]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
CHG: moved into header files.
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
c3c241f3 12#include "usb_cdc.h"
c3c241f3 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "printf.h"
17#include "string.h"
15c4dc5a 18#include "legicrf.h"
31abe49f 19#include "lfsampling.h"
3000dc4e 20#include "BigBuf.h"
7838f4be 21#include "mifareutil.h"
f2c2b174 22
15c4dc5a 23#ifdef WITH_LCD
902cb3c0 24 #include "LCD.h"
15c4dc5a 25#endif
26
7838f4be 27// Craig Young - 14a stand-alone code
28#ifdef WITH_ISO14443a_StandAlone
29 #include "iso14443a.h"
c2731f37 30 #include "protocols.h"
7838f4be 31#endif
32
15c4dc5a 33//=============================================================================
34// A buffer where we can queue things up to be sent through the FPGA, for
35// any purpose (fake tag, as reader, whatever). We go MSB first, since that
36// is the order in which they go out on the wire.
37//=============================================================================
38
6a1f2d82 39#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
a501c82b 40uint8_t ToSend[TOSEND_BUFFER_SIZE];
7838f4be 41int ToSendMax = 0;
15c4dc5a 42static int ToSendBit;
43struct common_area common_area __attribute__((section(".commonarea")));
44
15c4dc5a 45void ToSendReset(void)
46{
47 ToSendMax = -1;
48 ToSendBit = 8;
49}
50
da198be4 51void ToSendStuffBit(int b) {
15c4dc5a 52 if(ToSendBit >= 8) {
da198be4 53 ++ToSendMax;
15c4dc5a 54 ToSend[ToSendMax] = 0;
55 ToSendBit = 0;
56 }
57
da198be4 58 if(b)
15c4dc5a 59 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
15c4dc5a 60
da198be4 61 ++ToSendBit;
15c4dc5a 62
6a1f2d82 63 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 64 ToSendBit = 0;
65 DbpString("ToSendStuffBit overflowed!");
66 }
67}
68
dccddaef 69void PrintToSendBuffer(void){
70 DbpString("Printing ToSendBuffer:");
71 Dbhexdump(ToSendMax, ToSend, 0);
72}
73
53d5dc64 74void print_result(char *name, uint8_t *buf, size_t len) {
75 uint8_t *p = buf;
76
77 if ( len % 16 == 0 ) {
78 for(; p-buf < len; p += 16)
79 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
80 name,
81 p-buf,
82 len,
83 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
84 );
85 }
86 else {
87 for(; p-buf < len; p += 8)
88 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
89 name,
90 p-buf,
91 len,
92 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
93 }
94}
95
15c4dc5a 96//=============================================================================
97// Debug print functions, to go out over USB, to the usual PC-side client.
98//=============================================================================
99
38e41917 100void DbpStringEx(char *str, uint32_t cmd){
101 byte_t len = strlen(str);
102 cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len);
103}
104
da198be4 105void DbpString(char *str) {
38e41917 106 DbpStringEx(str, 0);
15c4dc5a 107}
108
109#if 0
da198be4 110void DbpIntegers(int x1, int x2, int x3) {
38e41917 111 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 112}
113#endif
38e41917 114void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
115 // should probably limit size here; oh well, let's just use a big buffer
116 char output_string[128] = {0x00};
117 va_list ap;
118
119 va_start(ap, fmt);
120 kvsprintf(fmt, output_string, 10, ap);
121 va_end(ap);
122
123 DbpStringEx(output_string, cmd);
124}
15c4dc5a 125
126void Dbprintf(const char *fmt, ...) {
da198be4 127 // should probably limit size here; oh well, let's just use a big buffer
128 char output_string[128] = {0x00};
15c4dc5a 129 va_list ap;
130
131 va_start(ap, fmt);
132 kvsprintf(fmt, output_string, 10, ap);
133 va_end(ap);
e30c654b 134
15c4dc5a 135 DbpString(output_string);
136}
137
9455b51c 138// prints HEX & ASCII
d19929cb 139void Dbhexdump(int len, uint8_t *d, bool bAsci) {
da198be4 140 int l=0, i;
9455b51c 141 char ascii[9];
d19929cb 142
9455b51c 143 while (len>0) {
da198be4 144
145 l = (len>8) ? 8 : len;
9455b51c 146
147 memcpy(ascii,d,l);
d19929cb 148 ascii[l]=0;
9455b51c 149
150 // filter safe ascii
da198be4 151 for (i=0; i<l; ++i)
9455b51c 152 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 153
da198be4 154 if (bAsci)
d19929cb 155 Dbprintf("%-8s %*D",ascii,l,d," ");
da198be4 156 else
d19929cb 157 Dbprintf("%*D",l,d," ");
d19929cb 158
da198be4 159 len -= 8;
160 d += 8;
9455b51c 161 }
162}
163
15c4dc5a 164//-----------------------------------------------------------------------------
165// Read an ADC channel and block till it completes, then return the result
166// in ADC units (0 to 1023). Also a routine to average 32 samples and
167// return that.
168//-----------------------------------------------------------------------------
169static int ReadAdc(int ch)
170{
f7e3ed82 171 uint32_t d;
15c4dc5a 172
173 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
174 AT91C_BASE_ADC->ADC_MR =
3b692427 175 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
176 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
177 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
178
179 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
180 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
181 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
182 //
183 // The maths are:
184 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
185 //
186 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
187 //
188 // Note: with the "historic" values in the comments above, the error was 34% !!!
189
15c4dc5a 190 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
191
192 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 193
da198be4 194 while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ;
195
15c4dc5a 196 d = AT91C_BASE_ADC->ADC_CDR[ch];
15c4dc5a 197 return d;
198}
199
9ca155ba 200int AvgAdc(int ch) // was static - merlok
15c4dc5a 201{
b069fb8b 202 int i, a = 0;
da198be4 203 for(i = 0; i < 32; ++i)
15c4dc5a 204 a += ReadAdc(ch);
15c4dc5a 205
206 return (a + 15) >> 5;
207}
208
f121b478 209
da198be4 210void MeasureAntennaTuning(void) {
15c4dc5a 211
2deea574 212 uint8_t LF_Results[256];
f121b478 213 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0;
214 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
2deea574 215
216 memset(LF_Results, 0, sizeof(LF_Results));
7838f4be 217 LED_B_ON();
15c4dc5a 218
219/*
220 * Sweeps the useful LF range of the proxmark from
221 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
222 * read the voltage in the antenna, the result left
223 * in the buffer is a graph which should clearly show
224 * the resonating frequency of your LF antenna
225 * ( hopefully around 95 if it is tuned to 125kHz!)
226 */
d19929cb 227
7cc204bf 228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 229 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2deea574 230
f121b478 231 for (i = 255; i >= 19; i--) {
da198be4 232 WDT_HIT();
15c4dc5a 233 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
234 SpinDelay(20);
3b692427 235 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 236 if (i==95) vLf125 = adcval; // voltage at 125Khz
237 if (i==89) vLf134 = adcval; // voltage at 134Khz
238
153a4a78 239 LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes
d3499d36 240 if(LF_Results[i] > peak) {
15c4dc5a 241 peakv = adcval;
d3499d36 242 peak = LF_Results[i];
15c4dc5a 243 peakf = i;
15c4dc5a 244 }
245 }
246
7838f4be 247 LED_A_ON();
15c4dc5a 248 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7838f4be 249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
251 SpinDelay(20);
3b692427 252 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 253
153a4a78 254 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256);
d19929cb 255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
da198be4 256 LEDsoff();
15c4dc5a 257}
258
da198be4 259void MeasureAntennaTuningHf(void) {
15c4dc5a 260 int vHf = 0; // in mV
3b692427 261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
263 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
264
38e41917 265 while ( !BUTTON_PRESS() ){
15c4dc5a 266 SpinDelay(20);
3b692427 267 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
38e41917 268 //Dbprintf("%d mV",vHf);
269 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf);
15c4dc5a 270 }
3b692427 271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
38e41917 272 DbpString("cancelled");
15c4dc5a 273}
274
275
da198be4 276void ReadMem(int addr) {
f7e3ed82 277 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 278
279 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
280 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
281}
282
283/* osimage version information is linked in */
284extern struct version_information version_information;
285/* bootrom version information is pointed to from _bootphase1_version_pointer */
9783989b 286extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
15c4dc5a 287void SendVersion(void)
288{
9783989b 289 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
290 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 291
292 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 293 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
294 * pointer, then use it.
295 */
296 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
da198be4 297
15c4dc5a 298 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
9783989b 299 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 300 } else {
301 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
9783989b 302 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 303 }
e30c654b 304
15c4dc5a 305 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
9783989b 306 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 307
9783989b 308 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
309 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
da198be4 310
9783989b 311 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
312 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
313
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
316 uint32_t compressed_data_section_size = common_area.arg1;
317 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
15c4dc5a 318}
f62b5e12 319
320// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
0de8e387 322void printUSBSpeed(void)
f62b5e12 323{
324 Dbprintf("USB Speed:");
0de8e387 325 Dbprintf(" Sending USB packets to client...");
f62b5e12 326
0de8e387 327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
f62b5e12 328 uint8_t *test_data = BigBuf_get_addr();
0de8e387 329 uint32_t end_time;
f62b5e12 330
0de8e387 331 uint32_t start_time = end_time = GetTickCount();
332 uint32_t bytes_transferred = 0;
f62b5e12 333
334 LED_B_ON();
0de8e387 335 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
337 end_time = GetTickCount();
338 bytes_transferred += USB_CMD_DATA_SIZE;
f62b5e12 339 }
340 LED_B_OFF();
341
0de8e387 342 Dbprintf(" Time elapsed: %dms", end_time - start_time);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred / (end_time - start_time));
f62b5e12 346
347}
348
7838f4be 349/**
350 * Prints runtime information about the PM3.
351**/
da198be4 352void SendStatus(void) {
7838f4be 353 BigBuf_print_status();
354 Fpga_print_status();
355 printConfig(); //LF Sampling config
0de8e387 356 printUSBSpeed();
7838f4be 357 Dbprintf("Various");
f62b5e12 358 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
359 Dbprintf(" ToSendMax..........%d", ToSendMax);
360 Dbprintf(" ToSendBit..........%d", ToSendBit);
361 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
362
363 cmd_send(CMD_ACK,1,0,0,0,0);
7838f4be 364}
15c4dc5a 365
7838f4be 366#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
15c4dc5a 367
7838f4be 368#define OPTS 2
7838f4be 369void StandAloneMode()
370{
371 DbpString("Stand-alone mode! No PC necessary.");
15c4dc5a 372 // Oooh pretty -- notify user we're in elite samy mode now
373 LED(LED_RED, 200);
374 LED(LED_ORANGE, 200);
375 LED(LED_GREEN, 200);
376 LED(LED_ORANGE, 200);
377 LED(LED_RED, 200);
378 LED(LED_ORANGE, 200);
379 LED(LED_GREEN, 200);
380 LED(LED_ORANGE, 200);
381 LED(LED_RED, 200);
7838f4be 382}
7838f4be 383#endif
384
7838f4be 385#ifdef WITH_ISO14443a_StandAlone
386void StandAloneMode14a()
387{
388 StandAloneMode();
389 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
390
391 int selected = 0;
0db6ed9a 392 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
7838f4be 393 int cardRead[OPTS] = {0};
394 uint8_t readUID[10] = {0};
395 uint32_t uid_1st[OPTS]={0};
396 uint32_t uid_2nd[OPTS]={0};
0db6ed9a 397 uint32_t uid_tmp1 = 0;
398 uint32_t uid_tmp2 = 0;
399 iso14a_card_select_t hi14a_card[OPTS];
7838f4be 400
c2731f37 401 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
402
7838f4be 403 LED(selected + 1, 0);
404
405 for (;;)
406 {
407 usb_poll();
408 WDT_HIT();
7838f4be 409 SpinDelay(300);
410
0db6ed9a 411 if (iGotoRecord == 1 || cardRead[selected] == 0)
7838f4be 412 {
0db6ed9a 413 iGotoRecord = 0;
7838f4be 414 LEDsoff();
415 LED(selected + 1, 0);
416 LED(LED_RED2, 0);
417
418 // record
419 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
7838f4be 420 /* need this delay to prevent catching some weird data */
421 SpinDelay(500);
422 /* Code for reading from 14a tag */
810f5379 423 uint8_t uid[10] = {0};
424 uint32_t cuid = 0;
7838f4be 425 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
426
427 for ( ; ; )
428 {
429 WDT_HIT();
0db6ed9a 430 if (BUTTON_PRESS()) {
431 if (cardRead[selected]) {
432 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
433 break;
434 }
435 else if (cardRead[(selected+1)%OPTS]) {
436 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
437 selected = (selected+1)%OPTS;
438 break; // playing = 1;
439 }
440 else {
441 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
442 SpinDelay(300);
443 }
444 }
c188b1b9 445 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0))
7838f4be 446 continue;
447 else
448 {
449 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
450 memcpy(readUID,uid,10*sizeof(uint8_t));
0db6ed9a 451 uint8_t *dst = (uint8_t *)&uid_tmp1;
7838f4be 452 // Set UID byte order
453 for (int i=0; i<4; i++)
454 dst[i] = uid[3-i];
0db6ed9a 455 dst = (uint8_t *)&uid_tmp2;
7838f4be 456 for (int i=0; i<4; i++)
457 dst[i] = uid[7-i];
0db6ed9a 458 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
459 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
460 }
461 else {
462 if (uid_tmp2) {
463 Dbprintf("Bank[%d] received a 7-byte UID",selected);
464 uid_1st[selected] = (uid_tmp1)>>8;
465 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
466 }
467 else {
468 Dbprintf("Bank[%d] received a 4-byte UID",selected);
469 uid_1st[selected] = uid_tmp1;
470 uid_2nd[selected] = uid_tmp2;
471 }
7838f4be 472 break;
473 }
474 }
0db6ed9a 475 }
476 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
477 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
7838f4be 478 LEDsoff();
479 LED(LED_GREEN, 200);
480 LED(LED_ORANGE, 200);
481 LED(LED_GREEN, 200);
482 LED(LED_ORANGE, 200);
483
484 LEDsoff();
485 LED(selected + 1, 0);
7838f4be 486
0db6ed9a 487 // Next state is replay:
488 playing = 1;
7838f4be 489
490 cardRead[selected] = 1;
7838f4be 491 }
0db6ed9a 492 /* MF Classic UID clone */
493 else if (iGotoClone==1)
7838f4be 494 {
0db6ed9a 495 iGotoClone=0;
c2731f37 496 LEDsoff();
497 LED(selected + 1, 0);
498 LED(LED_ORANGE, 250);
7838f4be 499
c2731f37 500 // record
501 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
7838f4be 502
c2731f37 503 // wait for button to be released
504 // Delay cloning until card is in place
505 while(BUTTON_PRESS())
506 WDT_HIT();
7838f4be 507
c2731f37 508 Dbprintf("Starting clone. [Bank: %u]", selected);
509 // need this delay to prevent catching some weird data
510 SpinDelay(500);
511 // Begin clone function here:
512 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
513 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
514 memcpy(c.d.asBytes, data, 16);
515 SendCommand(&c);
516
517 Block read is similar:
518 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
519 We need to imitate that call with blockNo 0 to set a uid.
520
521 The get and set commands are handled in this file:
522 // Work with "magic Chinese" card
523 case CMD_MIFARE_CSETBLOCK:
524 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
525 break;
526 case CMD_MIFARE_CGETBLOCK:
527 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
528 break;
529
530 mfCSetUID provides example logic for UID set workflow:
531 -Read block0 from card in field with MifareCGetBlock()
532 -Configure new values without replacing reserved bytes
533 memcpy(block0, uid, 4); // Copy UID bytes from byte array
534 // Mifare UID BCC
535 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
536 Bytes 5-7 are reserved SAK and ATQA for mifare classic
537 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
538 */
539 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
540 // arg0 = Flags, arg1=blockNo
541 MifareCGetBlock(params, 0, oldBlock0);
0db6ed9a 542 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
543 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
544 playing = 1;
545 }
546 else {
c2731f37 547 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
548 memcpy(newBlock0,oldBlock0,16);
549 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
550
551 newBlock0[0] = uid_1st[selected]>>24;
552 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
553 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
554 newBlock0[3] = 0xFF & (uid_1st[selected]);
555 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
556
557 // arg0 = workFlags, arg1 = blockNo, datain
558 MifareCSetBlock(params, 0, newBlock0);
559 MifareCGetBlock(params, 0, testBlock0);
560
561 if (memcmp(testBlock0, newBlock0, 16)==0) {
562 DbpString("Cloned successfull!");
563 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
7838f4be 564 playing = 0;
0db6ed9a 565 iGotoRecord = 1;
c2731f37 566 selected = (selected + 1) % OPTS;
567 } else {
0db6ed9a 568 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
569 playing = 1;
570 }
571 }
572 LEDsoff();
573 LED(selected + 1, 0);
7838f4be 574 }
575 // Change where to record (or begin playing)
0db6ed9a 576 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
7838f4be 577 {
7838f4be 578 LEDsoff();
579 LED(selected + 1, 0);
580
581 // Begin transmitting
582 if (playing)
583 {
584 LED(LED_GREEN, 0);
585 DbpString("Playing");
0db6ed9a 586 for ( ; ; ) {
587 WDT_HIT();
588 int button_action = BUTTON_HELD(1000);
589 if (button_action == 0) { // No button action, proceed with sim
590 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
591 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
592 num_to_bytes(uid_1st[selected], 3, data);
593 num_to_bytes(uid_2nd[selected], 4, data);
594
7838f4be 595 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
0db6ed9a 596 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
597 DbpString("Mifare Classic");
598 SimulateIso14443aTag(1, flags, data); // Mifare Classic
599 }
600 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
601 DbpString("Mifare Ultralight");
602 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
603 }
604 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
605 DbpString("Mifare DESFire");
606 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
607 }
608 else {
609 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
610 SimulateIso14443aTag(1, flags, data);
611 }
612 }
613 else if (button_action == BUTTON_SINGLE_CLICK) {
614 selected = (selected + 1) % OPTS;
615 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
616 iGotoRecord = 1;
617 break;
618 }
619 else if (button_action == BUTTON_HOLD) {
620 Dbprintf("Playtime over. Begin cloning...");
621 iGotoClone = 1;
622 break;
7838f4be 623 }
0db6ed9a 624 WDT_HIT();
625 }
7838f4be 626
627 /* We pressed a button so ignore it here with a delay */
628 SpinDelay(300);
7838f4be 629 LEDsoff();
630 LED(selected + 1, 0);
631 }
632 else
633 while(BUTTON_PRESS())
634 WDT_HIT();
635 }
636 }
637}
638#elif WITH_LF
639// samy's sniff and repeat routine
640void SamyRun()
641{
642 StandAloneMode();
643 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
644
645 int high[OPTS], low[OPTS];
15c4dc5a 646 int selected = 0;
647 int playing = 0;
72e930ef 648 int cardRead = 0;
15c4dc5a 649
650 // Turn on selected LED
651 LED(selected + 1, 0);
652
614da335 653 for (;;) {
6e82300d 654 usb_poll();
95e63594 655 WDT_HIT();
15c4dc5a 656
657 // Was our button held down or pressed?
658 int button_pressed = BUTTON_HELD(1000);
659 SpinDelay(300);
660
661 // Button was held for a second, begin recording
72e930ef 662 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 663 {
664 LEDsoff();
665 LED(selected + 1, 0);
666 LED(LED_RED2, 0);
667
668 // record
669 DbpString("Starting recording");
670
671 // wait for button to be released
672 while(BUTTON_PRESS())
673 WDT_HIT();
674
675 /* need this delay to prevent catching some weird data */
676 SpinDelay(500);
677
678 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
b7536e11 679 Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]);
15c4dc5a 680
681 LEDsoff();
682 LED(selected + 1, 0);
683 // Finished recording
15c4dc5a 684 // If we were previously playing, set playing off
685 // so next button push begins playing what we recorded
614da335 686 playing = 0;
687 cardRead = 1;
72e930ef 688 }
614da335 689 else if (button_pressed > 0 && cardRead == 1) {
690 LEDsoff();
691 LED(selected + 1, 0);
692 LED(LED_ORANGE, 0);
72e930ef 693
614da335 694 // record
b7536e11 695 Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]);
72e930ef 696
614da335 697 // wait for button to be released
698 while(BUTTON_PRESS())
699 WDT_HIT();
72e930ef 700
614da335 701 /* need this delay to prevent catching some weird data */
702 SpinDelay(500);
72e930ef 703
b7536e11 704 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
705 Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]);
72e930ef 706
614da335 707 LEDsoff();
708 LED(selected + 1, 0);
709 // Finished recording
72e930ef 710
614da335 711 // If we were previously playing, set playing off
712 // so next button push begins playing what we recorded
713 playing = 0;
714 cardRead = 0;
15c4dc5a 715 }
716
717 // Change where to record (or begin playing)
614da335 718 else if (button_pressed) {
15c4dc5a 719 // Next option if we were previously playing
720 if (playing)
721 selected = (selected + 1) % OPTS;
722 playing = !playing;
723
724 LEDsoff();
725 LED(selected + 1, 0);
726
727 // Begin transmitting
728 if (playing)
729 {
730 LED(LED_GREEN, 0);
731 DbpString("Playing");
732 // wait for button to be released
733 while(BUTTON_PRESS())
734 WDT_HIT();
0d5ee8e2 735
b7536e11 736 Dbprintf("%x %x %08x", selected, high[selected], low[selected]);
0d5ee8e2 737 CmdHIDsimTAG(high[selected], low[selected], 0);
15c4dc5a 738 DbpString("Done playing");
0d5ee8e2 739
740 if (BUTTON_HELD(1000) > 0) {
15c4dc5a 741 DbpString("Exiting");
742 LEDsoff();
743 return;
0d5ee8e2 744 }
15c4dc5a 745
746 /* We pressed a button so ignore it here with a delay */
747 SpinDelay(300);
748
749 // when done, we're done playing, move to next option
750 selected = (selected + 1) % OPTS;
751 playing = !playing;
752 LEDsoff();
753 LED(selected + 1, 0);
754 }
755 else
756 while(BUTTON_PRESS())
757 WDT_HIT();
758 }
759 }
760}
15c4dc5a 761
7838f4be 762#endif
15c4dc5a 763/*
764OBJECTIVE
765Listen and detect an external reader. Determine the best location
766for the antenna.
767
768INSTRUCTIONS:
769Inside the ListenReaderField() function, there is two mode.
770By default, when you call the function, you will enter mode 1.
771If you press the PM3 button one time, you will enter mode 2.
772If you press the PM3 button a second time, you will exit the function.
773
774DESCRIPTION OF MODE 1:
775This mode just listens for an external reader field and lights up green
776for HF and/or red for LF. This is the original mode of the detectreader
777function.
778
779DESCRIPTION OF MODE 2:
780This mode will visually represent, using the LEDs, the actual strength of the
781current compared to the maximum current detected. Basically, once you know
782what kind of external reader is present, it will help you spot the best location to place
783your antenna. You will probably not get some good results if there is a LF and a HF reader
784at the same place! :-)
785
786LIGHT SCHEME USED:
787*/
788static const char LIGHT_SCHEME[] = {
789 0x0, /* ---- | No field detected */
790 0x1, /* X--- | 14% of maximum current detected */
791 0x2, /* -X-- | 29% of maximum current detected */
792 0x4, /* --X- | 43% of maximum current detected */
793 0x8, /* ---X | 57% of maximum current detected */
794 0xC, /* --XX | 71% of maximum current detected */
795 0xE, /* -XXX | 86% of maximum current detected */
796 0xF, /* XXXX | 100% of maximum current detected */
797};
798static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
799
da198be4 800void ListenReaderField(int limit) {
3b692427 801#define LF_ONLY 1
802#define HF_ONLY 2
803#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
804
da198be4 805 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
806 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
807 int mode=1, display_val, display_max, i;
3b692427 808
809 // switch off FPGA - we don't want to measure our own signal
810 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
811 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 812
813 LEDsoff();
814
3b692427 815 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 816
817 if(limit != HF_ONLY) {
3b692427 818 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 819 lf_baseline = lf_av;
820 }
821
3b692427 822 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 823
824 if (limit != LF_ONLY) {
3b692427 825 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 826 hf_baseline = hf_av;
827 }
828
829 for(;;) {
830 if (BUTTON_PRESS()) {
831 SpinDelay(500);
832 switch (mode) {
833 case 1:
834 mode=2;
835 DbpString("Signal Strength Mode");
836 break;
837 case 2:
838 default:
839 DbpString("Stopped");
840 LEDsoff();
841 return;
842 break;
843 }
844 }
845 WDT_HIT();
846
847 if (limit != HF_ONLY) {
3b692427 848 if(mode == 1) {
f2c2b174 849 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
3b692427 850 LED_D_ON();
851 else
852 LED_D_OFF();
15c4dc5a 853 }
e30c654b 854
3b692427 855 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 856 // see if there's a significant change
f2c2b174 857 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
3b692427 858 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 859 lf_av = lf_av_new;
860 if (lf_av > lf_max)
861 lf_max = lf_av;
15c4dc5a 862 }
863 }
864
865 if (limit != LF_ONLY) {
866 if (mode == 1){
f2c2b174 867 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
3b692427 868 LED_B_ON();
869 else
870 LED_B_OFF();
15c4dc5a 871 }
e30c654b 872
3b692427 873 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 874 // see if there's a significant change
f2c2b174 875 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
3b692427 876 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 877 hf_av = hf_av_new;
878 if (hf_av > hf_max)
879 hf_max = hf_av;
15c4dc5a 880 }
881 }
e30c654b 882
15c4dc5a 883 if(mode == 2) {
884 if (limit == LF_ONLY) {
885 display_val = lf_av;
886 display_max = lf_max;
887 } else if (limit == HF_ONLY) {
888 display_val = hf_av;
889 display_max = hf_max;
890 } else { /* Pick one at random */
891 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
892 display_val = hf_av;
893 display_max = hf_max;
894 } else {
895 display_val = lf_av;
896 display_max = lf_max;
897 }
898 }
899 for (i=0; i<LIGHT_LEN; i++) {
900 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
901 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
902 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
903 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
904 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
905 break;
906 }
907 }
908 }
909 }
910}
911
f7e3ed82 912void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 913{
914 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 915
f121b478 916 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902cb3c0 917
15c4dc5a 918 switch(c->cmd) {
919#ifdef WITH_LF
31abe49f
MHS
920 case CMD_SET_LF_SAMPLING_CONFIG:
921 setSamplingConfig((sample_config *) c->d.asBytes);
922 break;
15c4dc5a 923 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1c8fbeb9 924 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 925 break;
15c4dc5a 926 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
d0724780 927 ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
15c4dc5a 928 break;
b014c96d 929 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 930 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 931 break;
7e67e42f 932 case CMD_HID_DEMOD_FSK:
a501c82b 933 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 934 break;
935 case CMD_HID_SIM_TAG:
a501c82b 936 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 937 break;
abd6112f 938 case CMD_FSK_SIM_TAG:
939 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
940 break;
941 case CMD_ASK_SIM_TAG:
942 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
943 break;
872e3d4d 944 case CMD_PSK_SIM_TAG:
945 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
946 break;
a501c82b 947 case CMD_HID_CLONE_TAG:
1c611bbd 948 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 949 break;
a1f3bb12 950 case CMD_IO_DEMOD_FSK:
a501c82b 951 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 952 break;
a501c82b 953 case CMD_IO_CLONE_TAG:
94422fa2 954 CopyIOtoT55x7(c->arg[0], c->arg[1]);
a1f3bb12 955 break;
6ff6ade2 956 case CMD_EM410X_DEMOD:
957 CmdEM410xdemod(c->arg[0], 0, 0, 1);
958 break;
2d4eae76 959 case CMD_EM410X_WRITE_TAG:
960 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
961 break;
7e67e42f 962 case CMD_READ_TI_TYPE:
963 ReadTItag();
964 break;
965 case CMD_WRITE_TI_TYPE:
966 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
967 break;
968 case CMD_SIMULATE_TAG_125K:
f121b478 969 LED_A_ON();
74daee24 970 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
971 LED_A_OFF();
7e67e42f 972 break;
973 case CMD_LF_SIMULATE_BIDIR:
974 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
975 break;
a501c82b 976 case CMD_INDALA_CLONE_TAG:
2414f978 977 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
978 break;
a501c82b 979 case CMD_INDALA_CLONE_TAG_L:
2414f978 980 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
981 break;
1c611bbd 982 case CMD_T55XX_READ_BLOCK:
9276e859 983 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 984 break;
985 case CMD_T55XX_WRITE_BLOCK:
986 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
987 break;
9276e859 988 case CMD_T55XX_WAKEUP:
989 T55xxWakeUp(c->arg[0]);
990 break;
94422fa2 991 case CMD_T55XX_RESET_READ:
992 T55xxResetRead();
993 break;
a501c82b 994 case CMD_PCF7931_READ:
1c611bbd 995 ReadPCF7931();
1c611bbd 996 break;
e98572a1 997 case CMD_PCF7931_WRITE:
ac2df346 998 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
e98572a1 999 break;
1c611bbd 1000 case CMD_EM4X_READ_WORD:
1001 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
1002 break;
1003 case CMD_EM4X_WRITE_WORD:
1004 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1005 break;
db25599d 1006 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1007 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
70459879 1008 break;
0de8e387 1009 case CMD_VIKING_CLONE_TAG:
a126332a 1010 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
0de8e387 1011 break;
15c4dc5a 1012#endif
1013
d19929cb 1014#ifdef WITH_HITAG
1015 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1016 SnoopHitag(c->arg[0]);
1017 break;
1018 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1019 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1020 break;
1021 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1022 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1023 break;
0db11b71 1024 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1025 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1026 break;
1027 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1028 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1029 break;
6fc68747 1030 case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
0db11b71 1031 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1032 break;
6fc68747 1033 case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
0db11b71 1034 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1035 break;
d19929cb 1036#endif
f168b263 1037
15c4dc5a 1038#ifdef WITH_ISO15693
1039 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1040 AcquireRawAdcSamplesIso15693();
1041 break;
9455b51c 1042 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1043 RecordRawAdcSamplesIso15693();
1044 break;
9455b51c 1045 case CMD_ISO_15693_COMMAND:
1046 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1047 break;
9455b51c 1048 case CMD_ISO_15693_FIND_AFI:
1049 BruteforceIso15693Afi(c->arg[0]);
1050 break;
9455b51c 1051 case CMD_ISO_15693_DEBUG:
1052 SetDebugIso15693(c->arg[0]);
1053 break;
15c4dc5a 1054 case CMD_READER_ISO_15693:
1055 ReaderIso15693(c->arg[0]);
1056 break;
7e67e42f 1057 case CMD_SIMTAG_ISO_15693:
3649b640 1058 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 1059 break;
15c4dc5a 1060#endif
1061
7e67e42f 1062#ifdef WITH_LEGICRF
1063 case CMD_SIMULATE_TAG_LEGIC_RF:
1064 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1065 break;
7e67e42f 1066 case CMD_WRITER_LEGIC_RF:
0e8cabed 1067 LegicRfWriter( c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
3e134b4c 1068 break;
15c4dc5a 1069 case CMD_READER_LEGIC_RF:
f121b478 1070 LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
0e8cabed 1071 break;
3e750be3 1072 case CMD_LEGIC_INFO:
1073 LegicRfInfo();
1074 break;
0e8cabed 1075 case CMD_LEGIC_ESET:
1076 LegicEMemSet(c->arg[0], c->arg[1], c->d.asBytes);
1077 break;
15c4dc5a 1078#endif
1079
1080#ifdef WITH_ISO14443b
6fc68747 1081 case CMD_READ_SRI_TAG:
1082 ReadSTMemoryIso14443b(c->arg[0]);
7e67e42f 1083 break;
22e24700 1084 case CMD_SNOOP_ISO_14443B:
abb21530 1085 SnoopIso14443b();
7e67e42f 1086 break;
22e24700 1087 case CMD_SIMULATE_TAG_ISO_14443B:
dccddaef 1088 SimulateIso14443bTag(c->arg[0]);
7e67e42f 1089 break;
7cf3ef20 1090 case CMD_ISO_14443B_COMMAND:
6fc68747 1091 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1092 SendRawCommand14443B_Ex(c);
7cf3ef20 1093 break;
15c4dc5a 1094#endif
1095
1096#ifdef WITH_ISO14443a
7e67e42f 1097 case CMD_SNOOP_ISO_14443a:
4d2e4eea 1098 SniffIso14443a(c->arg[0]);
7e67e42f 1099 break;
15c4dc5a 1100 case CMD_READER_ISO_14443a:
902cb3c0 1101 ReaderIso14443a(c);
15c4dc5a 1102 break;
7e67e42f 1103 case CMD_SIMULATE_TAG_ISO_14443a:
0db6ed9a 1104 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 1105 break;
5acd09bd 1106 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 1107 EPA_PACE_Collect_Nonce(c);
5acd09bd 1108 break;
d0f3338e 1109 case CMD_EPA_PACE_REPLAY:
1110 EPA_PACE_Replay(c);
1111 break;
15c4dc5a 1112 case CMD_READER_MIFARE:
df007486 1113 ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
15c4dc5a 1114 break;
20f9a2a1
M
1115 case CMD_MIFARE_READBL:
1116 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1117 break;
981bd429 1118 case CMD_MIFAREU_READBL:
aa60d156 1119 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1120 break;
4d2e4eea 1121 case CMD_MIFAREUC_AUTH:
1122 MifareUC_Auth(c->arg[0],c->d.asBytes);
f38a1528 1123 break;
981bd429 1124 case CMD_MIFAREU_READCARD:
74daee24 1125 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1126 break;
aa60d156 1127 case CMD_MIFAREUC_SETPWD:
1128 MifareUSetPwd(c->arg[0], c->d.asBytes);
117d9ec2 1129 break;
20f9a2a1
M
1130 case CMD_MIFARE_READSC:
1131 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1132 break;
1133 case CMD_MIFARE_WRITEBL:
1134 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1135 break;
95aeb706 1136 //case CMD_MIFAREU_WRITEBL_COMPAT:
1137 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1138 //break;
981bd429 1139 case CMD_MIFAREU_WRITEBL:
95aeb706 1140 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
aa60d156 1141 break;
c188b1b9 1142 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1143 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1144 break;
20f9a2a1
M
1145 case CMD_MIFARE_NESTED:
1146 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1147 break;
1148 case CMD_MIFARE_CHKKEYS:
1149 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1150 break;
1151 case CMD_SIMULATE_MIFARE_CARD:
1152 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1153 break;
8556b852
M
1154
1155 // emulator
1156 case CMD_MIFARE_SET_DBGMODE:
1157 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1158 break;
1159 case CMD_MIFARE_EML_MEMCLR:
1160 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1161 break;
1162 case CMD_MIFARE_EML_MEMSET:
1163 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1164 break;
1165 case CMD_MIFARE_EML_MEMGET:
1166 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1167 break;
1168 case CMD_MIFARE_EML_CARDLOAD:
1169 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1170 break;
1171
1172 // Work with "magic Chinese" card
d52e4e88 1173 case CMD_MIFARE_CSETBLOCK:
c2731f37 1174 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
545a1f38 1175 break;
d52e4e88 1176 case CMD_MIFARE_CGETBLOCK:
c2731f37 1177 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
8556b852 1178 break;
d52e4e88 1179 case CMD_MIFARE_CIDENT:
1180 MifareCIdent();
1181 break;
b62a5a84
M
1182
1183 // mifare sniffer
1184 case CMD_MIFARE_SNIFFER:
5cd9ec01 1185 SniffMifare(c->arg[0]);
b62a5a84 1186 break;
313ee67e 1187
aa60d156 1188 //mifare desfire
1189 case CMD_MIFARE_DESFIRE_READBL: break;
1190 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1191 case CMD_MIFARE_DESFIRE_AUTH1:
1192 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1193 break;
1194 case CMD_MIFARE_DESFIRE_AUTH2:
1195 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1196 break;
1197 case CMD_MIFARE_DES_READER:
1198 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1199 break;
1200 case CMD_MIFARE_DESFIRE_INFO:
1201 MifareDesfireGetInformation();
1202 break;
1203 case CMD_MIFARE_DESFIRE:
1204 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1205 break;
add0504d 1206 case CMD_MIFARE_COLLECT_NONCES:
add0504d 1207 break;
20f9a2a1 1208#endif
810f5379 1209#ifdef WITH_EMV
1210 case CMD_EMV_TRANSACTION:
1211 EMVTransaction();
1212 break;
1213 case CMD_EMV_GET_RANDOM_NUM:
1214 //EMVgetUDOL();
1215 break;
1216 case CMD_EMV_LOAD_VALUE:
1217 EMVloadvalue(c->arg[0], c->d.asBytes);
1218 break;
1219 case CMD_EMV_DUMP_CARD:
1220 EMVdumpcard();
1221#endif
7e67e42f 1222#ifdef WITH_ICLASS
cee5a30d 1223 // Makes use of ISO14443a FPGA Firmware
1224 case CMD_SNOOP_ICLASS:
1225 SnoopIClass();
1226 break;
1e262141 1227 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1228 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1229 break;
1230 case CMD_READER_ICLASS:
1231 ReaderIClass(c->arg[0]);
1232 break;
f38a1528 1233 case CMD_READER_ICLASS_REPLAY:
f62b5e12 1234 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
f38a1528 1235 break;
0e8cabed 1236 case CMD_ICLASS_EML_MEMSET:
e80aeb96
MHS
1237 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1238 break;
e98572a1 1239 case CMD_ICLASS_WRITEBLOCK:
1240 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1241 break;
1242 case CMD_ICLASS_READCHECK: // auth step 1
1243 iClass_ReadCheck(c->arg[0], c->arg[1]);
1244 break;
1245 case CMD_ICLASS_READBLOCK:
1246 iClass_ReadBlk(c->arg[0]);
1247 break;
1248 case CMD_ICLASS_AUTHENTICATION: //check
1249 iClass_Authentication(c->d.asBytes);
1250 break;
1251 case CMD_ICLASS_DUMP:
1252 iClass_Dump(c->arg[0], c->arg[1]);
1253 break;
1254 case CMD_ICLASS_CLONE:
1255 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1256 break;
cee5a30d 1257#endif
1d0ccbe0 1258#ifdef WITH_HFSNOOP
1259 case CMD_HF_SNIFFER:
1260 HfSnoop(c->arg[0], c->arg[1]);
1261 break;
1262#endif
cee5a30d 1263
7e67e42f 1264 case CMD_BUFF_CLEAR:
117d9ec2 1265 BigBuf_Clear();
15c4dc5a 1266 break;
15c4dc5a 1267
1268 case CMD_MEASURE_ANTENNA_TUNING:
1269 MeasureAntennaTuning();
1270 break;
1271
1272 case CMD_MEASURE_ANTENNA_TUNING_HF:
1273 MeasureAntennaTuningHf();
1274 break;
1275
1276 case CMD_LISTEN_READER_FIELD:
1277 ListenReaderField(c->arg[0]);
1278 break;
1279
15c4dc5a 1280 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1281 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1282 SpinDelay(200);
1283 LED_D_OFF(); // LED D indicates field ON or OFF
1284 break;
1285
aaa1a9a2 1286 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
1c611bbd 1287 LED_B_ON();
117d9ec2 1288 uint8_t *BigBuf = BigBuf_get_addr();
0de8e387 1289 size_t len = 0;
f1333898 1290 size_t startidx = c->arg[0];
1291 uint8_t isok = FALSE;
81b7e894 1292 // arg0 = startindex
1293 // arg1 = length bytes to transfer
1294 // arg2 = RFU
1295 //Dbprintf("transfer to client parameters: %llu | %llu | %llu", c->arg[0], c->arg[1], c->arg[2]);
1296
f1333898 1297 for(size_t i = 0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
81b7e894 1298 len = MIN( (c->arg[1] - i), USB_CMD_DATA_SIZE);
f1333898 1299 isok = cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, i, len, BigBuf_get_traceLen(), BigBuf + startidx + i, len);
1300 if (!isok)
1301 Dbprintf("transfer to client failed :: | bytes %d", len);
1c611bbd 1302 }
1303 // Trigger a finish downloading signal with an ACK frame
f1333898 1304 cmd_send(CMD_ACK, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config));
d3b1f4e4 1305 LED_B_OFF();
1c611bbd 1306 break;
aaa1a9a2 1307 }
15c4dc5a 1308 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
8fd25db3 1309 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
81b7e894 1310 // to be able to use this one for uploading data to device
1311 // arg1 = 0 upload for LF usage
1312 // 1 upload for HF usage
8fd25db3 1313 if ( c->arg[1] == 0 )
1314 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1315 else
1316 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
117d9ec2 1317 uint8_t *b = BigBuf_get_addr();
aaa1a9a2 1318 memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
aed36ae5 1319 cmd_send(CMD_ACK,1,0,0,0,0);
1c611bbd 1320 break;
aaa1a9a2 1321 }
1322 case CMD_DOWNLOAD_EML_BIGBUF: {
1323 LED_B_ON();
1324 uint8_t *cardmem = BigBuf_get_EM_addr();
1325 size_t len = 0;
1326 for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1327 len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE);
1328 cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len);
1329 }
1330 // Trigger a finish downloading signal with an ACK frame
1331 cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0);
1332 LED_B_OFF();
1333 break;
1334 }
15c4dc5a 1335 case CMD_READ_MEM:
1336 ReadMem(c->arg[0]);
1337 break;
1338
1339 case CMD_SET_LF_DIVISOR:
7cc204bf 1340 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1341 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1342 break;
1343
1344 case CMD_SET_ADC_MUX:
1345 switch(c->arg[0]) {
1346 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1347 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1348 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1349 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1350 }
1351 break;
1352
1353 case CMD_VERSION:
1354 SendVersion();
1355 break;
7838f4be 1356 case CMD_STATUS:
0de8e387 1357 SendStatus();
7838f4be 1358 break;
1359 case CMD_PING:
1360 cmd_send(CMD_ACK,0,0,0,0,0);
1361 break;
15c4dc5a 1362#ifdef WITH_LCD
1363 case CMD_LCD_RESET:
1364 LCDReset();
1365 break;
1366 case CMD_LCD:
1367 LCDSend(c->arg[0]);
1368 break;
1369#endif
1370 case CMD_SETUP_WRITE:
1371 case CMD_FINISH_WRITE:
1c611bbd 1372 case CMD_HARDWARE_RESET:
1373 usb_disable();
f62b5e12 1374 SpinDelay(2000);
15c4dc5a 1375 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1376 for(;;) {
1377 // We're going to reset, and the bootrom will take control.
1378 }
1c611bbd 1379 break;
15c4dc5a 1380
1c611bbd 1381 case CMD_START_FLASH:
15c4dc5a 1382 if(common_area.flags.bootrom_present) {
1383 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1384 }
1c611bbd 1385 usb_disable();
15c4dc5a 1386 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1387 for(;;);
1c611bbd 1388 break;
e30c654b 1389
15c4dc5a 1390 case CMD_DEVICE_INFO: {
902cb3c0 1391 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1392 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1393 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1394 break;
1395 }
1396 default:
15c4dc5a 1397 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1398 break;
15c4dc5a 1399 }
1400}
1401
1402void __attribute__((noreturn)) AppMain(void)
1403{
1404 SpinDelay(100);
9e8255d4 1405 clear_trace();
15c4dc5a 1406 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1407 /* Initialize common area */
1408 memset(&common_area, 0, sizeof(common_area));
1409 common_area.magic = COMMON_AREA_MAGIC;
1410 common_area.version = 1;
1411 }
1412 common_area.flags.osimage_present = 1;
1413
f121b478 1414 LEDsoff();
15c4dc5a 1415
b44e5233 1416 // Init USB device
313ee67e 1417 usb_enable();
15c4dc5a 1418
1419 // The FPGA gets its clock from us from PCK0 output, so set that up.
1420 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1421 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1422 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1423 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
f121b478 1424 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
15c4dc5a 1425 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1426
1427 // Reset SPI
1428 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1429 // Reset SSC
1430 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1431
1432 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1433 // (the HF version by default)
1434 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1435
9ca155ba 1436 StartTickCount();
902cb3c0 1437
15c4dc5a 1438#ifdef WITH_LCD
15c4dc5a 1439 LCDInit();
15c4dc5a 1440#endif
1441
f62b5e12 1442 byte_t rx[sizeof(UsbCommand)];
902cb3c0 1443 size_t rx_len;
1444
15c4dc5a 1445 for(;;) {
f121b478 1446 if ( usb_poll_validate_length() ) {
1447 rx_len = usb_read(rx, sizeof(UsbCommand));
1448
da198be4 1449 if (rx_len)
f121b478 1450 UsbPacketReceived(rx, rx_len);
313ee67e 1451 }
15c4dc5a 1452 WDT_HIT();
1453
1454#ifdef WITH_LF
7838f4be 1455#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1456 if (BUTTON_HELD(1000) > 0)
1457 SamyRun();
7838f4be 1458#endif
1459#endif
1460#ifdef WITH_ISO14443a
1461#ifdef WITH_ISO14443a_StandAlone
1462 if (BUTTON_HELD(1000) > 0)
1463 StandAloneMode14a();
1464#endif
15c4dc5a 1465#endif
1466 }
1467}
Impressum, Datenschutz