]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
LF demod/cmd code cleanup + new lf search
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
e30c654b 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
902cb3c0 17#include "cmd.h"
9ab7a6c7 18
15c4dc5a 19#include "iso14443crc.h"
534983d7 20#include "iso14443a.h"
20f9a2a1
M
21#include "crapto1.h"
22#include "mifareutil.h"
15c4dc5a 23
534983d7 24static uint32_t iso14a_timeout;
d19929cb 25uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
1e262141 26int rsamples = 0;
7bc95e2e 27int traceLen = 0;
1e262141 28int tracing = TRUE;
29uint8_t trigger = 0;
b0127e65 30// the block number for the ISO14443-4 PCB
31static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 32
7bc95e2e 33//
34// ISO14443 timing:
35//
36// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
37#define REQUEST_GUARD_TIME (7000/16 + 1)
38// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
39#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
40// bool LastCommandWasRequest = FALSE;
41
42//
43// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
44//
d714d3ef 45// When the PM acts as reader and is receiving tag data, it takes
46// 3 ticks delay in the AD converter
47// 16 ticks until the modulation detector completes and sets curbit
48// 8 ticks until bit_to_arm is assigned from curbit
49// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 50// 4*16 ticks until we measure the time
51// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 52#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 53
54// When the PM acts as a reader and is sending, it takes
55// 4*16 ticks until we can write data to the sending hold register
56// 8*16 ticks until the SHR is transferred to the Sending Shift Register
57// 8 ticks until the first transfer starts
58// 8 ticks later the FPGA samples the data
59// 1 tick to assign mod_sig_coil
60#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
61
62// When the PM acts as tag and is receiving it takes
d714d3ef 63// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 64// 3 ticks for the A/D conversion,
65// 8 ticks on average until the start of the SSC transfer,
66// 8 ticks until the SSC samples the first data
67// 7*16 ticks to complete the transfer from FPGA to ARM
68// 8 ticks until the next ssp_clk rising edge
d714d3ef 69// 4*16 ticks until we measure the time
7bc95e2e 70// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 71#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 72
73// The FPGA will report its internal sending delay in
74uint16_t FpgaSendQueueDelay;
75// the 5 first bits are the number of bits buffered in mod_sig_buf
76// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
77#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
78
79// When the PM acts as tag and is sending, it takes
d714d3ef 80// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 81// 8*16 ticks until the SHR is transferred to the Sending Shift Register
82// 8 ticks until the first transfer starts
83// 8 ticks later the FPGA samples the data
84// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
85// + 1 tick to assign mod_sig_coil
d714d3ef 86#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 87
88// When the PM acts as sniffer and is receiving tag data, it takes
89// 3 ticks A/D conversion
d714d3ef 90// 14 ticks to complete the modulation detection
91// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 92// + the delays in transferring data - which is the same for
93// sniffing reader and tag data and therefore not relevant
d714d3ef 94#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 95
d714d3ef 96// When the PM acts as sniffer and is receiving reader data, it takes
97// 2 ticks delay in analogue RF receiver (for the falling edge of the
98// start bit, which marks the start of the communication)
7bc95e2e 99// 3 ticks A/D conversion
d714d3ef 100// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 101// + the delays in transferring data - which is the same for
102// sniffing reader and tag data and therefore not relevant
d714d3ef 103#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 104
105//variables used for timing purposes:
106//these are in ssp_clk cycles:
6a1f2d82 107static uint32_t NextTransferTime;
108static uint32_t LastTimeProxToAirStart;
109static uint32_t LastProxToAirDuration;
7bc95e2e 110
111
112
8f51ddb0 113// CARD TO READER - manchester
72934aa3 114// Sequence D: 11110000 modulation with subcarrier during first half
115// Sequence E: 00001111 modulation with subcarrier during second half
116// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 117// READER TO CARD - miller
72934aa3 118// Sequence X: 00001100 drop after half a period
119// Sequence Y: 00000000 no drop
120// Sequence Z: 11000000 drop at start
121#define SEC_D 0xf0
122#define SEC_E 0x0f
123#define SEC_F 0x00
124#define SEC_X 0x0c
125#define SEC_Y 0x00
126#define SEC_Z 0xc0
15c4dc5a 127
1e262141 128const uint8_t OddByteParity[256] = {
15c4dc5a 129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
144 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
145};
146
1e262141 147
902cb3c0 148void iso14a_set_trigger(bool enable) {
534983d7 149 trigger = enable;
150}
151
902cb3c0 152void iso14a_clear_trace() {
7bc95e2e 153 memset(trace, 0x44, TRACE_SIZE);
8556b852
M
154 traceLen = 0;
155}
d19929cb 156
902cb3c0 157void iso14a_set_tracing(bool enable) {
8556b852
M
158 tracing = enable;
159}
d19929cb 160
b0127e65 161void iso14a_set_timeout(uint32_t timeout) {
162 iso14a_timeout = timeout;
163}
8556b852 164
15c4dc5a 165//-----------------------------------------------------------------------------
166// Generate the parity value for a byte sequence
e30c654b 167//
15c4dc5a 168//-----------------------------------------------------------------------------
20f9a2a1
M
169byte_t oddparity (const byte_t bt)
170{
5f6d6c90 171 return OddByteParity[bt];
20f9a2a1
M
172}
173
6a1f2d82 174void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
15c4dc5a 175{
6a1f2d82 176 uint16_t paritybit_cnt = 0;
177 uint16_t paritybyte_cnt = 0;
178 uint8_t parityBits = 0;
179
180 for (uint16_t i = 0; i < iLen; i++) {
181 // Generate the parity bits
182 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
183 if (paritybit_cnt == 7) {
184 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
185 parityBits = 0; // and advance to next Parity Byte
186 paritybyte_cnt++;
187 paritybit_cnt = 0;
188 } else {
189 paritybit_cnt++;
190 }
5f6d6c90 191 }
6a1f2d82 192
193 // save remaining parity bits
194 par[paritybyte_cnt] = parityBits;
195
15c4dc5a 196}
197
534983d7 198void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 199{
5f6d6c90 200 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 201}
202
1e262141 203// The function LogTrace() is also used by the iClass implementation in iClass.c
6a1f2d82 204bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
15c4dc5a 205{
fdcd43eb 206 if (!tracing) return FALSE;
6a1f2d82 207
208 uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
209 uint16_t duration = timestamp_end - timestamp_start;
210
7bc95e2e 211 // Return when trace is full
6a1f2d82 212 if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
7bc95e2e 213 tracing = FALSE; // don't trace any more
214 return FALSE;
215 }
216
6a1f2d82 217 // Traceformat:
218 // 32 bits timestamp (little endian)
219 // 16 bits duration (little endian)
220 // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
221 // y Bytes data
222 // x Bytes parity (one byte per 8 bytes data)
223
224 // timestamp (start)
225 trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
226 trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
227 trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
228 trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
229
230 // duration
231 trace[traceLen++] = ((duration >> 0) & 0xff);
232 trace[traceLen++] = ((duration >> 8) & 0xff);
233
234 // data length
235 trace[traceLen++] = ((iLen >> 0) & 0xff);
236 trace[traceLen++] = ((iLen >> 8) & 0xff);
17cba269 237
6a1f2d82 238 // readerToTag flag
17cba269 239 if (!readerToTag) {
7bc95e2e 240 trace[traceLen - 1] |= 0x80;
241 }
6a1f2d82 242
243 // data bytes
7bc95e2e 244 if (btBytes != NULL && iLen != 0) {
245 memcpy(trace + traceLen, btBytes, iLen);
246 }
247 traceLen += iLen;
6a1f2d82 248
249 // parity bytes
250 if (parity != NULL && iLen != 0) {
251 memcpy(trace + traceLen, parity, num_paritybytes);
252 }
253 traceLen += num_paritybytes;
254
7bc95e2e 255 return TRUE;
15c4dc5a 256}
257
7bc95e2e 258//=============================================================================
259// ISO 14443 Type A - Miller decoder
260//=============================================================================
261// Basics:
262// This decoder is used when the PM3 acts as a tag.
263// The reader will generate "pauses" by temporarily switching of the field.
264// At the PM3 antenna we will therefore measure a modulated antenna voltage.
265// The FPGA does a comparison with a threshold and would deliver e.g.:
266// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
267// The Miller decoder needs to identify the following sequences:
268// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
269// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
270// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
271// Note 1: the bitstream may start at any time. We therefore need to sync.
272// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 273//-----------------------------------------------------------------------------
b62a5a84 274static tUart Uart;
15c4dc5a 275
d7aa3739 276// Lookup-Table to decide if 4 raw bits are a modulation.
277// We accept two or three consecutive "0" in any position with the rest "1"
278const bool Mod_Miller_LUT[] = {
279 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
280 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
281};
282#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
283#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
284
7bc95e2e 285void UartReset()
15c4dc5a 286{
7bc95e2e 287 Uart.state = STATE_UNSYNCD;
288 Uart.bitCount = 0;
289 Uart.len = 0; // number of decoded data bytes
6a1f2d82 290 Uart.parityLen = 0; // number of decoded parity bytes
7bc95e2e 291 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
6a1f2d82 292 Uart.parityBits = 0; // holds 8 parity bits
7bc95e2e 293 Uart.twoBits = 0x0000; // buffer for 2 Bits
294 Uart.highCnt = 0;
295 Uart.startTime = 0;
296 Uart.endTime = 0;
297}
15c4dc5a 298
6a1f2d82 299void UartInit(uint8_t *data, uint8_t *parity)
300{
301 Uart.output = data;
302 Uart.parity = parity;
303 UartReset();
304}
d714d3ef 305
7bc95e2e 306// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
307static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
308{
15c4dc5a 309
7bc95e2e 310 Uart.twoBits = (Uart.twoBits << 8) | bit;
311
312 if (Uart.state == STATE_UNSYNCD) { // not yet synced
313 if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
314 if (Uart.twoBits == 0xffff) {
315 Uart.highCnt++;
316 } else {
317 Uart.highCnt = 0;
15c4dc5a 318 }
7bc95e2e 319 } else {
320 Uart.syncBit = 0xFFFF; // not set
321 // look for 00xx1111 (the start bit)
322 if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
323 else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
324 else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
325 else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
326 else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
327 else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
328 else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
329 else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
330 if (Uart.syncBit != 0xFFFF) {
331 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
332 Uart.startTime -= Uart.syncBit;
d7aa3739 333 Uart.endTime = Uart.startTime;
7bc95e2e 334 Uart.state = STATE_START_OF_COMMUNICATION;
15c4dc5a 335 }
7bc95e2e 336 }
15c4dc5a 337
7bc95e2e 338 } else {
15c4dc5a 339
d7aa3739 340 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
341 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
342 UartReset();
343 Uart.highCnt = 6;
344 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 345 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
346 UartReset();
347 Uart.highCnt = 6;
348 } else {
349 Uart.bitCount++;
350 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
351 Uart.state = STATE_MILLER_Z;
352 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
353 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
354 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
355 Uart.parityBits <<= 1; // make room for the parity bit
356 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
357 Uart.bitCount = 0;
358 Uart.shiftReg = 0;
6a1f2d82 359 if((Uart.len&0x0007) == 0) { // every 8 data bytes
360 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
361 Uart.parityBits = 0;
362 }
15c4dc5a 363 }
7bc95e2e 364 }
d7aa3739 365 }
366 } else {
367 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 368 Uart.bitCount++;
369 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
370 Uart.state = STATE_MILLER_X;
371 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
372 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
373 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
374 Uart.parityBits <<= 1; // make room for the new parity bit
375 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
376 Uart.bitCount = 0;
377 Uart.shiftReg = 0;
6a1f2d82 378 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
379 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
380 Uart.parityBits = 0;
381 }
7bc95e2e 382 }
d7aa3739 383 } else { // no modulation in both halves - Sequence Y
7bc95e2e 384 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 385 Uart.state = STATE_UNSYNCD;
6a1f2d82 386 Uart.bitCount--; // last "0" was part of EOC sequence
387 Uart.shiftReg <<= 1; // drop it
388 if(Uart.bitCount > 0) { // if we decoded some bits
389 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
390 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
391 Uart.parityBits <<= 1; // add a (void) parity bit
392 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
393 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
394 return TRUE;
395 } else if (Uart.len & 0x0007) { // there are some parity bits to store
396 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
397 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
52bfb955 398 }
399 if (Uart.len) {
6a1f2d82 400 return TRUE; // we are finished with decoding the raw data sequence
52bfb955 401 } else {
402 UartReset(); // Nothing received - try again
7bc95e2e 403 }
15c4dc5a 404 }
7bc95e2e 405 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
406 UartReset();
407 Uart.highCnt = 6;
408 } else { // a logic "0"
409 Uart.bitCount++;
410 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
411 Uart.state = STATE_MILLER_Y;
412 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
413 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
414 Uart.parityBits <<= 1; // make room for the parity bit
415 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
416 Uart.bitCount = 0;
417 Uart.shiftReg = 0;
6a1f2d82 418 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
419 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
420 Uart.parityBits = 0;
421 }
15c4dc5a 422 }
423 }
d7aa3739 424 }
15c4dc5a 425 }
7bc95e2e 426
427 }
15c4dc5a 428
7bc95e2e 429 return FALSE; // not finished yet, need more data
15c4dc5a 430}
431
7bc95e2e 432
433
15c4dc5a 434//=============================================================================
e691fc45 435// ISO 14443 Type A - Manchester decoder
15c4dc5a 436//=============================================================================
e691fc45 437// Basics:
7bc95e2e 438// This decoder is used when the PM3 acts as a reader.
e691fc45 439// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
440// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
441// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
442// The Manchester decoder needs to identify the following sequences:
443// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
444// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
445// 8 ticks unmodulated: Sequence F = end of communication
446// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 447// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 448// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 449static tDemod Demod;
15c4dc5a 450
d7aa3739 451// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 452// We accept three or four "1" in any position
7bc95e2e 453const bool Mod_Manchester_LUT[] = {
d7aa3739 454 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 455 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 456};
457
458#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
459#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 460
2f2d9fc5 461
7bc95e2e 462void DemodReset()
e691fc45 463{
7bc95e2e 464 Demod.state = DEMOD_UNSYNCD;
465 Demod.len = 0; // number of decoded data bytes
6a1f2d82 466 Demod.parityLen = 0;
7bc95e2e 467 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
468 Demod.parityBits = 0; //
469 Demod.collisionPos = 0; // Position of collision bit
470 Demod.twoBits = 0xffff; // buffer for 2 Bits
471 Demod.highCnt = 0;
472 Demod.startTime = 0;
473 Demod.endTime = 0;
e691fc45 474}
15c4dc5a 475
6a1f2d82 476
477void DemodInit(uint8_t *data, uint8_t *parity)
478{
479 Demod.output = data;
480 Demod.parity = parity;
481 DemodReset();
482}
483
7bc95e2e 484// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
485static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 486{
7bc95e2e 487
488 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 489
7bc95e2e 490 if (Demod.state == DEMOD_UNSYNCD) {
491
492 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
493 if (Demod.twoBits == 0x0000) {
494 Demod.highCnt++;
495 } else {
496 Demod.highCnt = 0;
497 }
498 } else {
499 Demod.syncBit = 0xFFFF; // not set
500 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
501 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
502 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
503 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
504 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
505 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
506 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
507 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 508 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 509 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
510 Demod.startTime -= Demod.syncBit;
511 Demod.bitCount = offset; // number of decoded data bits
e691fc45 512 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 513 }
7bc95e2e 514 }
15c4dc5a 515
7bc95e2e 516 } else {
15c4dc5a 517
7bc95e2e 518 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
519 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 520 if (!Demod.collisionPos) {
521 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
522 }
523 } // modulation in first half only - Sequence D = 1
7bc95e2e 524 Demod.bitCount++;
525 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
526 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 527 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 528 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 529 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
530 Demod.bitCount = 0;
531 Demod.shiftReg = 0;
6a1f2d82 532 if((Demod.len&0x0007) == 0) { // every 8 data bytes
533 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
534 Demod.parityBits = 0;
535 }
15c4dc5a 536 }
7bc95e2e 537 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
538 } else { // no modulation in first half
539 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 540 Demod.bitCount++;
7bc95e2e 541 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 542 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 543 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 544 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 545 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
546 Demod.bitCount = 0;
547 Demod.shiftReg = 0;
6a1f2d82 548 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
549 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
550 Demod.parityBits = 0;
551 }
15c4dc5a 552 }
7bc95e2e 553 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 554 } else { // no modulation in both halves - End of communication
6a1f2d82 555 if(Demod.bitCount > 0) { // there are some remaining data bits
556 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
557 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
558 Demod.parityBits <<= 1; // add a (void) parity bit
559 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
560 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
561 return TRUE;
562 } else if (Demod.len & 0x0007) { // there are some parity bits to store
563 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
564 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
52bfb955 565 }
566 if (Demod.len) {
d7aa3739 567 return TRUE; // we are finished with decoding the raw data sequence
568 } else { // nothing received. Start over
569 DemodReset();
e691fc45 570 }
15c4dc5a 571 }
7bc95e2e 572 }
e691fc45 573
574 }
15c4dc5a 575
e691fc45 576 return FALSE; // not finished yet, need more data
15c4dc5a 577}
578
579//=============================================================================
580// Finally, a `sniffer' for ISO 14443 Type A
581// Both sides of communication!
582//=============================================================================
583
584//-----------------------------------------------------------------------------
585// Record the sequence of commands sent by the reader to the tag, with
586// triggering so that we start recording at the point that the tag is moved
587// near the reader.
588//-----------------------------------------------------------------------------
5cd9ec01
M
589void RAMFUNC SnoopIso14443a(uint8_t param) {
590 // param:
591 // bit 0 - trigger from first card answer
592 // bit 1 - trigger from first reader 7-bit request
593
594 LEDsoff();
595 // init trace buffer
5f6d6c90 596 iso14a_clear_trace();
991f13f2 597 iso14a_set_tracing(TRUE);
5cd9ec01
M
598
599 // We won't start recording the frames that we acquire until we trigger;
600 // a good trigger condition to get started is probably when we see a
601 // response from the tag.
602 // triggered == FALSE -- to wait first for card
7bc95e2e 603 bool triggered = !(param & 0x03);
604
5cd9ec01 605 // The command (reader -> tag) that we're receiving.
15c4dc5a 606 // The length of a received command will in most cases be no more than 18 bytes.
607 // So 32 should be enough!
6a1f2d82 608 uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
609 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
610
5cd9ec01 611 // The response (tag -> reader) that we're receiving.
6a1f2d82 612 uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
613 uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
614
5cd9ec01
M
615 // As we receive stuff, we copy it from receivedCmd or receivedResponse
616 // into trace, along with its length and other annotations.
617 //uint8_t *trace = (uint8_t *)BigBuf;
618
619 // The DMA buffer, used to stream samples from the FPGA
7bc95e2e 620 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
621 uint8_t *data = dmaBuf;
622 uint8_t previous_data = 0;
5cd9ec01
M
623 int maxDataLen = 0;
624 int dataLen = 0;
7bc95e2e 625 bool TagIsActive = FALSE;
626 bool ReaderIsActive = FALSE;
627
628 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
15c4dc5a 629
5cd9ec01 630 // Set up the demodulator for tag -> reader responses.
6a1f2d82 631 DemodInit(receivedResponse, receivedResponsePar);
632
5cd9ec01 633 // Set up the demodulator for the reader -> tag commands
6a1f2d82 634 UartInit(receivedCmd, receivedCmdPar);
635
7bc95e2e 636 // Setup and start DMA.
5cd9ec01 637 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 638
5cd9ec01 639 // And now we loop, receiving samples.
7bc95e2e 640 for(uint32_t rsamples = 0; TRUE; ) {
641
5cd9ec01
M
642 if(BUTTON_PRESS()) {
643 DbpString("cancelled by button");
7bc95e2e 644 break;
5cd9ec01 645 }
15c4dc5a 646
5cd9ec01
M
647 LED_A_ON();
648 WDT_HIT();
15c4dc5a 649
5cd9ec01
M
650 int register readBufDataP = data - dmaBuf;
651 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
652 if (readBufDataP <= dmaBufDataP){
653 dataLen = dmaBufDataP - readBufDataP;
654 } else {
7bc95e2e 655 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
656 }
657 // test for length of buffer
658 if(dataLen > maxDataLen) {
659 maxDataLen = dataLen;
660 if(dataLen > 400) {
7bc95e2e 661 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
662 break;
5cd9ec01
M
663 }
664 }
665 if(dataLen < 1) continue;
666
667 // primary buffer was stopped( <-- we lost data!
668 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
669 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
670 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 671 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
672 }
673 // secondary buffer sets as primary, secondary buffer was stopped
674 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
675 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
676 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
677 }
678
679 LED_A_OFF();
7bc95e2e 680
681 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 682
7bc95e2e 683 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
684 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
685 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
686 LED_C_ON();
5cd9ec01 687
7bc95e2e 688 // check - if there is a short 7bit request from reader
689 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 690
7bc95e2e 691 if(triggered) {
6a1f2d82 692 if (!LogTrace(receivedCmd,
693 Uart.len,
694 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
695 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
696 Uart.parity,
697 TRUE)) break;
7bc95e2e 698 }
699 /* And ready to receive another command. */
700 UartReset();
701 /* And also reset the demod code, which might have been */
702 /* false-triggered by the commands from the reader. */
703 DemodReset();
704 LED_B_OFF();
705 }
706 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 707 }
3be2a5ae 708
7bc95e2e 709 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
710 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
711 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
712 LED_B_ON();
5cd9ec01 713
6a1f2d82 714 if (!LogTrace(receivedResponse,
715 Demod.len,
716 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
717 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
718 Demod.parity,
719 FALSE)) break;
5cd9ec01 720
7bc95e2e 721 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 722
7bc95e2e 723 // And ready to receive another response.
724 DemodReset();
725 LED_C_OFF();
726 }
727 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
728 }
5cd9ec01
M
729 }
730
7bc95e2e 731 previous_data = *data;
732 rsamples++;
5cd9ec01 733 data++;
d714d3ef 734 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
735 data = dmaBuf;
736 }
737 } // main cycle
738
739 DbpString("COMMAND FINISHED");
15c4dc5a 740
7bc95e2e 741 FpgaDisableSscDma();
742 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
743 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
5cd9ec01 744 LEDsoff();
15c4dc5a 745}
746
15c4dc5a 747//-----------------------------------------------------------------------------
748// Prepare tag messages
749//-----------------------------------------------------------------------------
6a1f2d82 750static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
15c4dc5a 751{
8f51ddb0 752 ToSendReset();
15c4dc5a 753
754 // Correction bit, might be removed when not needed
755 ToSendStuffBit(0);
756 ToSendStuffBit(0);
757 ToSendStuffBit(0);
758 ToSendStuffBit(0);
759 ToSendStuffBit(1); // 1
760 ToSendStuffBit(0);
761 ToSendStuffBit(0);
762 ToSendStuffBit(0);
8f51ddb0 763
15c4dc5a 764 // Send startbit
72934aa3 765 ToSend[++ToSendMax] = SEC_D;
6a1f2d82 766
7bc95e2e 767 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 768
6a1f2d82 769 for(uint16_t i = 0; i < len; i++) {
8f51ddb0 770 uint8_t b = cmd[i];
15c4dc5a 771
772 // Data bits
6a1f2d82 773 for(uint16_t j = 0; j < 8; j++) {
15c4dc5a 774 if(b & 1) {
72934aa3 775 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 776 } else {
72934aa3 777 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
778 }
779 b >>= 1;
780 }
15c4dc5a 781
0014cb46 782 // Get the parity bit
6a1f2d82 783 if (parity[i>>3] & (0x80>>(i&0x0007))) {
8f51ddb0 784 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 785 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 786 } else {
72934aa3 787 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 788 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 789 }
8f51ddb0 790 }
15c4dc5a 791
8f51ddb0
M
792 // Send stopbit
793 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 794
8f51ddb0
M
795 // Convert from last byte pos to length
796 ToSendMax++;
8f51ddb0
M
797}
798
6a1f2d82 799static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
800{
801 uint8_t par[MAX_PARITY_SIZE];
802
803 GetParity(cmd, len, par);
804 CodeIso14443aAsTagPar(cmd, len, par);
15c4dc5a 805}
806
15c4dc5a 807
8f51ddb0
M
808static void Code4bitAnswerAsTag(uint8_t cmd)
809{
810 int i;
811
5f6d6c90 812 ToSendReset();
8f51ddb0
M
813
814 // Correction bit, might be removed when not needed
815 ToSendStuffBit(0);
816 ToSendStuffBit(0);
817 ToSendStuffBit(0);
818 ToSendStuffBit(0);
819 ToSendStuffBit(1); // 1
820 ToSendStuffBit(0);
821 ToSendStuffBit(0);
822 ToSendStuffBit(0);
823
824 // Send startbit
825 ToSend[++ToSendMax] = SEC_D;
826
827 uint8_t b = cmd;
828 for(i = 0; i < 4; i++) {
829 if(b & 1) {
830 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 831 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
832 } else {
833 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 834 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
835 }
836 b >>= 1;
837 }
838
839 // Send stopbit
840 ToSend[++ToSendMax] = SEC_F;
841
5f6d6c90 842 // Convert from last byte pos to length
843 ToSendMax++;
15c4dc5a 844}
845
846//-----------------------------------------------------------------------------
847// Wait for commands from reader
848// Stop when button is pressed
849// Or return TRUE when command is captured
850//-----------------------------------------------------------------------------
6a1f2d82 851static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
15c4dc5a 852{
853 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
854 // only, since we are receiving, not transmitting).
855 // Signal field is off with the appropriate LED
856 LED_D_OFF();
857 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
858
859 // Now run a `software UART' on the stream of incoming samples.
6a1f2d82 860 UartInit(received, parity);
7bc95e2e 861
862 // clear RXRDY:
863 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 864
865 for(;;) {
866 WDT_HIT();
867
868 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 869
15c4dc5a 870 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 871 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
872 if(MillerDecoding(b, 0)) {
873 *len = Uart.len;
15c4dc5a 874 return TRUE;
875 }
7bc95e2e 876 }
15c4dc5a 877 }
878}
28afbd2b 879
6a1f2d82 880static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
7bc95e2e 881int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 882int EmSend4bit(uint8_t resp);
6a1f2d82 883int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
884int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
885int EmSendCmd(uint8_t *resp, uint16_t respLen);
886int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
887bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
888 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
15c4dc5a 889
ce02f6f9 890static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
891
892typedef struct {
893 uint8_t* response;
894 size_t response_n;
895 uint8_t* modulation;
896 size_t modulation_n;
7bc95e2e 897 uint32_t ProxToAirDuration;
ce02f6f9 898} tag_response_info_t;
899
900void reset_free_buffer() {
901 free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
902}
903
904bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 905 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 906 // This will need the following byte array for a modulation sequence
907 // 144 data bits (18 * 8)
908 // 18 parity bits
909 // 2 Start and stop
910 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
911 // 1 just for the case
912 // ----------- +
913 // 166 bytes, since every bit that needs to be send costs us a byte
914 //
915
916 // Prepare the tag modulation bits from the message
917 CodeIso14443aAsTag(response_info->response,response_info->response_n);
918
919 // Make sure we do not exceed the free buffer space
920 if (ToSendMax > max_buffer_size) {
921 Dbprintf("Out of memory, when modulating bits for tag answer:");
922 Dbhexdump(response_info->response_n,response_info->response,false);
923 return false;
924 }
925
926 // Copy the byte array, used for this modulation to the buffer position
927 memcpy(response_info->modulation,ToSend,ToSendMax);
928
7bc95e2e 929 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 930 response_info->modulation_n = ToSendMax;
7bc95e2e 931 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 932
933 return true;
934}
935
936bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
937 // Retrieve and store the current buffer index
938 response_info->modulation = free_buffer_pointer;
939
940 // Determine the maximum size we can use from our buffer
6a1f2d82 941 size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
ce02f6f9 942
943 // Forward the prepare tag modulation function to the inner function
944 if (prepare_tag_modulation(response_info,max_buffer_size)) {
945 // Update the free buffer offset
946 free_buffer_pointer += ToSendMax;
947 return true;
948 } else {
949 return false;
950 }
951}
952
15c4dc5a 953//-----------------------------------------------------------------------------
954// Main loop of simulated tag: receive commands from reader, decide what
955// response to send, and send it.
956//-----------------------------------------------------------------------------
28afbd2b 957void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
15c4dc5a 958{
5f6d6c90 959 // Enable and clear the trace
5f6d6c90 960 iso14a_clear_trace();
7bc95e2e 961 iso14a_set_tracing(TRUE);
81cd0474 962
81cd0474 963 uint8_t sak;
964
965 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
966 uint8_t response1[2];
967
968 switch (tagType) {
969 case 1: { // MIFARE Classic
970 // Says: I am Mifare 1k - original line
971 response1[0] = 0x04;
972 response1[1] = 0x00;
973 sak = 0x08;
974 } break;
975 case 2: { // MIFARE Ultralight
976 // Says: I am a stupid memory tag, no crypto
977 response1[0] = 0x04;
978 response1[1] = 0x00;
979 sak = 0x00;
980 } break;
981 case 3: { // MIFARE DESFire
982 // Says: I am a DESFire tag, ph33r me
983 response1[0] = 0x04;
984 response1[1] = 0x03;
985 sak = 0x20;
986 } break;
987 case 4: { // ISO/IEC 14443-4
988 // Says: I am a javacard (JCOP)
989 response1[0] = 0x04;
990 response1[1] = 0x00;
991 sak = 0x28;
992 } break;
993 default: {
994 Dbprintf("Error: unkown tagtype (%d)",tagType);
995 return;
996 } break;
997 }
998
999 // The second response contains the (mandatory) first 24 bits of the UID
1000 uint8_t response2[5];
1001
1002 // Check if the uid uses the (optional) part
1003 uint8_t response2a[5];
1004 if (uid_2nd) {
1005 response2[0] = 0x88;
1006 num_to_bytes(uid_1st,3,response2+1);
1007 num_to_bytes(uid_2nd,4,response2a);
1008 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1009
1010 // Configure the ATQA and SAK accordingly
1011 response1[0] |= 0x40;
1012 sak |= 0x04;
1013 } else {
1014 num_to_bytes(uid_1st,4,response2);
1015 // Configure the ATQA and SAK accordingly
1016 response1[0] &= 0xBF;
1017 sak &= 0xFB;
1018 }
1019
1020 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1021 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1022
1023 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1024 uint8_t response3[3];
1025 response3[0] = sak;
1026 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1027
1028 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1029 uint8_t response3a[3];
1030 response3a[0] = sak & 0xFB;
1031 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1032
254b70a4 1033 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
6a1f2d82 1034 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1035 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1036 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1037 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1038 // TC(1) = 0x02: CID supported, NAD not supported
ce02f6f9 1039 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1040
7bc95e2e 1041 #define TAG_RESPONSE_COUNT 7
1042 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1043 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1044 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1045 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1046 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1047 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1048 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1049 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1050 };
1051
1052 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1053 // Such a response is less time critical, so we can prepare them on the fly
1054 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1055 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1056 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1057 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1058 tag_response_info_t dynamic_response_info = {
1059 .response = dynamic_response_buffer,
1060 .response_n = 0,
1061 .modulation = dynamic_modulation_buffer,
1062 .modulation_n = 0
1063 };
ce02f6f9 1064
7bc95e2e 1065 // Reset the offset pointer of the free buffer
1066 reset_free_buffer();
ce02f6f9 1067
7bc95e2e 1068 // Prepare the responses of the anticollision phase
ce02f6f9 1069 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 1070 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1071 prepare_allocated_tag_modulation(&responses[i]);
1072 }
15c4dc5a 1073
7bc95e2e 1074 int len = 0;
15c4dc5a 1075
1076 // To control where we are in the protocol
1077 int order = 0;
1078 int lastorder;
1079
1080 // Just to allow some checks
1081 int happened = 0;
1082 int happened2 = 0;
81cd0474 1083 int cmdsRecvd = 0;
15c4dc5a 1084
254b70a4 1085 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 1086 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
15c4dc5a 1087
6a1f2d82 1088 // buffers used on software Uart:
1089 uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
1090 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
1091
254b70a4 1092 cmdsRecvd = 0;
7bc95e2e 1093 tag_response_info_t* p_response;
15c4dc5a 1094
254b70a4 1095 LED_A_ON();
1096 for(;;) {
7bc95e2e 1097 // Clean receive command buffer
1098
6a1f2d82 1099 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
ce02f6f9 1100 DbpString("Button press");
254b70a4 1101 break;
1102 }
7bc95e2e 1103
1104 p_response = NULL;
1105
254b70a4 1106 // Okay, look at the command now.
1107 lastorder = order;
1108 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1109 p_response = &responses[0]; order = 1;
254b70a4 1110 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1111 p_response = &responses[0]; order = 6;
254b70a4 1112 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1113 p_response = &responses[1]; order = 2;
6a1f2d82 1114 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1115 p_response = &responses[2]; order = 20;
254b70a4 1116 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1117 p_response = &responses[3]; order = 3;
254b70a4 1118 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1119 p_response = &responses[4]; order = 30;
254b70a4 1120 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
6a1f2d82 1121 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
7bc95e2e 1122 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
5f6d6c90 1123 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
7bc95e2e 1124 p_response = NULL;
254b70a4 1125 } else if(receivedCmd[0] == 0x50) { // Received a HALT
17331e14 1126// DbpString("Reader requested we HALT!:");
7bc95e2e 1127 if (tracing) {
6a1f2d82 1128 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1129 }
1130 p_response = NULL;
254b70a4 1131 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
ce02f6f9 1132 p_response = &responses[5]; order = 7;
254b70a4 1133 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1134 if (tagType == 1 || tagType == 2) { // RATS not supported
1135 EmSend4bit(CARD_NACK_NA);
1136 p_response = NULL;
1137 } else {
1138 p_response = &responses[6]; order = 70;
1139 }
6a1f2d82 1140 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
7bc95e2e 1141 if (tracing) {
6a1f2d82 1142 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1143 }
1144 uint32_t nr = bytes_to_num(receivedCmd,4);
1145 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1146 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1147 } else {
1148 // Check for ISO 14443A-4 compliant commands, look at left nibble
1149 switch (receivedCmd[0]) {
1150
1151 case 0x0B:
1152 case 0x0A: { // IBlock (command)
1153 dynamic_response_info.response[0] = receivedCmd[0];
1154 dynamic_response_info.response[1] = 0x00;
1155 dynamic_response_info.response[2] = 0x90;
1156 dynamic_response_info.response[3] = 0x00;
1157 dynamic_response_info.response_n = 4;
1158 } break;
1159
1160 case 0x1A:
1161 case 0x1B: { // Chaining command
1162 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1163 dynamic_response_info.response_n = 2;
1164 } break;
1165
1166 case 0xaa:
1167 case 0xbb: {
1168 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1169 dynamic_response_info.response_n = 2;
1170 } break;
1171
1172 case 0xBA: { //
1173 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1174 dynamic_response_info.response_n = 2;
1175 } break;
1176
1177 case 0xCA:
1178 case 0xC2: { // Readers sends deselect command
1179 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1180 dynamic_response_info.response_n = 2;
1181 } break;
1182
1183 default: {
1184 // Never seen this command before
1185 if (tracing) {
6a1f2d82 1186 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1187 }
1188 Dbprintf("Received unknown command (len=%d):",len);
1189 Dbhexdump(len,receivedCmd,false);
1190 // Do not respond
1191 dynamic_response_info.response_n = 0;
1192 } break;
1193 }
ce02f6f9 1194
7bc95e2e 1195 if (dynamic_response_info.response_n > 0) {
1196 // Copy the CID from the reader query
1197 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1198
7bc95e2e 1199 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1200 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1201 dynamic_response_info.response_n += 2;
ce02f6f9 1202
7bc95e2e 1203 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1204 Dbprintf("Error preparing tag response");
1205 if (tracing) {
6a1f2d82 1206 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1207 }
1208 break;
1209 }
1210 p_response = &dynamic_response_info;
1211 }
81cd0474 1212 }
15c4dc5a 1213
1214 // Count number of wakeups received after a halt
1215 if(order == 6 && lastorder == 5) { happened++; }
1216
1217 // Count number of other messages after a halt
1218 if(order != 6 && lastorder == 5) { happened2++; }
1219
15c4dc5a 1220 if(cmdsRecvd > 999) {
1221 DbpString("1000 commands later...");
254b70a4 1222 break;
15c4dc5a 1223 }
ce02f6f9 1224 cmdsRecvd++;
1225
1226 if (p_response != NULL) {
7bc95e2e 1227 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1228 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1229 uint8_t par[MAX_PARITY_SIZE];
1230 GetParity(p_response->response, p_response->response_n, par);
7bc95e2e 1231 EmLogTrace(Uart.output,
1232 Uart.len,
1233 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1234 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1235 Uart.parity,
7bc95e2e 1236 p_response->response,
1237 p_response->response_n,
1238 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1239 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1240 par);
7bc95e2e 1241 }
1242
1243 if (!tracing) {
1244 Dbprintf("Trace Full. Simulation stopped.");
1245 break;
1246 }
1247 }
15c4dc5a 1248
1249 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1250 LED_A_OFF();
1251}
1252
9492e0b0 1253
1254// prepare a delayed transfer. This simply shifts ToSend[] by a number
1255// of bits specified in the delay parameter.
1256void PrepareDelayedTransfer(uint16_t delay)
1257{
1258 uint8_t bitmask = 0;
1259 uint8_t bits_to_shift = 0;
1260 uint8_t bits_shifted = 0;
1261
1262 delay &= 0x07;
1263 if (delay) {
1264 for (uint16_t i = 0; i < delay; i++) {
1265 bitmask |= (0x01 << i);
1266 }
7bc95e2e 1267 ToSend[ToSendMax++] = 0x00;
9492e0b0 1268 for (uint16_t i = 0; i < ToSendMax; i++) {
1269 bits_to_shift = ToSend[i] & bitmask;
1270 ToSend[i] = ToSend[i] >> delay;
1271 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1272 bits_shifted = bits_to_shift;
1273 }
1274 }
1275}
1276
7bc95e2e 1277
1278//-------------------------------------------------------------------------------------
15c4dc5a 1279// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1280// Parameter timing:
7bc95e2e 1281// if NULL: transfer at next possible time, taking into account
1282// request guard time and frame delay time
1283// if == 0: transfer immediately and return time of transfer
9492e0b0 1284// if != 0: delay transfer until time specified
7bc95e2e 1285//-------------------------------------------------------------------------------------
6a1f2d82 1286static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
15c4dc5a 1287{
7bc95e2e 1288
9492e0b0 1289 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1290
7bc95e2e 1291 uint32_t ThisTransferTime = 0;
e30c654b 1292
9492e0b0 1293 if (timing) {
1294 if(*timing == 0) { // Measure time
7bc95e2e 1295 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1296 } else {
1297 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1298 }
7bc95e2e 1299 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1300 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1301 LastTimeProxToAirStart = *timing;
1302 } else {
1303 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1304 while(GetCountSspClk() < ThisTransferTime);
1305 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1306 }
1307
7bc95e2e 1308 // clear TXRDY
1309 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1310
1311 // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
1312 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1313 // AT91C_BASE_SSC->SSC_THR = SEC_Y;
1314 // c++;
1315 // }
1316 // }
1317
1318 uint16_t c = 0;
9492e0b0 1319 for(;;) {
1320 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1321 AT91C_BASE_SSC->SSC_THR = cmd[c];
1322 c++;
1323 if(c >= len) {
1324 break;
1325 }
1326 }
1327 }
7bc95e2e 1328
1329 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1330
15c4dc5a 1331}
1332
7bc95e2e 1333
15c4dc5a 1334//-----------------------------------------------------------------------------
195af472 1335// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1336//-----------------------------------------------------------------------------
6a1f2d82 1337void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
15c4dc5a 1338{
7bc95e2e 1339 int i, j;
1340 int last;
1341 uint8_t b;
e30c654b 1342
7bc95e2e 1343 ToSendReset();
e30c654b 1344
7bc95e2e 1345 // Start of Communication (Seq. Z)
1346 ToSend[++ToSendMax] = SEC_Z;
1347 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1348 last = 0;
1349
1350 size_t bytecount = nbytes(bits);
1351 // Generate send structure for the data bits
1352 for (i = 0; i < bytecount; i++) {
1353 // Get the current byte to send
1354 b = cmd[i];
1355 size_t bitsleft = MIN((bits-(i*8)),8);
1356
1357 for (j = 0; j < bitsleft; j++) {
1358 if (b & 1) {
1359 // Sequence X
1360 ToSend[++ToSendMax] = SEC_X;
1361 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1362 last = 1;
1363 } else {
1364 if (last == 0) {
1365 // Sequence Z
1366 ToSend[++ToSendMax] = SEC_Z;
1367 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1368 } else {
1369 // Sequence Y
1370 ToSend[++ToSendMax] = SEC_Y;
1371 last = 0;
1372 }
1373 }
1374 b >>= 1;
1375 }
1376
6a1f2d82 1377 // Only transmit parity bit if we transmitted a complete byte
7bc95e2e 1378 if (j == 8) {
1379 // Get the parity bit
6a1f2d82 1380 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
7bc95e2e 1381 // Sequence X
1382 ToSend[++ToSendMax] = SEC_X;
1383 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1384 last = 1;
1385 } else {
1386 if (last == 0) {
1387 // Sequence Z
1388 ToSend[++ToSendMax] = SEC_Z;
1389 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1390 } else {
1391 // Sequence Y
1392 ToSend[++ToSendMax] = SEC_Y;
1393 last = 0;
1394 }
1395 }
1396 }
1397 }
e30c654b 1398
7bc95e2e 1399 // End of Communication: Logic 0 followed by Sequence Y
1400 if (last == 0) {
1401 // Sequence Z
1402 ToSend[++ToSendMax] = SEC_Z;
1403 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1404 } else {
1405 // Sequence Y
1406 ToSend[++ToSendMax] = SEC_Y;
1407 last = 0;
1408 }
1409 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1410
7bc95e2e 1411 // Convert to length of command:
1412 ToSendMax++;
15c4dc5a 1413}
1414
195af472 1415//-----------------------------------------------------------------------------
1416// Prepare reader command to send to FPGA
1417//-----------------------------------------------------------------------------
6a1f2d82 1418void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
195af472 1419{
6a1f2d82 1420 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
195af472 1421}
1422
9ca155ba
M
1423//-----------------------------------------------------------------------------
1424// Wait for commands from reader
1425// Stop when button is pressed (return 1) or field was gone (return 2)
1426// Or return 0 when command is captured
1427//-----------------------------------------------------------------------------
6a1f2d82 1428static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
9ca155ba
M
1429{
1430 *len = 0;
1431
1432 uint32_t timer = 0, vtime = 0;
1433 int analogCnt = 0;
1434 int analogAVG = 0;
1435
1436 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1437 // only, since we are receiving, not transmitting).
1438 // Signal field is off with the appropriate LED
1439 LED_D_OFF();
1440 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1441
1442 // Set ADC to read field strength
1443 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1444 AT91C_BASE_ADC->ADC_MR =
1445 ADC_MODE_PRESCALE(32) |
1446 ADC_MODE_STARTUP_TIME(16) |
1447 ADC_MODE_SAMPLE_HOLD_TIME(8);
1448 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1449 // start ADC
1450 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1451
1452 // Now run a 'software UART' on the stream of incoming samples.
6a1f2d82 1453 UartInit(received, parity);
7bc95e2e 1454
1455 // Clear RXRDY:
1456 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba
M
1457
1458 for(;;) {
1459 WDT_HIT();
1460
1461 if (BUTTON_PRESS()) return 1;
1462
1463 // test if the field exists
1464 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1465 analogCnt++;
1466 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1467 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1468 if (analogCnt >= 32) {
1469 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1470 vtime = GetTickCount();
1471 if (!timer) timer = vtime;
1472 // 50ms no field --> card to idle state
1473 if (vtime - timer > 50) return 2;
1474 } else
1475 if (timer) timer = 0;
1476 analogCnt = 0;
1477 analogAVG = 0;
1478 }
1479 }
7bc95e2e 1480
9ca155ba 1481 // receive and test the miller decoding
7bc95e2e 1482 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1483 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1484 if(MillerDecoding(b, 0)) {
1485 *len = Uart.len;
9ca155ba
M
1486 return 0;
1487 }
7bc95e2e 1488 }
1489
9ca155ba
M
1490 }
1491}
1492
9ca155ba 1493
6a1f2d82 1494static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
7bc95e2e 1495{
1496 uint8_t b;
1497 uint16_t i = 0;
1498 uint32_t ThisTransferTime;
1499
9ca155ba
M
1500 // Modulate Manchester
1501 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1502
1503 // include correction bit if necessary
1504 if (Uart.parityBits & 0x01) {
1505 correctionNeeded = TRUE;
1506 }
1507 if(correctionNeeded) {
9ca155ba
M
1508 // 1236, so correction bit needed
1509 i = 0;
7bc95e2e 1510 } else {
1511 i = 1;
9ca155ba 1512 }
7bc95e2e 1513
d714d3ef 1514 // clear receiving shift register and holding register
7bc95e2e 1515 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1516 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1517 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1518 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1519
7bc95e2e 1520 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1521 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1522 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1523 if (AT91C_BASE_SSC->SSC_RHR) break;
1524 }
1525
1526 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1527
1528 // Clear TXRDY:
1529 AT91C_BASE_SSC->SSC_THR = SEC_F;
1530
9ca155ba 1531 // send cycle
7bc95e2e 1532 for(; i <= respLen; ) {
9ca155ba 1533 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1534 AT91C_BASE_SSC->SSC_THR = resp[i++];
1535 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1536 }
7bc95e2e 1537
9ca155ba
M
1538 if(BUTTON_PRESS()) {
1539 break;
1540 }
1541 }
1542
7bc95e2e 1543 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1544 for (i = 0; i < 2 ; ) {
1545 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1546 AT91C_BASE_SSC->SSC_THR = SEC_F;
1547 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1548 i++;
1549 }
1550 }
1551
1552 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1553
9ca155ba
M
1554 return 0;
1555}
1556
7bc95e2e 1557int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1558 Code4bitAnswerAsTag(resp);
0a39986e 1559 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1560 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1561 uint8_t par[1];
1562 GetParity(&resp, 1, par);
7bc95e2e 1563 EmLogTrace(Uart.output,
1564 Uart.len,
1565 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1566 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1567 Uart.parity,
7bc95e2e 1568 &resp,
1569 1,
1570 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1571 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1572 par);
0a39986e 1573 return res;
9ca155ba
M
1574}
1575
8f51ddb0 1576int EmSend4bit(uint8_t resp){
7bc95e2e 1577 return EmSend4bitEx(resp, false);
8f51ddb0
M
1578}
1579
6a1f2d82 1580int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
7bc95e2e 1581 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1582 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1583 // do the tracing for the previous reader request and this tag answer:
1584 EmLogTrace(Uart.output,
1585 Uart.len,
1586 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1587 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1588 Uart.parity,
7bc95e2e 1589 resp,
1590 respLen,
1591 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1592 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1593 par);
8f51ddb0
M
1594 return res;
1595}
1596
6a1f2d82 1597int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1598 uint8_t par[MAX_PARITY_SIZE];
1599 GetParity(resp, respLen, par);
1600 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
8f51ddb0
M
1601}
1602
6a1f2d82 1603int EmSendCmd(uint8_t *resp, uint16_t respLen){
1604 uint8_t par[MAX_PARITY_SIZE];
1605 GetParity(resp, respLen, par);
1606 return EmSendCmdExPar(resp, respLen, false, par);
8f51ddb0
M
1607}
1608
6a1f2d82 1609int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
7bc95e2e 1610 return EmSendCmdExPar(resp, respLen, false, par);
1611}
1612
6a1f2d82 1613bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1614 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
7bc95e2e 1615{
1616 if (tracing) {
1617 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1618 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1619 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1620 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1621 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1622 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1623 reader_EndTime = tag_StartTime - exact_fdt;
1624 reader_StartTime = reader_EndTime - reader_modlen;
6a1f2d82 1625 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
7bc95e2e 1626 return FALSE;
6a1f2d82 1627 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
7bc95e2e 1628 } else {
1629 return TRUE;
1630 }
9ca155ba
M
1631}
1632
15c4dc5a 1633//-----------------------------------------------------------------------------
1634// Wait a certain time for tag response
1635// If a response is captured return TRUE
e691fc45 1636// If it takes too long return FALSE
15c4dc5a 1637//-----------------------------------------------------------------------------
6a1f2d82 1638static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
15c4dc5a 1639{
52bfb955 1640 uint32_t c;
e691fc45 1641
15c4dc5a 1642 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1643 // only, since we are receiving, not transmitting).
1644 // Signal field is on with the appropriate LED
1645 LED_D_ON();
1646 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1647
534983d7 1648 // Now get the answer from the card
6a1f2d82 1649 DemodInit(receivedResponse, receivedResponsePar);
15c4dc5a 1650
7bc95e2e 1651 // clear RXRDY:
1652 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1653
15c4dc5a 1654 c = 0;
1655 for(;;) {
534983d7 1656 WDT_HIT();
15c4dc5a 1657
534983d7 1658 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1659 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1660 if(ManchesterDecoding(b, offset, 0)) {
1661 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1662 return TRUE;
6a1f2d82 1663 } else if (c++ > iso14a_timeout) {
7bc95e2e 1664 return FALSE;
15c4dc5a 1665 }
534983d7 1666 }
1667 }
15c4dc5a 1668}
1669
6a1f2d82 1670void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
15c4dc5a 1671{
981bd429 1672
6a1f2d82 1673 CodeIso14443aBitsAsReaderPar(frame, bits, par);
dfc3c505 1674
7bc95e2e 1675 // Send command to tag
1676 TransmitFor14443a(ToSend, ToSendMax, timing);
1677 if(trigger)
1678 LED_A_ON();
dfc3c505 1679
7bc95e2e 1680 // Log reader command in trace buffer
1681 if (tracing) {
6a1f2d82 1682 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
7bc95e2e 1683 }
15c4dc5a 1684}
1685
6a1f2d82 1686void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
dfc3c505 1687{
6a1f2d82 1688 ReaderTransmitBitsPar(frame, len*8, par, timing);
dfc3c505 1689}
15c4dc5a 1690
6a1f2d82 1691void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
e691fc45 1692{
1693 // Generate parity and redirect
6a1f2d82 1694 uint8_t par[MAX_PARITY_SIZE];
1695 GetParity(frame, len/8, par);
1696 ReaderTransmitBitsPar(frame, len, par, timing);
e691fc45 1697}
1698
6a1f2d82 1699void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
15c4dc5a 1700{
1701 // Generate parity and redirect
6a1f2d82 1702 uint8_t par[MAX_PARITY_SIZE];
1703 GetParity(frame, len, par);
1704 ReaderTransmitBitsPar(frame, len*8, par, timing);
15c4dc5a 1705}
1706
6a1f2d82 1707int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
e691fc45 1708{
6a1f2d82 1709 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
7bc95e2e 1710 if (tracing) {
6a1f2d82 1711 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1712 }
e691fc45 1713 return Demod.len;
1714}
1715
6a1f2d82 1716int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
15c4dc5a 1717{
6a1f2d82 1718 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
7bc95e2e 1719 if (tracing) {
6a1f2d82 1720 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1721 }
e691fc45 1722 return Demod.len;
f89c7050
M
1723}
1724
e691fc45 1725/* performs iso14443a anticollision procedure
534983d7 1726 * fills the uid pointer unless NULL
1727 * fills resp_data unless NULL */
6a1f2d82 1728int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1729 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1730 uint8_t sel_all[] = { 0x93,0x20 };
1731 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1732 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1733 uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
1734 uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
1735 byte_t uid_resp[4];
1736 size_t uid_resp_len;
1737
1738 uint8_t sak = 0x04; // cascade uid
1739 int cascade_level = 0;
1740 int len;
1741
1742 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
9492e0b0 1743 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1744
6a1f2d82 1745 // Receive the ATQA
1746 if(!ReaderReceive(resp, resp_par)) return 0;
1747 //Dbprintf("atqa: %02x %02x",resp[1],resp[0]);
1748
1749 if(p_hi14a_card) {
1750 memcpy(p_hi14a_card->atqa, resp, 2);
1751 p_hi14a_card->uidlen = 0;
1752 memset(p_hi14a_card->uid,0,10);
1753 }
5f6d6c90 1754
6a1f2d82 1755 // clear uid
1756 if (uid_ptr) {
1757 memset(uid_ptr,0,10);
1758 }
79a73ab2 1759
6a1f2d82 1760 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1761 // which case we need to make a cascade 2 request and select - this is a long UID
1762 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1763 for(; sak & 0x04; cascade_level++) {
1764 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1765 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1766
1767 // SELECT_ALL
1768 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1769 if (!ReaderReceive(resp, resp_par)) return 0;
1770
1771 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1772 memset(uid_resp, 0, 4);
1773 uint16_t uid_resp_bits = 0;
1774 uint16_t collision_answer_offset = 0;
1775 // anti-collision-loop:
1776 while (Demod.collisionPos) {
1777 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1778 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1779 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1780 uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
1781 }
1782 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1783 uid_resp_bits++;
1784 // construct anticollosion command:
1785 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1786 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1787 sel_uid[2+i] = uid_resp[i];
1788 }
1789 collision_answer_offset = uid_resp_bits%8;
1790 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1791 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
e691fc45 1792 }
6a1f2d82 1793 // finally, add the last bits and BCC of the UID
1794 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1795 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1796 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
e691fc45 1797 }
e691fc45 1798
6a1f2d82 1799 } else { // no collision, use the response to SELECT_ALL as current uid
1800 memcpy(uid_resp, resp, 4);
1801 }
1802 uid_resp_len = 4;
1803 //Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
5f6d6c90 1804
6a1f2d82 1805 // calculate crypto UID. Always use last 4 Bytes.
1806 if(cuid_ptr) {
1807 *cuid_ptr = bytes_to_num(uid_resp, 4);
1808 }
e30c654b 1809
6a1f2d82 1810 // Construct SELECT UID command
1811 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1812 memcpy(sel_uid+2, uid_resp, 4); // the UID
1813 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1814 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1815 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1816
1817 // Receive the SAK
1818 if (!ReaderReceive(resp, resp_par)) return 0;
1819 sak = resp[0];
1820
1821 // Test if more parts of the uid are comming
1822 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1823 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1824 // http://www.nxp.com/documents/application_note/AN10927.pdf
1825 // This was earlier:
1826 //memcpy(uid_resp, uid_resp + 1, 3);
1827 // But memcpy should not be used for overlapping arrays,
1828 // and memmove appears to not be available in the arm build.
1829 // Therefore:
1830 uid_resp[0] = uid_resp[1];
1831 uid_resp[1] = uid_resp[2];
1832 uid_resp[2] = uid_resp[3];
1833
1834 uid_resp_len = 3;
1835 }
5f6d6c90 1836
6a1f2d82 1837 if(uid_ptr) {
1838 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1839 }
5f6d6c90 1840
6a1f2d82 1841 if(p_hi14a_card) {
1842 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1843 p_hi14a_card->uidlen += uid_resp_len;
1844 }
1845 }
79a73ab2 1846
6a1f2d82 1847 if(p_hi14a_card) {
1848 p_hi14a_card->sak = sak;
1849 p_hi14a_card->ats_len = 0;
1850 }
534983d7 1851
6a1f2d82 1852 if( (sak & 0x20) == 0) {
1853 return 2; // non iso14443a compliant tag
1854 }
534983d7 1855
6a1f2d82 1856 // Request for answer to select
1857 AppendCrc14443a(rats, 2);
1858 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 1859
6a1f2d82 1860 if (!(len = ReaderReceive(resp, resp_par))) return 0;
5191b3d1 1861
6a1f2d82 1862 if(p_hi14a_card) {
1863 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1864 p_hi14a_card->ats_len = len;
1865 }
5f6d6c90 1866
6a1f2d82 1867 // reset the PCB block number
1868 iso14_pcb_blocknum = 0;
1869
1870 return 1;
7e758047 1871}
15c4dc5a 1872
7bc95e2e 1873void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 1874 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 1875 // Set up the synchronous serial port
1876 FpgaSetupSsc();
7bc95e2e 1877 // connect Demodulated Signal to ADC:
7e758047 1878 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 1879
7e758047 1880 // Signal field is on with the appropriate LED
7bc95e2e 1881 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1882 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1883 LED_D_ON();
1884 } else {
1885 LED_D_OFF();
1886 }
1887 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 1888
7bc95e2e 1889 // Start the timer
1890 StartCountSspClk();
1891
1892 DemodReset();
1893 UartReset();
1894 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1895 iso14a_set_timeout(1050); // 10ms default
7e758047 1896}
15c4dc5a 1897
6a1f2d82 1898int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1899 uint8_t parity[MAX_PARITY_SIZE];
534983d7 1900 uint8_t real_cmd[cmd_len+4];
1901 real_cmd[0] = 0x0a; //I-Block
b0127e65 1902 // put block number into the PCB
1903 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 1904 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1905 memcpy(real_cmd+2, cmd, cmd_len);
1906 AppendCrc14443a(real_cmd,cmd_len+2);
1907
9492e0b0 1908 ReaderTransmit(real_cmd, cmd_len+4, NULL);
6a1f2d82 1909 size_t len = ReaderReceive(data, parity);
1910 uint8_t *data_bytes = (uint8_t *) data;
b0127e65 1911 if (!len)
1912 return 0; //DATA LINK ERROR
1913 // if we received an I- or R(ACK)-Block with a block number equal to the
1914 // current block number, toggle the current block number
1915 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1916 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1917 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1918 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1919 {
1920 iso14_pcb_blocknum ^= 1;
1921 }
1922
534983d7 1923 return len;
1924}
1925
7e758047 1926//-----------------------------------------------------------------------------
1927// Read an ISO 14443a tag. Send out commands and store answers.
1928//
1929//-----------------------------------------------------------------------------
7bc95e2e 1930void ReaderIso14443a(UsbCommand *c)
7e758047 1931{
534983d7 1932 iso14a_command_t param = c->arg[0];
7bc95e2e 1933 uint8_t *cmd = c->d.asBytes;
534983d7 1934 size_t len = c->arg[1];
5f6d6c90 1935 size_t lenbits = c->arg[2];
9492e0b0 1936 uint32_t arg0 = 0;
1937 byte_t buf[USB_CMD_DATA_SIZE];
6a1f2d82 1938 uint8_t par[MAX_PARITY_SIZE];
902cb3c0 1939
5f6d6c90 1940 if(param & ISO14A_CONNECT) {
1941 iso14a_clear_trace();
1942 }
e691fc45 1943
7bc95e2e 1944 iso14a_set_tracing(TRUE);
e30c654b 1945
79a73ab2 1946 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1947 iso14a_set_trigger(TRUE);
9492e0b0 1948 }
15c4dc5a 1949
534983d7 1950 if(param & ISO14A_CONNECT) {
7bc95e2e 1951 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 1952 if(!(param & ISO14A_NO_SELECT)) {
1953 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1954 arg0 = iso14443a_select_card(NULL,card,NULL);
1955 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1956 }
534983d7 1957 }
e30c654b 1958
534983d7 1959 if(param & ISO14A_SET_TIMEOUT) {
1960 iso14a_timeout = c->arg[2];
1961 }
e30c654b 1962
534983d7 1963 if(param & ISO14A_APDU) {
902cb3c0 1964 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 1965 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1966 }
e30c654b 1967
534983d7 1968 if(param & ISO14A_RAW) {
1969 if(param & ISO14A_APPEND_CRC) {
1970 AppendCrc14443a(cmd,len);
1971 len += 2;
c7324bef 1972 if (lenbits) lenbits += 16;
15c4dc5a 1973 }
5f6d6c90 1974 if(lenbits>0) {
6a1f2d82 1975 GetParity(cmd, lenbits/8, par);
1976 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
5f6d6c90 1977 } else {
1978 ReaderTransmit(cmd,len, NULL);
1979 }
6a1f2d82 1980 arg0 = ReaderReceive(buf, par);
9492e0b0 1981 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1982 }
15c4dc5a 1983
79a73ab2 1984 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1985 iso14a_set_trigger(FALSE);
9492e0b0 1986 }
15c4dc5a 1987
79a73ab2 1988 if(param & ISO14A_NO_DISCONNECT) {
534983d7 1989 return;
9492e0b0 1990 }
15c4dc5a 1991
15c4dc5a 1992 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1993 LEDsoff();
15c4dc5a 1994}
b0127e65 1995
1c611bbd 1996
1c611bbd 1997// Determine the distance between two nonces.
1998// Assume that the difference is small, but we don't know which is first.
1999// Therefore try in alternating directions.
2000int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2001
2002 uint16_t i;
2003 uint32_t nttmp1, nttmp2;
e772353f 2004
1c611bbd 2005 if (nt1 == nt2) return 0;
2006
2007 nttmp1 = nt1;
2008 nttmp2 = nt2;
2009
2010 for (i = 1; i < 32768; i++) {
2011 nttmp1 = prng_successor(nttmp1, 1);
2012 if (nttmp1 == nt2) return i;
2013 nttmp2 = prng_successor(nttmp2, 1);
2014 if (nttmp2 == nt1) return -i;
2015 }
2016
2017 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 2018}
2019
e772353f 2020
1c611bbd 2021//-----------------------------------------------------------------------------
2022// Recover several bits of the cypher stream. This implements (first stages of)
2023// the algorithm described in "The Dark Side of Security by Obscurity and
2024// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2025// (article by Nicolas T. Courtois, 2009)
2026//-----------------------------------------------------------------------------
2027void ReaderMifare(bool first_try)
2028{
2029 // Mifare AUTH
2030 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2031 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2032 static uint8_t mf_nr_ar3;
e772353f 2033
6a1f2d82 2034 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
2035 uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
7bc95e2e 2036
d2f487af 2037 iso14a_clear_trace();
7bc95e2e 2038 iso14a_set_tracing(TRUE);
e772353f 2039
1c611bbd 2040 byte_t nt_diff = 0;
6a1f2d82 2041 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1c611bbd 2042 static byte_t par_low = 0;
2043 bool led_on = TRUE;
ca4714cd 2044 uint8_t uid[10] ={0};
1c611bbd 2045 uint32_t cuid;
e772353f 2046
6a1f2d82 2047 uint32_t nt = 0;
2ed270a8 2048 uint32_t previous_nt = 0;
1c611bbd 2049 static uint32_t nt_attacked = 0;
2050 byte_t par_list[8] = {0,0,0,0,0,0,0,0};
2051 byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
e772353f 2052
1c611bbd 2053 static uint32_t sync_time;
2054 static uint32_t sync_cycles;
2055 int catch_up_cycles = 0;
2056 int last_catch_up = 0;
2057 uint16_t consecutive_resyncs = 0;
2058 int isOK = 0;
e772353f 2059
e772353f 2060
e772353f 2061
1c611bbd 2062 if (first_try) {
1c611bbd 2063 mf_nr_ar3 = 0;
7bc95e2e 2064 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2065 sync_time = GetCountSspClk() & 0xfffffff8;
1c611bbd 2066 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2067 nt_attacked = 0;
2068 nt = 0;
6a1f2d82 2069 par[0] = 0;
1c611bbd 2070 }
2071 else {
2072 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1c611bbd 2073 mf_nr_ar3++;
2074 mf_nr_ar[3] = mf_nr_ar3;
6a1f2d82 2075 par[0] = par_low;
1c611bbd 2076 }
e30c654b 2077
15c4dc5a 2078 LED_A_ON();
2079 LED_B_OFF();
2080 LED_C_OFF();
1c611bbd 2081
7bc95e2e 2082
1c611bbd 2083 for(uint16_t i = 0; TRUE; i++) {
2084
2085 WDT_HIT();
e30c654b 2086
1c611bbd 2087 // Test if the action was cancelled
2088 if(BUTTON_PRESS()) {
2089 break;
2090 }
2091
2092 LED_C_ON();
e30c654b 2093
1c611bbd 2094 if(!iso14443a_select_card(uid, NULL, &cuid)) {
9492e0b0 2095 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 2096 continue;
2097 }
2098
9492e0b0 2099 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
1c611bbd 2100 catch_up_cycles = 0;
2101
2102 // if we missed the sync time already, advance to the next nonce repeat
7bc95e2e 2103 while(GetCountSspClk() > sync_time) {
9492e0b0 2104 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
1c611bbd 2105 }
e30c654b 2106
9492e0b0 2107 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2108 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
f89c7050 2109
1c611bbd 2110 // Receive the (4 Byte) "random" nonce
6a1f2d82 2111 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2112 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2113 continue;
2114 }
2115
1c611bbd 2116 previous_nt = nt;
2117 nt = bytes_to_num(receivedAnswer, 4);
2118
2119 // Transmit reader nonce with fake par
9492e0b0 2120 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2121
2122 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2123 int nt_distance = dist_nt(previous_nt, nt);
2124 if (nt_distance == 0) {
2125 nt_attacked = nt;
2126 }
2127 else {
2128 if (nt_distance == -99999) { // invalid nonce received, try again
2129 continue;
2130 }
2131 sync_cycles = (sync_cycles - nt_distance);
9492e0b0 2132 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
1c611bbd 2133 continue;
2134 }
2135 }
2136
2137 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2138 catch_up_cycles = -dist_nt(nt_attacked, nt);
2139 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2140 catch_up_cycles = 0;
2141 continue;
2142 }
2143 if (catch_up_cycles == last_catch_up) {
2144 consecutive_resyncs++;
2145 }
2146 else {
2147 last_catch_up = catch_up_cycles;
2148 consecutive_resyncs = 0;
2149 }
2150 if (consecutive_resyncs < 3) {
9492e0b0 2151 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2152 }
2153 else {
2154 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2155 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
1c611bbd 2156 }
2157 continue;
2158 }
2159
2160 consecutive_resyncs = 0;
2161
2162 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
6a1f2d82 2163 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
1c611bbd 2164 {
9492e0b0 2165 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2166
2167 if (nt_diff == 0)
2168 {
6a1f2d82 2169 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
1c611bbd 2170 }
2171
2172 led_on = !led_on;
2173 if(led_on) LED_B_ON(); else LED_B_OFF();
2174
6a1f2d82 2175 par_list[nt_diff] = SwapBits(par[0], 8);
1c611bbd 2176 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2177
2178 // Test if the information is complete
2179 if (nt_diff == 0x07) {
2180 isOK = 1;
2181 break;
2182 }
2183
2184 nt_diff = (nt_diff + 1) & 0x07;
2185 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
6a1f2d82 2186 par[0] = par_low;
1c611bbd 2187 } else {
2188 if (nt_diff == 0 && first_try)
2189 {
6a1f2d82 2190 par[0]++;
1c611bbd 2191 } else {
6a1f2d82 2192 par[0] = ((par[0] & 0x1F) + 1) | par_low;
1c611bbd 2193 }
2194 }
2195 }
2196
1c611bbd 2197
2198 mf_nr_ar[3] &= 0x1F;
2199
2200 byte_t buf[28];
2201 memcpy(buf + 0, uid, 4);
2202 num_to_bytes(nt, 4, buf + 4);
2203 memcpy(buf + 8, par_list, 8);
2204 memcpy(buf + 16, ks_list, 8);
2205 memcpy(buf + 24, mf_nr_ar, 4);
2206
2207 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2208
2209 // Thats it...
2210 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2211 LEDsoff();
7bc95e2e 2212
2213 iso14a_set_tracing(FALSE);
20f9a2a1 2214}
1c611bbd 2215
d2f487af 2216/**
2217 *MIFARE 1K simulate.
2218 *
2219 *@param flags :
2220 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2221 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2222 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2223 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2224 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2225 */
2226void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2227{
50193c1e 2228 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2229 int _7BUID = 0;
9ca155ba 2230 int vHf = 0; // in mV
8f51ddb0 2231 int res;
0a39986e
M
2232 uint32_t selTimer = 0;
2233 uint32_t authTimer = 0;
6a1f2d82 2234 uint16_t len = 0;
8f51ddb0 2235 uint8_t cardWRBL = 0;
9ca155ba
M
2236 uint8_t cardAUTHSC = 0;
2237 uint8_t cardAUTHKEY = 0xff; // no authentication
51969283 2238 uint32_t cardRr = 0;
9ca155ba 2239 uint32_t cuid = 0;
d2f487af 2240 //uint32_t rn_enc = 0;
51969283 2241 uint32_t ans = 0;
0014cb46
M
2242 uint32_t cardINTREG = 0;
2243 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2244 struct Crypto1State mpcs = {0, 0};
2245 struct Crypto1State *pcs;
2246 pcs = &mpcs;
d2f487af 2247 uint32_t numReads = 0;//Counts numer of times reader read a block
6a1f2d82 2248 uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
2249 uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
2250 uint8_t* response = get_bigbufptr_recvrespbuf();
2251 uint8_t* response_par = response + MAX_FRAME_SIZE;
9ca155ba 2252
d2f487af 2253 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2254 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2255 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2256 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2257 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2258
d2f487af 2259 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2260 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2261
d2f487af 2262 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2263 // This can be used in a reader-only attack.
2264 // (it can also be retrieved via 'hf 14a list', but hey...
2265 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2266 uint8_t ar_nr_collected = 0;
0014cb46 2267
0a39986e 2268 // clear trace
7bc95e2e 2269 iso14a_clear_trace();
2270 iso14a_set_tracing(TRUE);
51969283 2271
7bc95e2e 2272 // Authenticate response - nonce
51969283 2273 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2274
d2f487af 2275 //-- Determine the UID
2276 // Can be set from emulator memory, incoming data
2277 // and can be 7 or 4 bytes long
7bc95e2e 2278 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2279 {
2280 // 4B uid comes from data-portion of packet
2281 memcpy(rUIDBCC1,datain,4);
8556b852 2282 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2283
7bc95e2e 2284 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2285 // 7B uid comes from data-portion of packet
2286 memcpy(&rUIDBCC1[1],datain,3);
2287 memcpy(rUIDBCC2, datain+3, 4);
2288 _7BUID = true;
7bc95e2e 2289 } else {
d2f487af 2290 // get UID from emul memory
2291 emlGetMemBt(receivedCmd, 7, 1);
2292 _7BUID = !(receivedCmd[0] == 0x00);
2293 if (!_7BUID) { // ---------- 4BUID
2294 emlGetMemBt(rUIDBCC1, 0, 4);
2295 } else { // ---------- 7BUID
2296 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2297 emlGetMemBt(rUIDBCC2, 3, 4);
2298 }
2299 }
7bc95e2e 2300
d2f487af 2301 /*
2302 * Regardless of what method was used to set the UID, set fifth byte and modify
2303 * the ATQA for 4 or 7-byte UID
2304 */
d2f487af 2305 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2306 if (_7BUID) {
d2f487af 2307 rATQA[0] = 0x44;
8556b852 2308 rUIDBCC1[0] = 0x88;
8556b852
M
2309 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2310 }
2311
9ca155ba 2312 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 2313 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
9ca155ba 2314
9ca155ba 2315
d2f487af 2316 if (MF_DBGLEVEL >= 1) {
2317 if (!_7BUID) {
b03c0f2d 2318 Dbprintf("4B UID: %02x%02x%02x%02x",
2319 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
7bc95e2e 2320 } else {
b03c0f2d 2321 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2322 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2323 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
d2f487af 2324 }
2325 }
7bc95e2e 2326
2327 bool finished = FALSE;
d2f487af 2328 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2329 WDT_HIT();
9ca155ba
M
2330
2331 // find reader field
2332 // Vref = 3300mV, and an 10:1 voltage divider on the input
2333 // can measure voltages up to 33000 mV
2334 if (cardSTATE == MFEMUL_NOFIELD) {
2335 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2336 if (vHf > MF_MINFIELDV) {
0014cb46 2337 cardSTATE_TO_IDLE();
9ca155ba
M
2338 LED_A_ON();
2339 }
2340 }
d2f487af 2341 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2342
d2f487af 2343 //Now, get data
2344
6a1f2d82 2345 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
d2f487af 2346 if (res == 2) { //Field is off!
2347 cardSTATE = MFEMUL_NOFIELD;
2348 LEDsoff();
2349 continue;
7bc95e2e 2350 } else if (res == 1) {
2351 break; //return value 1 means button press
2352 }
2353
d2f487af 2354 // REQ or WUP request in ANY state and WUP in HALTED state
2355 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2356 selTimer = GetTickCount();
2357 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2358 cardSTATE = MFEMUL_SELECT1;
2359
2360 // init crypto block
2361 LED_B_OFF();
2362 LED_C_OFF();
2363 crypto1_destroy(pcs);
2364 cardAUTHKEY = 0xff;
2365 continue;
0a39986e 2366 }
7bc95e2e 2367
50193c1e 2368 switch (cardSTATE) {
d2f487af 2369 case MFEMUL_NOFIELD:
2370 case MFEMUL_HALTED:
50193c1e 2371 case MFEMUL_IDLE:{
6a1f2d82 2372 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
50193c1e
M
2373 break;
2374 }
2375 case MFEMUL_SELECT1:{
9ca155ba
M
2376 // select all
2377 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2378 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2379 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2380 break;
9ca155ba
M
2381 }
2382
d2f487af 2383 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2384 {
2385 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2386 }
9ca155ba 2387 // select card
0a39986e
M
2388 if (len == 9 &&
2389 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
bfb6a143 2390 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
9ca155ba 2391 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2392 if (!_7BUID) {
2393 cardSTATE = MFEMUL_WORK;
0014cb46
M
2394 LED_B_ON();
2395 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2396 break;
8556b852
M
2397 } else {
2398 cardSTATE = MFEMUL_SELECT2;
8556b852 2399 }
9ca155ba 2400 }
50193c1e
M
2401 break;
2402 }
d2f487af 2403 case MFEMUL_AUTH1:{
2404 if( len != 8)
2405 {
2406 cardSTATE_TO_IDLE();
6a1f2d82 2407 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2408 break;
2409 }
2410 uint32_t ar = bytes_to_num(receivedCmd, 4);
6a1f2d82 2411 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
d2f487af 2412
2413 //Collect AR/NR
2414 if(ar_nr_collected < 2){
273b57a7 2415 if(ar_nr_responses[2] != ar)
2416 {// Avoid duplicates... probably not necessary, ar should vary.
d2f487af 2417 ar_nr_responses[ar_nr_collected*4] = cuid;
2418 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2419 ar_nr_responses[ar_nr_collected*4+2] = ar;
2420 ar_nr_responses[ar_nr_collected*4+3] = nr;
273b57a7 2421 ar_nr_collected++;
d2f487af 2422 }
2423 }
2424
2425 // --- crypto
2426 crypto1_word(pcs, ar , 1);
2427 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2428
2429 // test if auth OK
2430 if (cardRr != prng_successor(nonce, 64)){
b03c0f2d 2431 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2432 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2433 cardRr, prng_successor(nonce, 64));
7bc95e2e 2434 // Shouldn't we respond anything here?
d2f487af 2435 // Right now, we don't nack or anything, which causes the
2436 // reader to do a WUPA after a while. /Martin
b03c0f2d 2437 // -- which is the correct response. /piwi
d2f487af 2438 cardSTATE_TO_IDLE();
6a1f2d82 2439 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2440 break;
2441 }
2442
2443 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2444
2445 num_to_bytes(ans, 4, rAUTH_AT);
2446 // --- crypto
2447 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2448 LED_C_ON();
2449 cardSTATE = MFEMUL_WORK;
b03c0f2d 2450 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2451 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2452 GetTickCount() - authTimer);
d2f487af 2453 break;
2454 }
50193c1e 2455 case MFEMUL_SELECT2:{
7bc95e2e 2456 if (!len) {
6a1f2d82 2457 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2458 break;
2459 }
8556b852 2460 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2461 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2462 break;
2463 }
9ca155ba 2464
8556b852
M
2465 // select 2 card
2466 if (len == 9 &&
2467 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2468 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2469 cuid = bytes_to_num(rUIDBCC2, 4);
2470 cardSTATE = MFEMUL_WORK;
2471 LED_B_ON();
0014cb46 2472 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2473 break;
2474 }
0014cb46
M
2475
2476 // i guess there is a command). go into the work state.
7bc95e2e 2477 if (len != 4) {
6a1f2d82 2478 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2479 break;
2480 }
0014cb46 2481 cardSTATE = MFEMUL_WORK;
d2f487af 2482 //goto lbWORK;
2483 //intentional fall-through to the next case-stmt
50193c1e 2484 }
51969283 2485
7bc95e2e 2486 case MFEMUL_WORK:{
2487 if (len == 0) {
6a1f2d82 2488 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2489 break;
2490 }
2491
d2f487af 2492 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2493
7bc95e2e 2494 if(encrypted_data) {
51969283
M
2495 // decrypt seqence
2496 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2497 }
7bc95e2e 2498
d2f487af 2499 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2500 authTimer = GetTickCount();
2501 cardAUTHSC = receivedCmd[1] / 4; // received block num
2502 cardAUTHKEY = receivedCmd[0] - 0x60;
2503 crypto1_destroy(pcs);//Added by martin
2504 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2505
d2f487af 2506 if (!encrypted_data) { // first authentication
b03c0f2d 2507 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2508
d2f487af 2509 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2510 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2511 } else { // nested authentication
b03c0f2d 2512 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2513 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2514 num_to_bytes(ans, 4, rAUTH_AT);
2515 }
2516 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2517 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2518 cardSTATE = MFEMUL_AUTH1;
2519 break;
51969283 2520 }
7bc95e2e 2521
8f51ddb0
M
2522 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2523 // BUT... ACK --> NACK
2524 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2525 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2526 break;
2527 }
2528
2529 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2530 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2531 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2532 break;
0a39986e
M
2533 }
2534
7bc95e2e 2535 if(len != 4) {
6a1f2d82 2536 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2537 break;
2538 }
d2f487af 2539
2540 if(receivedCmd[0] == 0x30 // read block
2541 || receivedCmd[0] == 0xA0 // write block
b03c0f2d 2542 || receivedCmd[0] == 0xC0 // inc
2543 || receivedCmd[0] == 0xC1 // dec
2544 || receivedCmd[0] == 0xC2 // restore
7bc95e2e 2545 || receivedCmd[0] == 0xB0) { // transfer
2546 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2547 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2548 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2549 break;
2550 }
2551
7bc95e2e 2552 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2553 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
d2f487af 2554 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2555 break;
2556 }
d2f487af 2557 }
2558 // read block
2559 if (receivedCmd[0] == 0x30) {
b03c0f2d 2560 if (MF_DBGLEVEL >= 4) {
d2f487af 2561 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2562 }
8f51ddb0
M
2563 emlGetMem(response, receivedCmd[1], 1);
2564 AppendCrc14443a(response, 16);
6a1f2d82 2565 mf_crypto1_encrypt(pcs, response, 18, response_par);
2566 EmSendCmdPar(response, 18, response_par);
d2f487af 2567 numReads++;
7bc95e2e 2568 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
d2f487af 2569 Dbprintf("%d reads done, exiting", numReads);
2570 finished = true;
2571 }
0a39986e
M
2572 break;
2573 }
0a39986e 2574 // write block
d2f487af 2575 if (receivedCmd[0] == 0xA0) {
b03c0f2d 2576 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2577 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2578 cardSTATE = MFEMUL_WRITEBL2;
2579 cardWRBL = receivedCmd[1];
0a39986e 2580 break;
7bc95e2e 2581 }
0014cb46 2582 // increment, decrement, restore
d2f487af 2583 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
b03c0f2d 2584 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2585 if (emlCheckValBl(receivedCmd[1])) {
2586 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2587 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2588 break;
2589 }
2590 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2591 if (receivedCmd[0] == 0xC1)
2592 cardSTATE = MFEMUL_INTREG_INC;
2593 if (receivedCmd[0] == 0xC0)
2594 cardSTATE = MFEMUL_INTREG_DEC;
2595 if (receivedCmd[0] == 0xC2)
2596 cardSTATE = MFEMUL_INTREG_REST;
2597 cardWRBL = receivedCmd[1];
0014cb46
M
2598 break;
2599 }
0014cb46 2600 // transfer
d2f487af 2601 if (receivedCmd[0] == 0xB0) {
b03c0f2d 2602 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2603 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2604 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2605 else
2606 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2607 break;
2608 }
9ca155ba 2609 // halt
d2f487af 2610 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2611 LED_B_OFF();
0a39986e 2612 LED_C_OFF();
0014cb46
M
2613 cardSTATE = MFEMUL_HALTED;
2614 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
6a1f2d82 2615 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0a39986e 2616 break;
9ca155ba 2617 }
d2f487af 2618 // RATS
2619 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2620 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2621 break;
2622 }
d2f487af 2623 // command not allowed
2624 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2625 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2626 break;
8f51ddb0
M
2627 }
2628 case MFEMUL_WRITEBL2:{
2629 if (len == 18){
2630 mf_crypto1_decrypt(pcs, receivedCmd, len);
2631 emlSetMem(receivedCmd, cardWRBL, 1);
2632 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2633 cardSTATE = MFEMUL_WORK;
51969283 2634 } else {
0014cb46 2635 cardSTATE_TO_IDLE();
6a1f2d82 2636 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
8f51ddb0 2637 }
8f51ddb0 2638 break;
50193c1e 2639 }
0014cb46
M
2640
2641 case MFEMUL_INTREG_INC:{
2642 mf_crypto1_decrypt(pcs, receivedCmd, len);
2643 memcpy(&ans, receivedCmd, 4);
2644 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2645 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2646 cardSTATE_TO_IDLE();
2647 break;
7bc95e2e 2648 }
6a1f2d82 2649 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2650 cardINTREG = cardINTREG + ans;
2651 cardSTATE = MFEMUL_WORK;
2652 break;
2653 }
2654 case MFEMUL_INTREG_DEC:{
2655 mf_crypto1_decrypt(pcs, receivedCmd, len);
2656 memcpy(&ans, receivedCmd, 4);
2657 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2658 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2659 cardSTATE_TO_IDLE();
2660 break;
2661 }
6a1f2d82 2662 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2663 cardINTREG = cardINTREG - ans;
2664 cardSTATE = MFEMUL_WORK;
2665 break;
2666 }
2667 case MFEMUL_INTREG_REST:{
2668 mf_crypto1_decrypt(pcs, receivedCmd, len);
2669 memcpy(&ans, receivedCmd, 4);
2670 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2671 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2672 cardSTATE_TO_IDLE();
2673 break;
2674 }
6a1f2d82 2675 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2676 cardSTATE = MFEMUL_WORK;
2677 break;
2678 }
50193c1e 2679 }
50193c1e
M
2680 }
2681
9ca155ba
M
2682 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2683 LEDsoff();
2684
d2f487af 2685 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2686 {
2687 //May just aswell send the collected ar_nr in the response aswell
2688 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2689 }
d714d3ef 2690
d2f487af 2691 if(flags & FLAG_NR_AR_ATTACK)
2692 {
7bc95e2e 2693 if(ar_nr_collected > 1) {
d2f487af 2694 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
d714d3ef 2695 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
d2f487af 2696 ar_nr_responses[0], // UID
2697 ar_nr_responses[1], //NT
2698 ar_nr_responses[2], //AR1
2699 ar_nr_responses[3], //NR1
2700 ar_nr_responses[6], //AR2
2701 ar_nr_responses[7] //NR2
2702 );
7bc95e2e 2703 } else {
d2f487af 2704 Dbprintf("Failed to obtain two AR/NR pairs!");
7bc95e2e 2705 if(ar_nr_collected >0) {
d714d3ef 2706 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
d2f487af 2707 ar_nr_responses[0], // UID
2708 ar_nr_responses[1], //NT
2709 ar_nr_responses[2], //AR1
2710 ar_nr_responses[3] //NR1
2711 );
2712 }
2713 }
2714 }
0014cb46 2715 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
15c4dc5a 2716}
b62a5a84 2717
d2f487af 2718
2719
b62a5a84
M
2720//-----------------------------------------------------------------------------
2721// MIFARE sniffer.
2722//
2723//-----------------------------------------------------------------------------
5cd9ec01
M
2724void RAMFUNC SniffMifare(uint8_t param) {
2725 // param:
2726 // bit 0 - trigger from first card answer
2727 // bit 1 - trigger from first reader 7-bit request
39864b0b
M
2728
2729 // C(red) A(yellow) B(green)
b62a5a84
M
2730 LEDsoff();
2731 // init trace buffer
991f13f2 2732 iso14a_clear_trace();
2733 iso14a_set_tracing(TRUE);
b62a5a84 2734
b62a5a84
M
2735 // The command (reader -> tag) that we're receiving.
2736 // The length of a received command will in most cases be no more than 18 bytes.
2737 // So 32 should be enough!
2738 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
6a1f2d82 2739 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
b62a5a84 2740 // The response (tag -> reader) that we're receiving.
6a1f2d82 2741 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
2742 uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
b62a5a84
M
2743
2744 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2745 // into trace, along with its length and other annotations.
2746 //uint8_t *trace = (uint8_t *)BigBuf;
2747
2748 // The DMA buffer, used to stream samples from the FPGA
7bc95e2e 2749 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
2750 uint8_t *data = dmaBuf;
2751 uint8_t previous_data = 0;
5cd9ec01
M
2752 int maxDataLen = 0;
2753 int dataLen = 0;
7bc95e2e 2754 bool ReaderIsActive = FALSE;
2755 bool TagIsActive = FALSE;
2756
2757 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
b62a5a84
M
2758
2759 // Set up the demodulator for tag -> reader responses.
6a1f2d82 2760 DemodInit(receivedResponse, receivedResponsePar);
b62a5a84
M
2761
2762 // Set up the demodulator for the reader -> tag commands
6a1f2d82 2763 UartInit(receivedCmd, receivedCmdPar);
b62a5a84
M
2764
2765 // Setup for the DMA.
7bc95e2e 2766 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 2767
b62a5a84 2768 LED_D_OFF();
39864b0b
M
2769
2770 // init sniffer
2771 MfSniffInit();
b62a5a84 2772
b62a5a84 2773 // And now we loop, receiving samples.
7bc95e2e 2774 for(uint32_t sniffCounter = 0; TRUE; ) {
2775
5cd9ec01
M
2776 if(BUTTON_PRESS()) {
2777 DbpString("cancelled by button");
7bc95e2e 2778 break;
5cd9ec01
M
2779 }
2780
b62a5a84
M
2781 LED_A_ON();
2782 WDT_HIT();
39864b0b 2783
7bc95e2e 2784 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2785 // check if a transaction is completed (timeout after 2000ms).
2786 // if yes, stop the DMA transfer and send what we have so far to the client
2787 if (MfSniffSend(2000)) {
2788 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2789 sniffCounter = 0;
2790 data = dmaBuf;
2791 maxDataLen = 0;
2792 ReaderIsActive = FALSE;
2793 TagIsActive = FALSE;
2794 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 2795 }
39864b0b 2796 }
7bc95e2e 2797
2798 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2799 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2800 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2801 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2802 } else {
2803 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
2804 }
2805 // test for length of buffer
7bc95e2e 2806 if(dataLen > maxDataLen) { // we are more behind than ever...
2807 maxDataLen = dataLen;
5cd9ec01
M
2808 if(dataLen > 400) {
2809 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 2810 break;
b62a5a84
M
2811 }
2812 }
5cd9ec01 2813 if(dataLen < 1) continue;
b62a5a84 2814
7bc95e2e 2815 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
2816 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2817 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2818 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 2819 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
2820 }
2821 // secondary buffer sets as primary, secondary buffer was stopped
2822 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2823 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
2824 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2825 }
5cd9ec01
M
2826
2827 LED_A_OFF();
b62a5a84 2828
7bc95e2e 2829 if (sniffCounter & 0x01) {
b62a5a84 2830
7bc95e2e 2831 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2832 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2833 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2834 LED_C_INV();
6a1f2d82 2835 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
b62a5a84 2836
7bc95e2e 2837 /* And ready to receive another command. */
2838 UartReset();
2839
2840 /* And also reset the demod code */
2841 DemodReset();
2842 }
2843 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2844 }
2845
2846 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2847 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2848 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2849 LED_C_INV();
b62a5a84 2850
6a1f2d82 2851 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
39864b0b 2852
7bc95e2e 2853 // And ready to receive another response.
2854 DemodReset();
2855 }
2856 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2857 }
b62a5a84
M
2858 }
2859
7bc95e2e 2860 previous_data = *data;
2861 sniffCounter++;
5cd9ec01 2862 data++;
d714d3ef 2863 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 2864 data = dmaBuf;
b62a5a84 2865 }
7bc95e2e 2866
b62a5a84
M
2867 } // main cycle
2868
2869 DbpString("COMMAND FINISHED");
2870
55acbb2a 2871 FpgaDisableSscDma();
39864b0b
M
2872 MfSniffEnd();
2873
7bc95e2e 2874 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
b62a5a84 2875 LEDsoff();
3803d529 2876}
Impressum, Datenschutz