]>
Commit | Line | Data |
---|---|---|
6658905f | 1 | //-----------------------------------------------------------------------------\r |
2 | // The main application code. This is the first thing called after start.c\r | |
3 | // executes.\r | |
4 | // Jonathan Westhues, Mar 2006\r | |
5 | // Edits by Gerhard de Koning Gans, Sep 2007 (##)\r | |
6 | //-----------------------------------------------------------------------------\r | |
7 | #include <proxmark3.h>\r | |
8 | #include "apps.h"\r | |
9 | #include "fonts.h"\r | |
10 | #include "LCD.h"\r | |
11 | \r | |
12 | // The large multi-purpose buffer, typically used to hold A/D samples,\r | |
13 | // maybe pre-processed in some way.\r | |
14 | DWORD BigBuf[16000];\r | |
15 | \r | |
16 | //=============================================================================\r | |
17 | // A buffer where we can queue things up to be sent through the FPGA, for\r | |
18 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that\r | |
19 | // is the order in which they go out on the wire.\r | |
20 | //=============================================================================\r | |
21 | \r | |
22 | BYTE ToSend[256];\r | |
23 | int ToSendMax;\r | |
24 | static int ToSendBit;\r | |
25 | \r | |
26 | void ToSendReset(void)\r | |
27 | {\r | |
28 | ToSendMax = -1;\r | |
29 | ToSendBit = 8;\r | |
30 | }\r | |
31 | \r | |
32 | void ToSendStuffBit(int b)\r | |
33 | {\r | |
34 | if(ToSendBit >= 8) {\r | |
35 | ToSendMax++;\r | |
36 | ToSend[ToSendMax] = 0;\r | |
37 | ToSendBit = 0;\r | |
38 | }\r | |
39 | \r | |
40 | if(b) {\r | |
41 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit));\r | |
42 | }\r | |
43 | \r | |
44 | ToSendBit++;\r | |
45 | \r | |
46 | if(ToSendBit >= sizeof(ToSend)) {\r | |
47 | ToSendBit = 0;\r | |
48 | DbpString("ToSendStuffBit overflowed!");\r | |
49 | }\r | |
50 | }\r | |
51 | \r | |
52 | //=============================================================================\r | |
53 | // Debug print functions, to go out over USB, to the usual PC-side client.\r | |
54 | //=============================================================================\r | |
55 | \r | |
56 | void DbpString(char *str)\r | |
57 | {\r | |
58 | UsbCommand c;\r | |
59 | c.cmd = CMD_DEBUG_PRINT_STRING;\r | |
60 | c.ext1 = strlen(str);\r | |
61 | memcpy(c.d.asBytes, str, c.ext1);\r | |
62 | \r | |
63 | UsbSendPacket((BYTE *)&c, sizeof(c));\r | |
64 | // TODO fix USB so stupid things like this aren't req'd\r | |
65 | SpinDelay(50);\r | |
66 | }\r | |
67 | \r | |
68 | void DbpIntegers(int x1, int x2, int x3)\r | |
69 | {\r | |
70 | UsbCommand c;\r | |
71 | c.cmd = CMD_DEBUG_PRINT_INTEGERS;\r | |
72 | c.ext1 = x1;\r | |
73 | c.ext2 = x2;\r | |
74 | c.ext3 = x3;\r | |
75 | \r | |
76 | UsbSendPacket((BYTE *)&c, sizeof(c));\r | |
77 | // XXX\r | |
78 | SpinDelay(50);\r | |
79 | }\r | |
80 | \r | |
81 | void AcquireRawAdcSamples125k(BOOL at134khz)\r | |
82 | {\r | |
83 | BYTE *dest = (BYTE *)BigBuf;\r | |
84 | int n = sizeof(BigBuf);\r | |
85 | int i;\r | |
86 | \r | |
87 | memset(dest,0,n);\r | |
88 | \r | |
89 | if(at134khz) {\r | |
30f2a7d3 | 90 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r |
6658905f | 91 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);\r |
92 | } else {\r | |
30f2a7d3 | 93 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r |
6658905f | 94 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r |
95 | }\r | |
96 | \r | |
97 | // Connect the A/D to the peak-detected low-frequency path.\r | |
98 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r | |
99 | \r | |
100 | // Give it a bit of time for the resonant antenna to settle.\r | |
101 | SpinDelay(50);\r | |
102 | \r | |
103 | // Now set up the SSC to get the ADC samples that are now streaming at us.\r | |
104 | FpgaSetupSsc();\r | |
105 | \r | |
106 | i = 0;\r | |
107 | for(;;) {\r | |
108 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r | |
109 | SSC_TRANSMIT_HOLDING = 0x43;\r | |
110 | LED_D_ON();\r | |
111 | }\r | |
112 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r | |
113 | dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r | |
114 | i++;\r | |
115 | LED_D_OFF();\r | |
116 | if(i >= n) {\r | |
117 | break;\r | |
118 | }\r | |
119 | }\r | |
120 | }\r | |
121 | DbpIntegers(dest[0], dest[1], at134khz);\r | |
122 | }\r | |
123 | \r | |
124 | //-----------------------------------------------------------------------------\r | |
125 | // Read an ADC channel and block till it completes, then return the result\r | |
30f2a7d3 | 126 | // in ADC units (0 to 1023). Also a routine to average 32 samples and\r |
6658905f | 127 | // return that.\r |
128 | //-----------------------------------------------------------------------------\r | |
129 | static int ReadAdc(int ch)\r | |
130 | {\r | |
131 | DWORD d;\r | |
132 | \r | |
133 | ADC_CONTROL = ADC_CONTROL_RESET;\r | |
134 | ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |\r | |
135 | ADC_MODE_SAMPLE_HOLD_TIME(8);\r | |
136 | ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);\r | |
137 | \r | |
138 | ADC_CONTROL = ADC_CONTROL_START;\r | |
139 | while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))\r | |
140 | ;\r | |
141 | d = ADC_CHANNEL_DATA(ch);\r | |
142 | \r | |
143 | return d;\r | |
144 | }\r | |
145 | \r | |
146 | static int AvgAdc(int ch)\r | |
147 | {\r | |
148 | int i;\r | |
149 | int a = 0;\r | |
150 | \r | |
151 | for(i = 0; i < 32; i++) {\r | |
152 | a += ReadAdc(ch);\r | |
153 | }\r | |
154 | \r | |
155 | return (a + 15) >> 5;\r | |
156 | }\r | |
30f2a7d3 | 157 | |
158 | /* | |
159 | * Sweeps the useful LF range of the proxmark from | |
160 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
161 | * reads the voltage in the antenna: the result is a graph | |
162 | * which should clearly show the resonating frequency of your | |
163 | * LF antenna ( hopefully around 90 if it is tuned to 125kHz!) | |
164 | */\r | |
165 | void SweepLFrange()\r | |
166 | {\r | |
167 | BYTE *dest = (BYTE *)BigBuf;\r | |
168 | int i;\r | |
169 | \r | |
170 | // clear buffer\r | |
171 | memset(BigBuf,0,sizeof(BigBuf));\r | |
172 | \r | |
173 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r | |
174 | for (i=255; i>19; i--) {\r | |
175 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);\r | |
176 | SpinDelay(20);\r | |
177 | dest[i] = (137500 * AvgAdc(4)) >> 18;\r | |
178 | }\r | |
179 | }\r | |
6658905f | 180 | \r |
181 | void MeasureAntennaTuning(void)\r | |
182 | {\r | |
183 | // Impedances are Zc = 1/(j*omega*C), in ohms\r | |
184 | #define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz\r | |
185 | #define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz\r | |
186 | \r | |
187 | int vLf125, vLf134, vHf; // in mV\r | |
188 | \r | |
189 | UsbCommand c;\r | |
190 | \r | |
191 | // Let the FPGA drive the low-frequency antenna around 125 kHz.\r | |
30f2a7d3 | 192 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r |
6658905f | 193 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r |
194 | SpinDelay(20);\r | |
195 | vLf125 = AvgAdc(4);\r | |
196 | // Vref = 3.3V, and a 10000:240 voltage divider on the input\r | |
197 | // can measure voltages up to 137500 mV\r | |
198 | vLf125 = (137500 * vLf125) >> 10;\r | |
199 | \r | |
200 | // Let the FPGA drive the low-frequency antenna around 134 kHz.\r | |
30f2a7d3 | 201 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r |
6658905f | 202 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);\r |
203 | SpinDelay(20);\r | |
204 | vLf134 = AvgAdc(4);\r | |
205 | // Vref = 3.3V, and a 10000:240 voltage divider on the input\r | |
206 | // can measure voltages up to 137500 mV\r | |
207 | vLf134 = (137500 * vLf134) >> 10;\r | |
208 | \r | |
209 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz.\r | |
210 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r | |
211 | SpinDelay(20);\r | |
212 | vHf = AvgAdc(5);\r | |
213 | // Vref = 3300mV, and an 10:1 voltage divider on the input\r | |
214 | // can measure voltages up to 33000 mV\r | |
215 | vHf = (33000 * vHf) >> 10;\r | |
216 | \r | |
217 | c.cmd = CMD_MEASURED_ANTENNA_TUNING;\r | |
218 | c.ext1 = (vLf125 << 0) | (vLf134 << 16);\r | |
219 | c.ext2 = vHf;\r | |
220 | c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);\r | |
221 | UsbSendPacket((BYTE *)&c, sizeof(c));\r | |
222 | }\r | |
223 | \r | |
224 | void SimulateTagLowFrequency(int period)\r | |
225 | {\r | |
226 | int i;\r | |
227 | BYTE *tab = (BYTE *)BigBuf;\r | |
228 | \r | |
229 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);\r | |
230 | \r | |
231 | PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);\r | |
232 | \r | |
233 | PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);\r | |
234 | PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);\r | |
235 | \r | |
236 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT)\r | |
30f2a7d3 | 237 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)\r |
6658905f | 238 | \r |
239 | i = 0;\r | |
240 | for(;;) {\r | |
241 | while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {\r | |
242 | if(BUTTON_PRESS()) {\r | |
243 | return;\r | |
244 | }\r | |
245 | WDT_HIT();\r | |
246 | }\r | |
247 | \r | |
248 | LED_D_ON();\r | |
249 | if(tab[i]) {\r | |
250 | OPEN_COIL();\r | |
251 | } else {\r | |
252 | SHORT_COIL();\r | |
253 | }\r | |
254 | LED_D_OFF();\r | |
255 | \r | |
256 | while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {\r | |
257 | if(BUTTON_PRESS()) {\r | |
258 | return;\r | |
259 | }\r | |
260 | WDT_HIT();\r | |
261 | }\r | |
262 | \r | |
263 | i++;\r | |
264 | if(i == period) i = 0;\r | |
265 | }\r | |
266 | }\r | |
267 | \r | |
268 | // compose fc/8 fc/10 waveform\r | |
269 | static void fc(int c, int *n) {\r | |
270 | BYTE *dest = (BYTE *)BigBuf;\r | |
271 | int idx;\r | |
272 | \r | |
273 | // for when we want an fc8 pattern every 4 logical bits\r | |
274 | if(c==0) {\r | |
275 | dest[((*n)++)]=1;\r | |
276 | dest[((*n)++)]=1;\r | |
277 | dest[((*n)++)]=0;\r | |
278 | dest[((*n)++)]=0;\r | |
279 | dest[((*n)++)]=0;\r | |
280 | dest[((*n)++)]=0;\r | |
281 | dest[((*n)++)]=0;\r | |
282 | dest[((*n)++)]=0;\r | |
283 | }\r | |
284 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples\r | |
285 | if(c==8) {\r | |
286 | for (idx=0; idx<6; idx++) {\r | |
287 | dest[((*n)++)]=1;\r | |
288 | dest[((*n)++)]=1;\r | |
289 | dest[((*n)++)]=0;\r | |
290 | dest[((*n)++)]=0;\r | |
291 | dest[((*n)++)]=0;\r | |
292 | dest[((*n)++)]=0;\r | |
293 | dest[((*n)++)]=0;\r | |
294 | dest[((*n)++)]=0;\r | |
295 | }\r | |
296 | }\r | |
297 | \r | |
298 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples\r | |
299 | if(c==10) {\r | |
300 | for (idx=0; idx<5; idx++) {\r | |
301 | dest[((*n)++)]=1;\r | |
302 | dest[((*n)++)]=1;\r | |
303 | dest[((*n)++)]=1;\r | |
304 | dest[((*n)++)]=0;\r | |
305 | dest[((*n)++)]=0;\r | |
306 | dest[((*n)++)]=0;\r | |
307 | dest[((*n)++)]=0;\r | |
308 | dest[((*n)++)]=0;\r | |
309 | dest[((*n)++)]=0;\r | |
310 | dest[((*n)++)]=0;\r | |
311 | }\r | |
312 | }\r | |
313 | }\r | |
314 | \r | |
315 | // prepare a waveform pattern in the buffer based on the ID given then\r | |
316 | // simulate a HID tag until the button is pressed\r | |
317 | static void CmdHIDsimTAG(int hi, int lo)\r | |
318 | {\r | |
319 | int n=0, i=0;\r | |
320 | /*\r | |
321 | HID tag bitstream format\r | |
322 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits\r | |
323 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns\r | |
324 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns\r | |
325 | A fc8 is inserted before every 4 bits\r | |
326 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0\r | |
327 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)\r | |
328 | */\r | |
329 | \r | |
330 | if (hi>0xFFF) {\r | |
331 | DbpString("Tags can only have 44 bits.");\r | |
332 | return;\r | |
333 | }\r | |
334 | fc(0,&n);\r | |
335 | // special start of frame marker containing invalid bit sequences\r | |
336 | fc(8, &n); fc(8, &n); // invalid\r | |
337 | fc(8, &n); fc(10, &n); // logical 0\r | |
338 | fc(10, &n); fc(10, &n); // invalid\r | |
339 | fc(8, &n); fc(10, &n); // logical 0\r | |
340 | \r | |
341 | WDT_HIT();\r | |
342 | // manchester encode bits 43 to 32\r | |
343 | for (i=11; i>=0; i--) {\r | |
344 | if ((i%4)==3) fc(0,&n);\r | |
345 | if ((hi>>i)&1) {\r | |
346 | fc(10, &n); fc(8, &n); // low-high transition\r | |
347 | } else {\r | |
348 | fc(8, &n); fc(10, &n); // high-low transition\r | |
349 | }\r | |
350 | }\r | |
351 | \r | |
352 | WDT_HIT();\r | |
353 | // manchester encode bits 31 to 0\r | |
354 | for (i=31; i>=0; i--) {\r | |
355 | if ((i%4)==3) fc(0,&n);\r | |
356 | if ((lo>>i)&1) {\r | |
357 | fc(10, &n); fc(8, &n); // low-high transition\r | |
358 | } else {\r | |
359 | fc(8, &n); fc(10, &n); // high-low transition\r | |
360 | }\r | |
361 | }\r | |
362 | \r | |
363 | LED_A_ON();\r | |
364 | SimulateTagLowFrequency(n);\r | |
365 | LED_A_OFF();\r | |
366 | }\r | |
367 | \r | |
368 | // loop to capture raw HID waveform then FSK demodulate the TAG ID from it\r | |
369 | static void CmdHIDdemodFSK(void)\r | |
370 | {\r | |
371 | BYTE *dest = (BYTE *)BigBuf;\r | |
372 | int m=0, n=0, i=0, idx=0, found=0, lastval=0;\r | |
373 | DWORD hi=0, lo=0;\r | |
374 | \r | |
30f2a7d3 | 375 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r |
6658905f | 376 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r |
377 | \r | |
378 | // Connect the A/D to the peak-detected low-frequency path.\r | |
379 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r | |
380 | \r | |
381 | // Give it a bit of time for the resonant antenna to settle.\r | |
382 | SpinDelay(50);\r | |
383 | \r | |
384 | // Now set up the SSC to get the ADC samples that are now streaming at us.\r | |
385 | FpgaSetupSsc();\r | |
386 | \r | |
387 | for(;;) {\r | |
388 | WDT_HIT();\r | |
389 | LED_A_ON();\r | |
390 | if(BUTTON_PRESS()) {\r | |
391 | LED_A_OFF();\r | |
392 | return;\r | |
393 | }\r | |
394 | \r | |
395 | i = 0;\r | |
396 | m = sizeof(BigBuf);\r | |
397 | memset(dest,128,m);\r | |
398 | for(;;) {\r | |
399 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r | |
400 | SSC_TRANSMIT_HOLDING = 0x43;\r | |
401 | LED_D_ON();\r | |
402 | }\r | |
403 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r | |
404 | dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r | |
405 | // we don't care about actual value, only if it's more or less than a\r | |
406 | // threshold essentially we capture zero crossings for later analysis\r | |
407 | if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;\r | |
408 | i++;\r | |
409 | LED_D_OFF();\r | |
410 | if(i >= m) {\r | |
411 | break;\r | |
412 | }\r | |
413 | }\r | |
414 | }\r | |
415 | \r | |
416 | // FSK demodulator\r | |
417 | \r | |
418 | // sync to first lo-hi transition\r | |
419 | for( idx=1; idx<m; idx++) {\r | |
420 | if (dest[idx-1]<dest[idx])\r | |
421 | lastval=idx;\r | |
422 | break;\r | |
423 | }\r | |
424 | WDT_HIT();\r | |
425 | \r | |
426 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)\r | |
427 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere\r | |
428 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10\r | |
429 | for( i=0; idx<m; idx++) {\r | |
430 | if (dest[idx-1]<dest[idx]) {\r | |
431 | dest[i]=idx-lastval;\r | |
432 | if (dest[i] <= 8) {\r | |
433 | dest[i]=1;\r | |
434 | } else {\r | |
435 | dest[i]=0;\r | |
436 | }\r | |
437 | \r | |
438 | lastval=idx;\r | |
439 | i++;\r | |
440 | }\r | |
441 | }\r | |
442 | m=i;\r | |
443 | WDT_HIT();\r | |
444 | \r | |
445 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns\r | |
446 | lastval=dest[0];\r | |
447 | idx=0;\r | |
448 | i=0;\r | |
449 | n=0;\r | |
450 | for( idx=0; idx<m; idx++) {\r | |
451 | if (dest[idx]==lastval) {\r | |
452 | n++;\r | |
453 | } else {\r | |
454 | // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,\r | |
455 | // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets\r | |
456 | // swallowed up by rounding\r | |
457 | // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding\r | |
458 | // special start of frame markers use invalid manchester states (no transitions) by using sequences\r | |
459 | // like 111000\r | |
460 | if (dest[idx-1]) {\r | |
461 | n=(n+1)/6; // fc/8 in sets of 6\r | |
462 | } else {\r | |
463 | n=(n+1)/5; // fc/10 in sets of 5\r | |
464 | }\r | |
465 | switch (n) { // stuff appropriate bits in buffer\r | |
466 | case 0:\r | |
467 | case 1: // one bit\r | |
468 | dest[i++]=dest[idx-1];\r | |
469 | break;\r | |
470 | case 2: // two bits\r | |
471 | dest[i++]=dest[idx-1];\r | |
472 | dest[i++]=dest[idx-1];\r | |
473 | break;\r | |
474 | case 3: // 3 bit start of frame markers\r | |
475 | dest[i++]=dest[idx-1];\r | |
476 | dest[i++]=dest[idx-1];\r | |
477 | dest[i++]=dest[idx-1];\r | |
478 | break;\r | |
30f2a7d3 | 479 | // When a logic 0 is immediately followed by the start of the next transmisson\r |
6658905f | 480 | // (special pattern) a pattern of 4 bit duration lengths is created.\r |
481 | case 4:\r | |
482 | dest[i++]=dest[idx-1];\r | |
483 | dest[i++]=dest[idx-1];\r | |
484 | dest[i++]=dest[idx-1];\r | |
485 | dest[i++]=dest[idx-1];\r | |
486 | break;\r | |
487 | default: // this shouldn't happen, don't stuff any bits\r | |
488 | break;\r | |
489 | }\r | |
490 | n=0;\r | |
491 | lastval=dest[idx];\r | |
492 | }\r | |
493 | }\r | |
494 | m=i;\r | |
495 | WDT_HIT();\r | |
496 | \r | |
497 | // final loop, go over previously decoded manchester data and decode into usable tag ID\r | |
498 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0\r | |
499 | for( idx=0; idx<m-6; idx++) {\r | |
500 | // search for a start of frame marker\r | |
501 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r | |
502 | {\r | |
503 | found=1;\r | |
504 | idx+=6;\r | |
505 | if (found && (hi|lo)) {\r | |
506 | DbpString("TAG ID");\r | |
507 | DbpIntegers(hi, lo, (lo>>1)&0xffff);\r | |
508 | hi=0;\r | |
509 | lo=0;\r | |
510 | found=0;\r | |
511 | }\r | |
512 | }\r | |
513 | if (found) {\r | |
514 | if (dest[idx] && (!dest[idx+1]) ) {\r | |
515 | hi=(hi<<1)|(lo>>31);\r | |
516 | lo=(lo<<1)|0;\r | |
517 | } else if ( (!dest[idx]) && dest[idx+1]) {\r | |
518 | hi=(hi<<1)|(lo>>31);\r | |
519 | lo=(lo<<1)|1;\r | |
520 | } else {\r | |
521 | found=0;\r | |
522 | hi=0;\r | |
523 | lo=0;\r | |
524 | }\r | |
525 | idx++;\r | |
526 | }\r | |
527 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r | |
528 | {\r | |
529 | found=1;\r | |
530 | idx+=6;\r | |
531 | if (found && (hi|lo)) {\r | |
532 | DbpString("TAG ID");\r | |
533 | DbpIntegers(hi, lo, (lo>>1)&0xffff);\r | |
534 | hi=0;\r | |
535 | lo=0;\r | |
536 | found=0;\r | |
537 | }\r | |
538 | }\r | |
539 | }\r | |
540 | WDT_HIT();\r | |
541 | }\r | |
542 | }\r | |
543 | \r | |
544 | void SimulateTagHfListen(void)\r | |
545 | {\r | |
546 | BYTE *dest = (BYTE *)BigBuf;\r | |
547 | int n = sizeof(BigBuf);\r | |
548 | BYTE v = 0;\r | |
549 | int i;\r | |
550 | int p = 0;\r | |
551 | \r | |
552 | // We're using this mode just so that I can test it out; the simulated\r | |
553 | // tag mode would work just as well and be simpler.\r | |
554 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);\r | |
555 | \r | |
556 | // We need to listen to the high-frequency, peak-detected path.\r | |
557 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r | |
558 | \r | |
559 | FpgaSetupSsc();\r | |
560 | \r | |
561 | i = 0;\r | |
562 | for(;;) {\r | |
563 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r | |
564 | SSC_TRANSMIT_HOLDING = 0xff;\r | |
565 | }\r | |
566 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r | |
567 | BYTE r = (BYTE)SSC_RECEIVE_HOLDING;\r | |
568 | \r | |
569 | v <<= 1;\r | |
570 | if(r & 1) {\r | |
571 | v |= 1;\r | |
572 | }\r | |
573 | p++;\r | |
574 | \r | |
575 | if(p >= 8) {\r | |
576 | dest[i] = v;\r | |
577 | v = 0;\r | |
578 | p = 0;\r | |
579 | i++;\r | |
580 | \r | |
581 | if(i >= n) {\r | |
582 | break;\r | |
583 | }\r | |
584 | }\r | |
585 | }\r | |
586 | }\r | |
587 | DbpString("simulate tag (now type bitsamples)");\r | |
588 | }\r | |
589 | \r | |
590 | void UsbPacketReceived(BYTE *packet, int len)\r | |
591 | {\r | |
592 | UsbCommand *c = (UsbCommand *)packet;\r | |
593 | \r | |
594 | switch(c->cmd) {\r | |
595 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:\r | |
596 | AcquireRawAdcSamples125k(c->ext1);\r | |
597 | break;\r | |
598 | \r | |
599 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:\r | |
600 | AcquireRawAdcSamplesIso15693();\r | |
601 | break;\r | |
602 | \r | |
603 | case CMD_READER_ISO_15693:\r | |
30f2a7d3 | 604 | ReaderIso15693(c->ext1);\r |
6658905f | 605 | break;\r |
606 | \r | |
607 | case CMD_SIMTAG_ISO_15693:\r | |
30f2a7d3 | 608 | SimTagIso15693(c->ext1);\r |
6658905f | 609 | break;\r |
610 | \r | |
6658905f | 611 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:\r |
612 | AcquireRawAdcSamplesIso14443(c->ext1);\r | |
613 | break;\r | |
fb25b483 | 614 | |
615 | case CMD_READ_SRI512_TAG: | |
616 | ReadSRI512Iso14443(c->ext1); | |
617 | break; | |
6658905f | 618 | \r |
619 | case CMD_READER_ISO_14443a:\r | |
30f2a7d3 | 620 | ReaderIso14443a(c->ext1);\r |
6658905f | 621 | break;\r |
622 | \r | |
623 | case CMD_SNOOP_ISO_14443:\r | |
624 | SnoopIso14443();\r | |
625 | break;\r | |
626 | \r | |
627 | case CMD_SNOOP_ISO_14443a:\r | |
628 | SnoopIso14443a();\r | |
629 | break;\r | |
630 | \r | |
631 | case CMD_SIMULATE_TAG_HF_LISTEN:\r | |
632 | SimulateTagHfListen();\r | |
633 | break;\r | |
634 | \r | |
635 | case CMD_SIMULATE_TAG_ISO_14443:\r | |
636 | SimulateIso14443Tag();\r | |
637 | break;\r | |
638 | \r | |
639 | case CMD_SIMULATE_TAG_ISO_14443a:\r | |
640 | SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID\r | |
641 | break;\r | |
642 | \r | |
643 | case CMD_MEASURE_ANTENNA_TUNING:\r | |
644 | MeasureAntennaTuning();\r | |
645 | break;\r | |
646 | \r | |
647 | case CMD_HID_DEMOD_FSK:\r | |
648 | CmdHIDdemodFSK(); // Demodulate HID tag\r | |
649 | break;\r | |
650 | \r | |
651 | case CMD_HID_SIM_TAG:\r | |
652 | CmdHIDsimTAG(c->ext1, c->ext2); // Simulate HID tag by ID\r | |
653 | break;\r | |
654 | \r | |
655 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control\r | |
656 | LED_C_ON();\r | |
657 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r | |
658 | SpinDelay(200);\r | |
659 | LED_C_OFF();\r | |
660 | break;\r | |
661 | \r | |
662 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:\r | |
663 | case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {\r | |
664 | UsbCommand n;\r | |
665 | if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {\r | |
666 | n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;\r | |
667 | } else {\r | |
668 | n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;\r | |
669 | }\r | |
670 | n.ext1 = c->ext1;\r | |
671 | memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));\r | |
672 | UsbSendPacket((BYTE *)&n, sizeof(n));\r | |
673 | break;\r | |
674 | }\r | |
675 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: {\r | |
676 | BYTE *b = (BYTE *)BigBuf;\r | |
677 | memcpy(b+c->ext1, c->d.asBytes, 48);\r | |
678 | break;\r | |
679 | }\r | |
680 | case CMD_SIMULATE_TAG_125K:\r | |
681 | LED_A_ON();\r | |
682 | SimulateTagLowFrequency(c->ext1);\r | |
683 | LED_A_OFF();\r | |
684 | break;\r | |
685 | \r | |
686 | case CMD_LCD_RESET:\r | |
687 | LCDReset();\r | |
688 | break;\r | |
689 | \r | |
30f2a7d3 | 690 | case CMD_SWEEP_LF:\r |
691 | SweepLFrange();\r | |
692 | break;\r | |
693 | \r | |
694 | case CMD_SET_LF_DIVISOR:\r | |
695 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);\r | |
696 | break;\r | |
697 | \r | |
6658905f | 698 | case CMD_LCD:\r |
699 | LCDSend(c->ext1);\r | |
700 | break;\r | |
701 | \r | |
702 | case CMD_SETUP_WRITE:\r | |
703 | case CMD_FINISH_WRITE:\r | |
704 | USB_D_PLUS_PULLUP_OFF();\r | |
705 | SpinDelay(1000);\r | |
706 | SpinDelay(1000);\r | |
707 | RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;\r | |
708 | for(;;) {\r | |
709 | // We're going to reset, and the bootrom will take control.\r | |
710 | }\r | |
711 | break;\r | |
712 | \r | |
713 | default:\r | |
714 | DbpString("unknown command");\r | |
715 | break;\r | |
716 | }\r | |
717 | }\r | |
718 | \r | |
719 | void AppMain(void)\r | |
720 | {\r | |
721 | memset(BigBuf,0,sizeof(BigBuf));\r | |
722 | SpinDelay(100);\r | |
723 | \r | |
724 | LED_D_OFF();\r | |
725 | LED_C_OFF();\r | |
726 | LED_B_OFF();\r | |
727 | LED_A_OFF();\r | |
728 | \r | |
729 | UsbStart();\r | |
730 | \r | |
731 | // The FPGA gets its clock from us from PCK0 output, so set that up.\r | |
732 | PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);\r | |
733 | PIO_DISABLE = (1 << GPIO_PCK0);\r | |
734 | PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;\r | |
735 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz\r | |
736 | PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |\r | |
737 | PMC_CLK_PRESCALE_DIV_4;\r | |
738 | PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);\r | |
739 | \r | |
740 | // Reset SPI\r | |
741 | SPI_CONTROL = SPI_CONTROL_RESET;\r | |
742 | // Reset SSC\r | |
743 | SSC_CONTROL = SSC_CONTROL_RESET;\r | |
744 | \r | |
745 | // Load the FPGA image, which we have stored in our flash.\r | |
746 | FpgaDownloadAndGo();\r | |
747 | \r | |
748 | LCDInit();\r | |
749 | \r | |
750 | // test text on different colored backgrounds\r | |
751 | LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );\r | |
752 | LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );\r | |
753 | LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );\r | |
754 | LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );\r | |
755 | LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );\r | |
756 | LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);\r | |
757 | LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );\r | |
758 | LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);\r | |
759 | \r | |
760 | // color bands\r | |
761 | LCDFill(0, 1+8* 8, 132, 8, BLACK);\r | |
762 | LCDFill(0, 1+8* 9, 132, 8, WHITE);\r | |
763 | LCDFill(0, 1+8*10, 132, 8, RED);\r | |
764 | LCDFill(0, 1+8*11, 132, 8, GREEN);\r | |
765 | LCDFill(0, 1+8*12, 132, 8, BLUE);\r | |
766 | LCDFill(0, 1+8*13, 132, 8, YELLOW);\r | |
767 | LCDFill(0, 1+8*14, 132, 8, CYAN);\r | |
768 | LCDFill(0, 1+8*15, 132, 8, MAGENTA);\r | |
769 | \r | |
770 | for(;;) {\r | |
771 | UsbPoll(FALSE);\r | |
772 | WDT_HIT();\r | |
773 | }\r | |
774 | }\r | |
775 | \r | |
776 | void SpinDelay(int ms)\r | |
777 | {\r | |
778 | int ticks = (48000*ms) >> 10;\r | |
779 | \r | |
780 | // Borrow a PWM unit for my real-time clock\r | |
781 | PWM_ENABLE = PWM_CHANNEL(0);\r | |
782 | // 48 MHz / 1024 gives 46.875 kHz\r | |
783 | PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);\r | |
784 | PWM_CH_DUTY_CYCLE(0) = 0;\r | |
785 | PWM_CH_PERIOD(0) = 0xffff;\r | |
786 | \r | |
787 | WORD start = (WORD)PWM_CH_COUNTER(0);\r | |
788 | \r | |
789 | for(;;) {\r | |
790 | WORD now = (WORD)PWM_CH_COUNTER(0);\r | |
791 | if(now == (WORD)(start + ticks)) {\r | |
792 | return;\r | |
793 | }\r | |
794 | WDT_HIT();\r | |
795 | }\r | |
796 | }\r |