1 //-----------------------------------------------------------------------------
2 // The main application code. This is the first thing called after start.c
4 // Jonathan Westhues, Mar 2006
5 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
6 //-----------------------------------------------------------------------------
12 // The large multi-purpose buffer, typically used to hold A/D samples,
13 // maybe pre-processed in some way.
16 //=============================================================================
17 // A buffer where we can queue things up to be sent through the FPGA, for
18 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
19 // is the order in which they go out on the wire.
20 //=============================================================================
26 void ToSendReset(void)
32 void ToSendStuffBit(int b
)
36 ToSend
[ToSendMax
] = 0;
41 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
46 if(ToSendBit
>= sizeof(ToSend
)) {
48 DbpString("ToSendStuffBit overflowed!");
52 //=============================================================================
53 // Debug print functions, to go out over USB, to the usual PC-side client.
54 //=============================================================================
56 void DbpString(char *str
)
59 c
.cmd
= CMD_DEBUG_PRINT_STRING
;
61 memcpy(c
.d
.asBytes
, str
, c
.ext1
);
63 UsbSendPacket((BYTE
*)&c
, sizeof(c
));
64 // TODO fix USB so stupid things like this aren't req'd
68 void DbpIntegers(int x1
, int x2
, int x3
)
71 c
.cmd
= CMD_DEBUG_PRINT_INTEGERS
;
76 UsbSendPacket((BYTE
*)&c
, sizeof(c
));
81 void AcquireRawAdcSamples125k(BOOL at134khz
)
83 BYTE
*dest
= (BYTE
*)BigBuf
;
84 int n
= sizeof(BigBuf
);
90 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
91 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
| FPGA_LF_READER_USE_134_KHZ
);
93 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
94 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
| FPGA_LF_READER_USE_125_KHZ
);
97 // Connect the A/D to the peak-detected low-frequency path.
98 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
100 // Give it a bit of time for the resonant antenna to settle.
103 // Now set up the SSC to get the ADC samples that are now streaming at us.
108 if(SSC_STATUS
& (SSC_STATUS_TX_READY
)) {
109 SSC_TRANSMIT_HOLDING
= 0x43;
112 if(SSC_STATUS
& (SSC_STATUS_RX_READY
)) {
113 dest
[i
] = (BYTE
)SSC_RECEIVE_HOLDING
;
121 DbpIntegers(dest
[0], dest
[1], at134khz
);
124 //-----------------------------------------------------------------------------
125 // Read an ADC channel and block till it completes, then return the result
126 // in ADC units (0 to 1023). Also a routine to average 32 samples and
128 //-----------------------------------------------------------------------------
129 static int ReadAdc(int ch
)
133 ADC_CONTROL
= ADC_CONTROL_RESET
;
134 ADC_MODE
= ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |
135 ADC_MODE_SAMPLE_HOLD_TIME(8);
136 ADC_CHANNEL_ENABLE
= ADC_CHANNEL(ch
);
138 ADC_CONTROL
= ADC_CONTROL_START
;
139 while(!(ADC_STATUS
& ADC_END_OF_CONVERSION(ch
)))
141 d
= ADC_CHANNEL_DATA(ch
);
146 static int AvgAdc(int ch
)
151 for(i
= 0; i
< 32; i
++) {
155 return (a
+ 15) >> 5;
159 * Sweeps the useful LF range of the proxmark from
160 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
161 * reads the voltage in the antenna: the result is a graph
162 * which should clearly show the resonating frequency of your
163 * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
167 BYTE
*dest
= (BYTE
*)BigBuf
;
171 memset(BigBuf
,0,sizeof(BigBuf
));
173 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
174 for (i
=255; i
>19; i
--) {
175 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
177 dest
[i
] = (137500 * AvgAdc(4)) >> 18;
181 void MeasureAntennaTuning(void)
183 // Impedances are Zc = 1/(j*omega*C), in ohms
184 #define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz
185 #define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz
187 int vLf125
, vLf134
, vHf
; // in mV
191 // Let the FPGA drive the low-frequency antenna around 125 kHz.
192 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
193 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
| FPGA_LF_READER_USE_125_KHZ
);
196 // Vref = 3.3V, and a 10000:240 voltage divider on the input
197 // can measure voltages up to 137500 mV
198 vLf125
= (137500 * vLf125
) >> 10;
200 // Let the FPGA drive the low-frequency antenna around 134 kHz.
201 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
| FPGA_LF_READER_USE_134_KHZ
);
205 // Vref = 3.3V, and a 10000:240 voltage divider on the input
206 // can measure voltages up to 137500 mV
207 vLf134
= (137500 * vLf134
) >> 10;
209 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
210 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
213 // Vref = 3300mV, and an 10:1 voltage divider on the input
214 // can measure voltages up to 33000 mV
215 vHf
= (33000 * vHf
) >> 10;
217 c
.cmd
= CMD_MEASURED_ANTENNA_TUNING
;
218 c
.ext1
= (vLf125
<< 0) | (vLf134
<< 16);
220 c
.ext3
= (LF_TUNING_CAP_Z
<< 0) | (HF_TUNING_CAP_Z
<< 16);
221 UsbSendPacket((BYTE
*)&c
, sizeof(c
));
224 void SimulateTagLowFrequency(int period
)
227 BYTE
*tab
= (BYTE
*)BigBuf
;
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
231 PIO_ENABLE
= (1 << GPIO_SSC_DOUT
) | (1 << GPIO_SSC_CLK
);
233 PIO_OUTPUT_ENABLE
= (1 << GPIO_SSC_DOUT
);
234 PIO_OUTPUT_DISABLE
= (1 << GPIO_SSC_CLK
);
236 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
237 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
241 while(!(PIO_PIN_DATA_STATUS
& (1<<GPIO_SSC_CLK
))) {
256 while(PIO_PIN_DATA_STATUS
& (1<<GPIO_SSC_CLK
)) {
264 if(i
== period
) i
= 0;
268 // compose fc/8 fc/10 waveform
269 static void fc(int c
, int *n
) {
270 BYTE
*dest
= (BYTE
*)BigBuf
;
273 // for when we want an fc8 pattern every 4 logical bits
284 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
286 for (idx
=0; idx
<6; idx
++) {
298 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
300 for (idx
=0; idx
<5; idx
++) {
315 // prepare a waveform pattern in the buffer based on the ID given then
316 // simulate a HID tag until the button is pressed
317 static void CmdHIDsimTAG(int hi
, int lo
)
321 HID tag bitstream format
322 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
323 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
324 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
325 A fc8 is inserted before every 4 bits
326 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
327 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
331 DbpString("Tags can only have 44 bits.");
335 // special start of frame marker containing invalid bit sequences
336 fc(8, &n
); fc(8, &n
); // invalid
337 fc(8, &n
); fc(10, &n
); // logical 0
338 fc(10, &n
); fc(10, &n
); // invalid
339 fc(8, &n
); fc(10, &n
); // logical 0
342 // manchester encode bits 43 to 32
343 for (i
=11; i
>=0; i
--) {
344 if ((i
%4)==3) fc(0,&n
);
346 fc(10, &n
); fc(8, &n
); // low-high transition
348 fc(8, &n
); fc(10, &n
); // high-low transition
353 // manchester encode bits 31 to 0
354 for (i
=31; i
>=0; i
--) {
355 if ((i
%4)==3) fc(0,&n
);
357 fc(10, &n
); fc(8, &n
); // low-high transition
359 fc(8, &n
); fc(10, &n
); // high-low transition
364 SimulateTagLowFrequency(n
);
368 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
369 static void CmdHIDdemodFSK(void)
371 BYTE
*dest
= (BYTE
*)BigBuf
;
372 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
375 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
376 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
| FPGA_LF_READER_USE_125_KHZ
);
378 // Connect the A/D to the peak-detected low-frequency path.
379 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
381 // Give it a bit of time for the resonant antenna to settle.
384 // Now set up the SSC to get the ADC samples that are now streaming at us.
399 if(SSC_STATUS
& (SSC_STATUS_TX_READY
)) {
400 SSC_TRANSMIT_HOLDING
= 0x43;
403 if(SSC_STATUS
& (SSC_STATUS_RX_READY
)) {
404 dest
[i
] = (BYTE
)SSC_RECEIVE_HOLDING
;
405 // we don't care about actual value, only if it's more or less than a
406 // threshold essentially we capture zero crossings for later analysis
407 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
418 // sync to first lo-hi transition
419 for( idx
=1; idx
<m
; idx
++) {
420 if (dest
[idx
-1]<dest
[idx
])
426 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
427 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
428 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
429 for( i
=0; idx
<m
; idx
++) {
430 if (dest
[idx
-1]<dest
[idx
]) {
445 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
450 for( idx
=0; idx
<m
; idx
++) {
451 if (dest
[idx
]==lastval
) {
454 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
455 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
456 // swallowed up by rounding
457 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
458 // special start of frame markers use invalid manchester states (no transitions) by using sequences
461 n
=(n
+1)/6; // fc/8 in sets of 6
463 n
=(n
+1)/5; // fc/10 in sets of 5
465 switch (n
) { // stuff appropriate bits in buffer
468 dest
[i
++]=dest
[idx
-1];
471 dest
[i
++]=dest
[idx
-1];
472 dest
[i
++]=dest
[idx
-1];
474 case 3: // 3 bit start of frame markers
475 dest
[i
++]=dest
[idx
-1];
476 dest
[i
++]=dest
[idx
-1];
477 dest
[i
++]=dest
[idx
-1];
479 // When a logic 0 is immediately followed by the start of the next transmisson
480 // (special pattern) a pattern of 4 bit duration lengths is created.
482 dest
[i
++]=dest
[idx
-1];
483 dest
[i
++]=dest
[idx
-1];
484 dest
[i
++]=dest
[idx
-1];
485 dest
[i
++]=dest
[idx
-1];
487 default: // this shouldn't happen, don't stuff any bits
497 // final loop, go over previously decoded manchester data and decode into usable tag ID
498 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
499 for( idx
=0; idx
<m
-6; idx
++) {
500 // search for a start of frame marker
501 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
505 if (found
&& (hi
|lo
)) {
507 DbpIntegers(hi
, lo
, (lo
>>1)&0xffff);
514 if (dest
[idx
] && (!dest
[idx
+1]) ) {
517 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
527 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
531 if (found
&& (hi
|lo
)) {
533 DbpIntegers(hi
, lo
, (lo
>>1)&0xffff);
544 void SimulateTagHfListen(void)
546 BYTE
*dest
= (BYTE
*)BigBuf
;
547 int n
= sizeof(BigBuf
);
552 // We're using this mode just so that I can test it out; the simulated
553 // tag mode would work just as well and be simpler.
554 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
556 // We need to listen to the high-frequency, peak-detected path.
557 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
563 if(SSC_STATUS
& (SSC_STATUS_TX_READY
)) {
564 SSC_TRANSMIT_HOLDING
= 0xff;
566 if(SSC_STATUS
& (SSC_STATUS_RX_READY
)) {
567 BYTE r
= (BYTE
)SSC_RECEIVE_HOLDING
;
587 DbpString("simulate tag (now type bitsamples)");
590 void UsbPacketReceived(BYTE
*packet
, int len
)
592 UsbCommand
*c
= (UsbCommand
*)packet
;
595 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
596 AcquireRawAdcSamples125k(c
->ext1
);
599 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
600 AcquireRawAdcSamplesIso15693();
603 case CMD_READER_ISO_15693
:
604 ReaderIso15693(c
->ext1
);
607 case CMD_SIMTAG_ISO_15693
:
608 SimTagIso15693(c
->ext1
);
611 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
612 AcquireRawAdcSamplesIso14443(c
->ext1
);
615 case CMD_READ_SRI512_TAG
:
616 ReadSRI512Iso14443(c
->ext1
);
619 case CMD_READER_ISO_14443a
:
620 ReaderIso14443a(c
->ext1
);
623 case CMD_SNOOP_ISO_14443
:
627 case CMD_SNOOP_ISO_14443a
:
631 case CMD_SIMULATE_TAG_HF_LISTEN
:
632 SimulateTagHfListen();
635 case CMD_SIMULATE_TAG_ISO_14443
:
636 SimulateIso14443Tag();
639 case CMD_SIMULATE_TAG_ISO_14443a
:
640 SimulateIso14443aTag(c
->ext1
, c
->ext2
); // ## Simulate iso14443a tag - pass tag type & UID
643 case CMD_MEASURE_ANTENNA_TUNING
:
644 MeasureAntennaTuning();
647 case CMD_HID_DEMOD_FSK
:
648 CmdHIDdemodFSK(); // Demodulate HID tag
651 case CMD_HID_SIM_TAG
:
652 CmdHIDsimTAG(c
->ext1
, c
->ext2
); // Simulate HID tag by ID
655 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
657 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
662 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
663 case CMD_DOWNLOAD_RAW_BITS_TI_TYPE
: {
665 if(c
->cmd
== CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
) {
666 n
.cmd
= CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
;
668 n
.cmd
= CMD_DOWNLOADED_RAW_BITS_TI_TYPE
;
671 memcpy(n
.d
.asDwords
, BigBuf
+c
->ext1
, 12*sizeof(DWORD
));
672 UsbSendPacket((BYTE
*)&n
, sizeof(n
));
675 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
676 BYTE
*b
= (BYTE
*)BigBuf
;
677 memcpy(b
+c
->ext1
, c
->d
.asBytes
, 48);
680 case CMD_SIMULATE_TAG_125K
:
682 SimulateTagLowFrequency(c
->ext1
);
694 case CMD_SET_LF_DIVISOR
:
695 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->ext1
);
702 case CMD_SETUP_WRITE
:
703 case CMD_FINISH_WRITE
:
704 USB_D_PLUS_PULLUP_OFF();
707 RSTC_CONTROL
= RST_CONTROL_KEY
| RST_CONTROL_PROCESSOR_RESET
;
709 // We're going to reset, and the bootrom will take control.
714 DbpString("unknown command");
721 memset(BigBuf
,0,sizeof(BigBuf
));
731 // The FPGA gets its clock from us from PCK0 output, so set that up.
732 PIO_PERIPHERAL_B_SEL
= (1 << GPIO_PCK0
);
733 PIO_DISABLE
= (1 << GPIO_PCK0
);
734 PMC_SYS_CLK_ENABLE
= PMC_SYS_CLK_PROGRAMMABLE_CLK_0
;
735 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
736 PMC_PROGRAMMABLE_CLK_0
= PMC_CLK_SELECTION_PLL_CLOCK
|
737 PMC_CLK_PRESCALE_DIV_4
;
738 PIO_OUTPUT_ENABLE
= (1 << GPIO_PCK0
);
741 SPI_CONTROL
= SPI_CONTROL_RESET
;
743 SSC_CONTROL
= SSC_CONTROL_RESET
;
745 // Load the FPGA image, which we have stored in our flash.
750 // test text on different colored backgrounds
751 LCDString(" The quick brown fox ", &FONT6x8
,1,1+8*0,WHITE
,BLACK
);
752 LCDString(" jumped over the ", &FONT6x8
,1,1+8*1,BLACK
,WHITE
);
753 LCDString(" lazy dog. ", &FONT6x8
,1,1+8*2,YELLOW
,RED
);
754 LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8
,1,1+8*3,RED
,GREEN
);
755 LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8
,1,1+8*4,MAGENTA
,BLUE
);
756 LCDString("UuVvWwXxYyZz0123456789", &FONT6x8
,1,1+8*5,BLUE
,YELLOW
);
757 LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8
,1,1+8*6,BLACK
,CYAN
);
758 LCDString(" _+{}|:\\\"<>? ",&FONT6x8
,1,1+8*7,BLUE
,MAGENTA
);
761 LCDFill(0, 1+8* 8, 132, 8, BLACK
);
762 LCDFill(0, 1+8* 9, 132, 8, WHITE
);
763 LCDFill(0, 1+8*10, 132, 8, RED
);
764 LCDFill(0, 1+8*11, 132, 8, GREEN
);
765 LCDFill(0, 1+8*12, 132, 8, BLUE
);
766 LCDFill(0, 1+8*13, 132, 8, YELLOW
);
767 LCDFill(0, 1+8*14, 132, 8, CYAN
);
768 LCDFill(0, 1+8*15, 132, 8, MAGENTA
);
776 void SpinDelay(int ms
)
778 int ticks
= (48000*ms
) >> 10;
780 // Borrow a PWM unit for my real-time clock
781 PWM_ENABLE
= PWM_CHANNEL(0);
782 // 48 MHz / 1024 gives 46.875 kHz
783 PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
784 PWM_CH_DUTY_CYCLE(0) = 0;
785 PWM_CH_PERIOD(0) = 0xffff;
787 WORD start
= (WORD
)PWM_CH_COUNTER(0);
790 WORD now
= (WORD
)PWM_CH_COUNTER(0);
791 if(now
== (WORD
)(start
+ ticks
)) {