseoff = 0; | |
1773 | else | |
1774 | phaseoff = clk/2; | |
1775 | ||
1776 | // skip over the remainder of ST | |
1777 | skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point | |
1778 | ||
1779 | // now do it again to find the end | |
1780 | end = skip; | |
1781 | for (i += 3; i < j - 4; ++i) { | |
1782 | end += tmpbuff[i]; | |
a38f5a07 | 1783 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior |
05164399 | 1784 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 |
1785 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
1786 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
1787 | complete = true; | |
1788 | break; | |
1789 | } | |
1790 | } | |
1791 | } | |
1792 | } | |
1793 | } | |
1794 | end -= phaseoff; | |
1795 | //didn't find second ST - ERROR | |
1796 | if (!complete) { | |
1797 | if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting"); | |
1798 | return false; | |
1799 | } | |
1800 | if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff); | |
1801 | //now begin to trim out ST so we can use normal demod cmds | |
1802 | start = skip; | |
1803 | size_t datalen = end - start; | |
1804 | // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock | |
a38f5a07 | 1805 | if ( clk - (datalen % clk) <= clk/8) { |
1806 | // padd the amount off - could be problematic... but shouldn't happen often | |
1807 | datalen += clk - (datalen % clk); | |
1808 | } else if ( (datalen % clk) <= clk/8 ) { | |
1809 | // padd the amount off - could be problematic... but shouldn't happen often | |
1810 | datalen -= datalen % clk; | |
1811 | } else { | |
05164399 | 1812 | if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk); |
1813 | return false; | |
05164399 | 1814 | } |
1815 | // if datalen is less than one t55xx block - ERROR | |
1816 | if (datalen/clk < 8*4) { | |
1817 | if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting"); | |
1818 | return false; | |
1819 | } | |
1820 | size_t dataloc = start; | |
a38f5a07 | 1821 | if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) { |
1822 | //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start | |
1823 | for ( i=0; i <= (clk/8); ++i ) { | |
1824 | if ( buffer[dataloc - (clk*4) - i] <= low ) { | |
1825 | dataloc -= i; | |
1826 | break; | |
1827 | } | |
1828 | } | |
1829 | } | |
1830 | ||
05164399 | 1831 | size_t newloc = 0; |
1832 | i=0; | |
a38f5a07 | 1833 | if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen); |
1834 | ||
05164399 | 1835 | // warning - overwriting buffer given with raw wave data with ST removed... |
1836 | while ( dataloc < bufsize-(clk/2) ) { | |
7fa7e812 | 1837 | //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part) |
05164399 | 1838 | if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) { |
1839 | for(i=0; i < clk/2-tol; ++i) { | |
1840 | buffer[dataloc+i] = high+5; | |
1841 | } | |
1842 | } | |
1843 | for (i=0; i<datalen; ++i) { | |
1844 | if (i+newloc < bufsize) { | |
1845 | if (i+newloc < dataloc) | |
1846 | buffer[i+newloc] = buffer[dataloc]; | |
1847 | ||
1848 | dataloc++; | |
1849 | } | |
1850 | } | |
1851 | newloc += i; | |
7fa7e812 | 1852 | //skip next ST - we just assume it will be there from now on... |
a38f5a07 | 1853 | if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4)); |
05164399 | 1854 | dataloc += clk*4; |
1855 | } | |
1856 | *size = newloc; | |
1857 | return true; | |
1858 | } |