]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/legicrf.c
FIX: wrong log bytes...
[proxmark3-svn] / armsrc / legicrf.c
CommitLineData
bd20f8f4 1//-----------------------------------------------------------------------------
2// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
9015ae0f 3// 2016 Iceman
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// LEGIC RF simulation code
10//-----------------------------------------------------------------------------
f7e3ed82 11#include "legicrf.h"
8e220a91 12
a7247d85 13static struct legic_frame {
a3994421 14 uint8_t bits;
a2b1414f 15 uint32_t data;
a7247d85 16} current_frame;
8e220a91 17
3612a8a8 18static enum {
19 STATE_DISCON,
20 STATE_IV,
21 STATE_CON,
22} legic_state;
23
24static crc_t legic_crc;
25static int legic_read_count;
26static uint32_t legic_prng_bc;
27static uint32_t legic_prng_iv;
28
29static int legic_phase_drift;
30static int legic_frame_drift;
31static int legic_reqresp_drift;
8e220a91 32
add16a62 33AT91PS_TC timer;
3612a8a8 34AT91PS_TC prng_timer;
add16a62 35
ad5bc8cc 36/*
c71c5ee1 37static void setup_timer(void) {
ad5bc8cc 38 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
39 // this it won't be terribly accurate but should be good enough.
40 //
add16a62 41 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
42 timer = AT91C_BASE_TC1;
43 timer->TC_CCR = AT91C_TC_CLKDIS;
0aa4cfc2 44 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
add16a62 45 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
46
ad5bc8cc 47 //
48 // Set up Timer 2 to use for measuring time between frames in
49 // tag simulation mode. Runs 4x faster as Timer 1
50 //
3612a8a8 51 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
52 prng_timer = AT91C_BASE_TC2;
53 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
54 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
55 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
56}
111c6934 57
58 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
59 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
60
61 // fast clock
62 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
63 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
64 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
65 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
66 AT91C_BASE_TC0->TC_RA = 1;
67 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
68
ad5bc8cc 69*/
70
71// At TIMER_CLOCK3 (MCK/32)
22f4dca8 72// testing calculating in (us) microseconds.
111c6934 73#define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
74#define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
76471e5d 75#define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
7a8db2f6 76#define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks
111c6934 77#define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
ad5bc8cc 78
76471e5d 79#define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
add16a62 80
3612a8a8 81#define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
82#define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
83
3612a8a8 84#define OFFSET_LOG 1024
add16a62 85
86#define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
aac23b24 87
ad5bc8cc 88#ifndef SHORT_COIL
9015ae0f 89# define SHORT_COIL LOW(GPIO_SSC_DOUT);
ad5bc8cc 90#endif
91#ifndef OPEN_COIL
b4a6775b 92# define OPEN_COIL HIGH(GPIO_SSC_DOUT);
ad5bc8cc 93#endif
e4a8d1e2 94#ifndef LINE_IN
b8168868 95# define LINE_IN AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
e4a8d1e2 96#endif
111c6934 97// Pause pulse, off in 20us / 30ticks,
98// ONE / ZERO bit pulse,
99// one == 80us / 120ticks
100// zero == 40us / 60ticks
101#ifndef COIL_PULSE
25d52dd2 102# define COIL_PULSE(x) \
103 do { \
76471e5d 104 SHORT_COIL; \
25d52dd2 105 WaitTicks( (RWD_TIME_PAUSE) ); \
76471e5d 106 OPEN_COIL; \
22f4dca8 107 WaitTicks((x)); \
9015ae0f 108 } while (0);
111c6934 109#endif
c71c5ee1 110
111// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
112// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
113#define LEGIC_CARD_MEMSIZE 1024
114static uint8_t* cardmem;
115
faabfafe 116static void frame_append_bit(struct legic_frame * const f, uint8_t bit) {
b4a6775b 117 // Overflow, won't happen
118 if (f->bits >= 31) return;
119
120 f->data |= (bit << f->bits);
121 f->bits++;
122}
123
124static void frame_clean(struct legic_frame * const f) {
125 f->data = 0;
126 f->bits = 0;
127}
128
ad5bc8cc 129// Prng works when waiting in 99.1us cycles.
130// and while sending/receiving in bit frames (100, 60)
b4a6775b 131/*static void CalibratePrng( uint32_t time){
ad5bc8cc 132 // Calculate Cycles based on timer 100us
87342aad 133 uint32_t i = (time - sendFrameStop) / 100 ;
ad5bc8cc 134
135 // substract cycles of finished frames
136 int k = i - legic_prng_count()+1;
137
138 // substract current frame length, rewind to beginning
139 if ( k > 0 )
140 legic_prng_forward(k);
141}
b4a6775b 142*/
ad5bc8cc 143
3612a8a8 144/* Generate Keystream */
22f4dca8 145uint32_t get_key_stream(int skip, int count) {
633d0686 146
c71c5ee1 147 int i;
edaf10af 148
c71c5ee1 149 // Use int to enlarge timer tc to 32bit
edaf10af 150 legic_prng_bc += prng_timer->TC_CV;
c71c5ee1 151
152 // reset the prng timer.
edaf10af 153
154 /* If skip == -1, forward prng time based */
155 if(skip == -1) {
c71c5ee1 156 i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
edaf10af 157 i -= legic_prng_count(); /* substract cycles of finished frames */
c71c5ee1 158 i -= count; /* substract current frame length, rewind to beginning */
edaf10af 159 legic_prng_forward(i);
160 } else {
161 legic_prng_forward(skip);
162 }
163
edaf10af 164 i = (count == 6) ? -1 : legic_read_count;
165
edaf10af 166 /* Generate KeyStream */
633d0686 167 return legic_prng_get_bits(count);
3612a8a8 168}
169
170/* Send a frame in tag mode, the FPGA must have been set up by
171 * LegicRfSimulate
172 */
633d0686 173void frame_send_tag(uint16_t response, uint8_t bits) {
174
175 uint16_t mask = 1;
176
ad5bc8cc 177 /* Bitbang the response */
633d0686 178 SHORT_COIL;
ad5bc8cc 179 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
180 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
3612a8a8 181
633d0686 182 /* TAG_FRAME_WAIT -> shift by 2 */
183 legic_prng_forward(2);
184 response ^= legic_prng_get_bits(bits);
c71c5ee1 185
ad5bc8cc 186 /* Wait for the frame start */
633d0686 187 WaitTicks( TAG_FRAME_WAIT );
8e220a91 188
633d0686 189 for (; mask < BITMASK(bits); mask <<= 1) {
00271f77 190 if (response & mask)
b1cd7d5c 191 OPEN_COIL
edaf10af 192 else
b1cd7d5c 193 SHORT_COIL
633d0686 194 WaitTicks(TAG_BIT_PERIOD);
ad5bc8cc 195 }
633d0686 196 SHORT_COIL;
ad5bc8cc 197}
c71c5ee1 198
ad5bc8cc 199/* Send a frame in reader mode, the FPGA must have been set up by
200 * LegicRfReader
201 */
22f4dca8 202void frame_sendAsReader(uint32_t data, uint8_t bits){
c71c5ee1 203
b8168868 204 uint32_t starttime = GET_TICKS, send = 0, mask = 1;
111c6934 205
206 // xor lsfr onto data.
207 send = data ^ legic_prng_get_bits(bits);
ad5bc8cc 208
209 for (; mask < BITMASK(bits); mask <<= 1) {
fabef615 210 if (send & mask)
9015ae0f 211 COIL_PULSE(RWD_TIME_1)
fabef615 212 else
9015ae0f 213 COIL_PULSE(RWD_TIME_0)
dcc10e5e 214 }
e30c654b 215
76471e5d 216 // Final pause to mark the end of the frame
76471e5d 217 COIL_PULSE(0);
b4a6775b 218
fabef615 219 // log
e4d57949 220 uint8_t cmdbytes[] = {bits, BYTEx(data,0), BYTEx(data,1), BYTEx(data,2) , BYTEx(send,0), BYTEx(send,1)};
fabef615 221 LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE);
dcc10e5e 222}
223
224/* Receive a frame from the card in reader emulation mode, the FPGA and
ad5bc8cc 225 * timer must have been set up by LegicRfReader and frame_sendAsReader.
e30c654b 226 *
dcc10e5e 227 * The LEGIC RF protocol from card to reader does not include explicit
228 * frame start/stop information or length information. The reader must
229 * know beforehand how many bits it wants to receive. (Notably: a card
230 * sending a stream of 0-bits is indistinguishable from no card present.)
e30c654b 231 *
dcc10e5e 232 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
233 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
234 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
235 * for edges. Count the edges in each bit interval. If they are approximately
236 * 0 this was a 0-bit, if they are approximately equal to the number of edges
237 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
ad5bc8cc 238 * timer that's still running from frame_sendAsReader in order to get a synchronization
dcc10e5e 239 * with the frame that we just sent.
e30c654b 240 *
241 * FIXME: Because we're relying on the hysteresis to just do the right thing
dcc10e5e 242 * the range is severely reduced (and you'll probably also need a good antenna).
e30c654b 243 * So this should be fixed some time in the future for a proper receiver.
dcc10e5e 244 */
111c6934 245static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
ad5bc8cc 246
22f4dca8 247 if ( bits > 32 ) return;
3612a8a8 248
22f4dca8 249 uint8_t i = bits, edges = 0;
d7e24e7c 250 uint32_t the_bit = 1, next_bit_at = 0, data = 0;
fabef615 251 uint32_t old_level = 0;
252 volatile uint32_t level = 0;
25d52dd2 253
fabef615 254 frame_clean(f);
e4a8d1e2 255
faabfafe 256 // calibrate the prng.
b4a6775b 257 legic_prng_forward(2);
c649c433 258 data = legic_prng_get_bits(bits);
b4a6775b 259
b4a6775b 260 //FIXED time between sending frame and now listening frame. 330us
111c6934 261 uint32_t starttime = GET_TICKS;
0b0b182f 262 // its about 9+9 ticks delay from end-send to here.
0b0b182f 263 WaitTicks( 477 );
faabfafe 264
c649c433 265 next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
25d52dd2 266
22f4dca8 267 while ( i-- ){
dcc10e5e 268 edges = 0;
111c6934 269 while ( GET_TICKS < next_bit_at) {
ad5bc8cc 270
b4a6775b 271 level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
ad5bc8cc 272
273 if (level != old_level)
b4a6775b 274 ++edges;
275
dcc10e5e 276 old_level = level;
25d52dd2 277 }
278
ad5bc8cc 279 next_bit_at += TAG_BIT_PERIOD;
3612a8a8 280
fabef615 281 // We expect 42 edges (ONE)
faabfafe 282 if ( edges > 20 )
8e220a91 283 data ^= the_bit;
87342aad 284
285 the_bit <<= 1;
dcc10e5e 286 }
e30c654b 287
b4a6775b 288 // output
dcc10e5e 289 f->data = data;
290 f->bits = bits;
db44e049 291
fabef615 292 // log
cb7902cd 293 uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
faabfafe 294 LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
a7247d85 295}
296
c71c5ee1 297// Setup pm3 as a Legic Reader
87342aad 298static uint32_t setup_phase_reader(uint8_t iv) {
22f4dca8 299
f7b42573 300 // Switch on carrier and let the tag charge for 1ms
ad5bc8cc 301 HIGH(GPIO_SSC_DOUT);
77a689db 302 WaitUS(5000);
ad5bc8cc 303
22f4dca8 304 ResetTicks();
ad5bc8cc 305
f7b42573 306 // no keystream yet
c71c5ee1 307 legic_prng_init(0);
f7b42573 308
ad5bc8cc 309 // send IV handshake
310 frame_sendAsReader(iv, 7);
311
312 // Now both tag and reader has same IV. Prng can start.
3612a8a8 313 legic_prng_init(iv);
e30c654b 314
111c6934 315 frame_receiveAsReader(&current_frame, 6);
f7b42573 316
d7e24e7c 317 // 292us (438t) - fixed delay before sending ack.
318 // minus log and stuff 100tick?
319 WaitTicks(338);
320 legic_prng_forward(3);
ad5bc8cc 321
f7b42573 322 // Send obsfuscated acknowledgment frame.
ad5bc8cc 323 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
324 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
325 switch ( current_frame.data ) {
87342aad 326 case 0x0D: frame_sendAsReader(0x19, 6); break;
327 case 0x1D:
328 case 0x3D: frame_sendAsReader(0x39, 6); break;
329 default: break;
f7b42573 330 }
d7e24e7c 331
332 legic_prng_forward(2);
8e220a91 333 return current_frame.data;
2561caa2 334}
335
22f4dca8 336static void LegicCommonInit(void) {
337
7cc204bf 338 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
b4a6775b 339 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
dcc10e5e 340 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 341
dcc10e5e 342 /* Bitbang the transmitter */
b8168868 343 SHORT_COIL;
dcc10e5e 344 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
345 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
b8168868 346 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
347
c71c5ee1 348 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
0b0b182f 349 cardmem = BigBuf_get_EM_addr();
c71c5ee1 350 memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
351
352 clear_trace();
353 set_tracing(TRUE);
8e220a91 354 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
ad5bc8cc 355
22f4dca8 356 StartTicks();
8e220a91 357}
358
111c6934 359// Switch off carrier, make sure tag is reset
c71c5ee1 360static void switch_off_tag_rwd(void) {
b8168868 361 SHORT_COIL;
3e750be3 362 WaitUS(20);
8e220a91 363 WDT_HIT();
364}
c71c5ee1 365
f7b42573 366// calculate crc4 for a legic READ command
fabef615 367static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
ad5bc8cc 368 crc_clear(&legic_crc);
fabef615 369 uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd;
cb7902cd 370 crc_update(&legic_crc, temp, cmd_sz + 8 );
8e220a91 371 return crc_finish(&legic_crc);
372}
373
fabef615 374int legic_read_byte( uint16_t index, uint8_t cmd_sz) {
8e220a91 375
fabef615 376 uint8_t byte, crc, calcCrc = 0;
377 uint32_t cmd = (index << 1) | LEGIC_READ;
635d6e9b 378
379 // 90ticks = 60us (should be 100us but crc calc takes time.)
380 //WaitTicks(330); // 330ticks prng(4) - works
381 WaitTicks(240); // 240ticks prng(3) - works
3e750be3 382
ad5bc8cc 383 frame_sendAsReader(cmd, cmd_sz);
111c6934 384 frame_receiveAsReader(&current_frame, 12);
c71c5ee1 385
c649c433 386 // CRC check.
111c6934 387 byte = BYTEx(current_frame.data, 0);
cb7902cd 388 crc = BYTEx(current_frame.data, 1);
fabef615 389 calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz);
65c2d21d 390
cb7902cd 391 if( calcCrc != crc ) {
b8168868 392 Dbprintf("!!! crc mismatch: %x != %x !!!", calcCrc, crc);
cb7902cd 393 return -1;
394 }
d7e24e7c 395
c15e07f1 396 legic_prng_forward(3);
8e220a91 397 return byte;
398}
399
c71c5ee1 400/*
401 * - assemble a write_cmd_frame with crc and send it
402 * - wait until the tag sends back an ACK ('1' bit unencrypted)
403 * - forward the prng based on the timing
8e220a91 404 */
b8168868 405bool legic_write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) {
406
407 bool isOK = false;
408 uint8_t i = 80, edges = 0;
409 uint8_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd;
410 uint32_t steps = 0, next_bit_at, start, crc, old_level = 0;
c71c5ee1 411
b8168868 412 /*
3612a8a8 413 crc_clear(&legic_crc);
b8168868 414 crc_update(&legic_crc, 0, 1); // CMD_WRITE
0e8cabed 415 crc_update(&legic_crc, index, addr_sz);
3612a8a8 416 crc_update(&legic_crc, byte, 8);
3612a8a8 417 uint32_t crc = crc_finish(&legic_crc);
f0fa6638 418 */
b8168868 419 crc = legic4Crc(LEGIC_WRITE, index, byte, addr_sz+1);
420
c71c5ee1 421 // send write command
b8168868 422 uint32_t cmd;
423 cmd = ((crc & 0xF ) << (addr_sz+1+8)); // CRC
424 cmd |= byte << (addr_sz+1); // Data
425 cmd |= ((index & 0xFF) << 1); // index
426 cmd |= LEGIC_WRITE; // CMD
427
428 /* Bitbang the response */
429 SHORT_COIL;
430 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
c71c5ee1 431
7bc3c99e 432 WaitTicks(330);
c71c5ee1 433
ad5bc8cc 434 frame_sendAsReader(cmd, cmd_sz);
b8168868 435
e4a8d1e2 436 LINE_IN;
3612a8a8 437
b8168868 438 start = GET_TICKS;
3e134b4c 439
b8168868 440 // ACK, - one single "1" bit after 3.6ms
441 // 3.6ms = 3600us * 1.5 = 5400ticks.
442 WaitTicks(5000);
443 //WaitTicks(330);
27c4a862 444
b8168868 445 next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
446
447 while ( i-- ) {
448 WDT_HIT();
3612a8a8 449 edges = 0;
27c4a862 450 while ( GET_TICKS < next_bit_at) {
b8168868 451
0b0b182f 452 volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
b8168868 453
454 if (level != old_level)
455 ++edges;
111c6934 456
3612a8a8 457 old_level = level;
458 }
b8168868 459
460 next_bit_at += TAG_BIT_PERIOD;
461
462 // We expect 42 edges (ONE)
0e8cabed 463 if(edges > 20 ) {
b8168868 464 steps = ( (GET_TICKS - start) / TAG_BIT_PERIOD);
465 legic_prng_forward(steps);
466 isOK = true;
467 goto OUT;
3612a8a8 468 }
469 }
c71c5ee1 470
b8168868 471OUT: ;
472 // log
473 uint8_t cmdbytes[] = {cmd_sz, isOK, BYTEx(steps, 0), BYTEx(steps, 1) };
474 LogTrace(cmdbytes, sizeof(cmdbytes), start, GET_TICKS, NULL, FALSE);
475 return isOK;
3612a8a8 476}
8e220a91 477
fabef615 478int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
3e134b4c 479
fabef615 480 uint16_t i = 0;
a3994421 481 uint8_t isOK = 1;
482 legic_card_select_t card;
483
8e220a91 484 LegicCommonInit();
faabfafe 485
fabef615 486 if ( legic_select_card_iv(&card, iv) ) {
a3994421 487 isOK = 0;
488 goto OUT;
489 }
cb7902cd 490
fabef615 491 if (len + offset >= card.cardsize)
492 len = card.cardsize - offset;
a2b1414f 493
3612a8a8 494 LED_B_ON();
c15e07f1 495 while (i < len) {
fabef615 496 int r = legic_read_byte(offset + i, card.cmdsize);
ad5bc8cc 497
498 if (r == -1 || BUTTON_PRESS()) {
fabef615 499 if ( MF_DBGLEVEL >= 2) DbpString("operation aborted");
87342aad 500 isOK = 0;
501 goto OUT;
a2b1414f 502 }
fabef615 503 cardmem[i++] = r;
3612a8a8 504 WDT_HIT();
2561caa2 505 }
c71c5ee1 506
87342aad 507OUT:
faabfafe 508 WDT_HIT();
3612a8a8 509 switch_off_tag_rwd();
c71c5ee1 510 LEDsoff();
86087eba 511 cmd_send(CMD_ACK, isOK, len, 0, cardmem, len);
3612a8a8 512 return 0;
513}
514
0e8cabed 515void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
117d9ec2 516
f0fa6638 517 #define LOWERLIMIT 4
fabef615 518 uint8_t isOK = 1;
f0fa6638 519 legic_card_select_t card;
0e8cabed 520
f0fa6638 521 // uid NOT is writeable.
522 if ( offset <= LOWERLIMIT ) {
0e8cabed 523 isOK = 0;
524 goto OUT;
525 }
526
fabef615 527 LegicCommonInit();
c71c5ee1 528
fabef615 529 if ( legic_select_card_iv(&card, iv) ) {
530 isOK = 0;
531 goto OUT;
532 }
c71c5ee1 533
f0fa6638 534 if ( len + offset + LOWERLIMIT >= card.cardsize) {
535 isOK = 0;
536 goto OUT;
537 }
0e8cabed 538
539 LED_B_ON();
f0fa6638 540 while( len > 0 ) {
b8168868 541
542 if ( !legic_write_byte( len + offset + LOWERLIMIT, data[len-1], card.addrsize) ) {
543 Dbprintf("operation failed @ 0x%03.3x", len-1);
fabef615 544 isOK = 0;
545 goto OUT;
3612a8a8 546 }
f0fa6638 547 --len;
0e8cabed 548 WDT_HIT();
3e134b4c 549 }
fabef615 550OUT:
551 cmd_send(CMD_ACK, isOK, 0,0,0,0);
552 switch_off_tag_rwd();
553 LEDsoff();
3e134b4c 554}
555
fabef615 556int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){
3e750be3 557
a3994421 558 if ( p_card == NULL ) return 1;
3e750be3 559
fabef615 560 p_card->tagtype = setup_phase_reader(iv);
a3994421 561
562 switch(p_card->tagtype) {
3e750be3 563 case 0x0d:
a3994421 564 p_card->cmdsize = 6;
fabef615 565 p_card->addrsize = 5;
a3994421 566 p_card->cardsize = 22;
3e750be3 567 break;
568 case 0x1d:
a3994421 569 p_card->cmdsize = 9;
fabef615 570 p_card->addrsize = 8;
a3994421 571 p_card->cardsize = 256;
3e750be3 572 break;
573 case 0x3d:
a3994421 574 p_card->cmdsize = 11;
fabef615 575 p_card->addrsize = 10;
a3994421 576 p_card->cardsize = 1024;
3e750be3 577 break;
578 default:
a3994421 579 p_card->cmdsize = 0;
fabef615 580 p_card->addrsize = 0;
a3994421 581 p_card->cardsize = 0;
582 return 2;
a3994421 583 }
584 return 0;
585}
fabef615 586int legic_select_card(legic_card_select_t *p_card){
587 return legic_select_card_iv(p_card, 0x01);
588}
a3994421 589
0e8cabed 590//-----------------------------------------------------------------------------
591// Work with emulator memory
592//
593// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
594// involved in dealing with emulator memory. But if it is called later, it might
595// destroy the Emulator Memory.
596//-----------------------------------------------------------------------------
597// arg0 = offset
598// arg1 = num of bytes
599void LegicEMemSet(uint32_t arg0, uint32_t arg1, uint8_t *data) {
600 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
601 legic_emlset_mem(data, arg0, arg1);
602}
603// arg0 = offset
604// arg1 = num of bytes
605void LegicEMemGet(uint32_t arg0, uint32_t arg1) {
606 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
607 uint8_t buf[USB_CMD_DATA_SIZE] = {0x00};
608 legic_emlget_mem(buf, arg0, arg1);
609 LED_B_ON();
610 cmd_send(CMD_ACK, arg0, arg1, 0, buf, USB_CMD_DATA_SIZE);
611 LED_B_OFF();
612}
613void legic_emlset_mem(uint8_t *data, int offset, int numofbytes) {
614 cardmem = BigBuf_get_EM_addr();
615 memcpy(cardmem + offset, data, numofbytes);
616}
617void legic_emlget_mem(uint8_t *data, int offset, int numofbytes) {
618 cardmem = BigBuf_get_EM_addr();
619 memcpy(data, cardmem + offset, numofbytes);
620}
621
a3994421 622void LegicRfInfo(void){
623
0e8cabed 624 int r;
625
a3994421 626 uint8_t buf[sizeof(legic_card_select_t)] = {0x00};
627 legic_card_select_t *card = (legic_card_select_t*) buf;
628
629 LegicCommonInit();
c649c433 630
a3994421 631 if ( legic_select_card(card) ) {
632 cmd_send(CMD_ACK,0,0,0,0,0);
633 goto OUT;
3e750be3 634 }
635
fabef615 636 // read UID bytes
a3994421 637 for ( uint8_t i = 0; i < sizeof(card->uid); ++i) {
0e8cabed 638 r = legic_read_byte(i, card->cmdsize);
3e750be3 639 if ( r == -1 ) {
640 cmd_send(CMD_ACK,0,0,0,0,0);
641 goto OUT;
642 }
a3994421 643 card->uid[i] = r & 0xFF;
3e750be3 644 }
645
0e8cabed 646 // MCC byte.
647 r = legic_read_byte(4, card->cmdsize);
648 uint32_t calc_mcc = CRC8Legic(card->uid, 4);;
649 if ( r != calc_mcc) {
650 cmd_send(CMD_ACK,0,0,0,0,0);
651 goto OUT;
652 }
653
654 // OK
fabef615 655 cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t));
635d6e9b 656
a3994421 657OUT:
3e750be3 658 switch_off_tag_rwd();
659 LEDsoff();
3e750be3 660}
661
c71c5ee1 662/* Handle (whether to respond) a frame in tag mode
663 * Only called when simulating a tag.
664 */
3612a8a8 665static void frame_handle_tag(struct legic_frame const * const f)
666{
e4a8d1e2 667 // log
668 //uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
669 //LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
670
671 cardmem = BigBuf_get_EM_addr();
117d9ec2 672
633d0686 673 /* First Part of Handshake (IV) */
674 if(f->bits == 7) {
675
676 LED_C_ON();
c71c5ee1 677
ad5bc8cc 678 // Reset prng timer
22f4dca8 679 ResetTimer(prng_timer);
633d0686 680
e4a8d1e2 681 // IV from reader.
633d0686 682 legic_prng_init(f->data);
e4a8d1e2 683
684 // We should have three tagtypes with three different answers.
633d0686 685 frame_send_tag(0x3d, 6); /* 0x3d^0x26 = 0x1B */
e4a8d1e2 686
633d0686 687 legic_state = STATE_IV;
688 legic_read_count = 0;
689 legic_prng_bc = 0;
690 legic_prng_iv = f->data;
691
692
22f4dca8 693 ResetTimer(timer);
694 WaitUS(280);
633d0686 695 return;
696 }
3612a8a8 697
698 /* 0x19==??? */
699 if(legic_state == STATE_IV) {
e4a8d1e2 700 uint32_t local_key = get_key_stream(3, 6);
cc708897 701 int xored = 0x39 ^ local_key;
702 if((f->bits == 6) && (f->data == xored)) {
3612a8a8 703 legic_state = STATE_CON;
704
22f4dca8 705 ResetTimer(timer);
706 WaitUS(200);
3612a8a8 707 return;
111c6934 708
709 } else {
3612a8a8 710 legic_state = STATE_DISCON;
711 LED_C_OFF();
cc708897 712 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
3612a8a8 713 return;
714 }
715 }
716
717 /* Read */
718 if(f->bits == 11) {
719 if(legic_state == STATE_CON) {
e4a8d1e2 720 uint32_t key = get_key_stream(2, 11); //legic_phase_drift, 11);
721 uint16_t addr = f->data ^ key;
722 addr >>= 1;
723 uint8_t data = cardmem[addr];
111c6934 724 int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8;
3612a8a8 725
e4a8d1e2 726 legic_read_count++;
3612a8a8 727 legic_prng_forward(legic_reqresp_drift);
728
633d0686 729 frame_send_tag(hash | data, 12);
22f4dca8 730 ResetTimer(timer);
cc708897 731 legic_prng_forward(2);
e4a8d1e2 732 WaitTicks(330);
3612a8a8 733 return;
734 }
735 }
736
737 /* Write */
738 if(f->bits == 23) {
e4a8d1e2 739 uint32_t key = get_key_stream(-1, 23); //legic_frame_drift, 23);
740 uint16_t addr = f->data ^ key;
741 addr >>= 1;
742 addr &= 0x3ff;
743 uint32_t data = f->data ^ key;
744 data >>= 11;
745 data &= 0xff;
746
747 cardmem[addr] = data;
3612a8a8 748 /* write command */
749 legic_state = STATE_DISCON;
750 LED_C_OFF();
751 Dbprintf("write - addr: %x, data: %x", addr, data);
e4a8d1e2 752 // should send a ACK within 3.5ms too
3612a8a8 753 return;
754 }
755
756 if(legic_state != STATE_DISCON) {
757 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
3612a8a8 758 Dbprintf("IV: %03.3x", legic_prng_iv);
3612a8a8 759 }
e4a8d1e2 760
3612a8a8 761 legic_state = STATE_DISCON;
762 legic_read_count = 0;
763 SpinDelay(10);
764 LED_C_OFF();
765 return;
766}
767
768/* Read bit by bit untill full frame is received
769 * Call to process frame end answer
770 */
c71c5ee1 771static void emit(int bit) {
772
773 switch (bit) {
774 case 1:
775 frame_append_bit(&current_frame, 1);
776 break;
777 case 0:
778 frame_append_bit(&current_frame, 0);
779 break;
780 default:
781 if(current_frame.bits <= 4) {
782 frame_clean(&current_frame);
783 } else {
784 frame_handle_tag(&current_frame);
785 frame_clean(&current_frame);
786 }
787 WDT_HIT();
788 break;
789 }
3612a8a8 790}
791
792void LegicRfSimulate(int phase, int frame, int reqresp)
793{
794 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
795 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
796 * envelope waveform on DIN and should send our response on DOUT.
797 *
798 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
799 * measure the time between two rising edges on DIN, and no encoding on the
800 * subcarrier from card to reader, so we'll just shift out our verbatim data
801 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
802 * seems to be 300us-ish.
803 */
e4a8d1e2 804
805 int old_level = 0, active = 0;
806 legic_state = STATE_DISCON;
3612a8a8 807
c71c5ee1 808 legic_phase_drift = phase;
809 legic_frame_drift = frame;
810 legic_reqresp_drift = reqresp;
811
812 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
813 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
c71c5ee1 814 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
815
816 /* Bitbang the receiver */
e4a8d1e2 817 LINE_IN;
818
819 // need a way to determine which tagtype we are simulating
820
821 // hook up emulator memory
822 cardmem = BigBuf_get_EM_addr();
823
824 clear_trace();
825 set_tracing(TRUE);
c71c5ee1 826
c71c5ee1 827 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
828
e4a8d1e2 829 StartTicks();
c71c5ee1 830
831 LED_B_ON();
832 DbpString("Starting Legic emulator, press button to end");
3612a8a8 833
c71c5ee1 834 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e4a8d1e2 835 volatile uint32_t level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
836
837 uint32_t time = GET_TICKS;
838
839 if (level != old_level) {
840
841 if (level) {
c71c5ee1 842
e4a8d1e2 843 ResetTicks();
c71c5ee1 844
845 if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
846 /* 1 bit */
847 emit(1);
848 active = 1;
849 LED_A_ON();
850 } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
851 /* 0 bit */
852 emit(0);
853 active = 1;
854 LED_A_ON();
855 } else if (active) {
856 /* invalid */
857 emit(-1);
858 active = 0;
859 LED_A_OFF();
860 }
861 }
862 }
3612a8a8 863
c71c5ee1 864 /* Frame end */
865 if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) {
866 emit(-1);
867 active = 0;
868 LED_A_OFF();
869 }
a2b1414f 870
e4a8d1e2 871 /*
872 * Disable the counter, Then wait for the clock to acknowledge the
873 * shutdown in its status register. Reading the SR has the
874 * side-effect of clearing any pending state in there.
875 */
876 if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA))
877 StopTicks();
c71c5ee1 878
879 old_level = level;
880 WDT_HIT();
881 }
e4a8d1e2 882
883 WDT_HIT();
884 switch_off_tag_rwd();
c71c5ee1 885 LEDsoff();
e4a8d1e2 886 cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
c71c5ee1 887}
3e134b4c 888
3e134b4c 889//-----------------------------------------------------------------------------
890// Code up a string of octets at layer 2 (including CRC, we don't generate
891// that here) so that they can be transmitted to the reader. Doesn't transmit
892// them yet, just leaves them ready to send in ToSend[].
893//-----------------------------------------------------------------------------
894// static void CodeLegicAsTag(const uint8_t *cmd, int len)
895// {
896 // int i;
897
898 // ToSendReset();
899
900 // // Transmit a burst of ones, as the initial thing that lets the
901 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
902 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
903 // // so I will too.
904 // for(i = 0; i < 20; i++) {
905 // ToSendStuffBit(1);
906 // ToSendStuffBit(1);
907 // ToSendStuffBit(1);
908 // ToSendStuffBit(1);
909 // }
910
911 // // Send SOF.
912 // for(i = 0; i < 10; i++) {
913 // ToSendStuffBit(0);
914 // ToSendStuffBit(0);
915 // ToSendStuffBit(0);
916 // ToSendStuffBit(0);
917 // }
918 // for(i = 0; i < 2; i++) {
919 // ToSendStuffBit(1);
920 // ToSendStuffBit(1);
921 // ToSendStuffBit(1);
922 // ToSendStuffBit(1);
923 // }
924
925 // for(i = 0; i < len; i++) {
926 // int j;
927 // uint8_t b = cmd[i];
928
929 // // Start bit
930 // ToSendStuffBit(0);
931 // ToSendStuffBit(0);
932 // ToSendStuffBit(0);
933 // ToSendStuffBit(0);
934
935 // // Data bits
936 // for(j = 0; j < 8; j++) {
937 // if(b & 1) {
938 // ToSendStuffBit(1);
939 // ToSendStuffBit(1);
940 // ToSendStuffBit(1);
941 // ToSendStuffBit(1);
942 // } else {
943 // ToSendStuffBit(0);
944 // ToSendStuffBit(0);
945 // ToSendStuffBit(0);
946 // ToSendStuffBit(0);
947 // }
948 // b >>= 1;
949 // }
950
951 // // Stop bit
952 // ToSendStuffBit(1);
953 // ToSendStuffBit(1);
954 // ToSendStuffBit(1);
955 // ToSendStuffBit(1);
956 // }
957
958 // // Send EOF.
959 // for(i = 0; i < 10; i++) {
960 // ToSendStuffBit(0);
961 // ToSendStuffBit(0);
962 // ToSendStuffBit(0);
963 // ToSendStuffBit(0);
964 // }
965 // for(i = 0; i < 2; i++) {
966 // ToSendStuffBit(1);
967 // ToSendStuffBit(1);
968 // ToSendStuffBit(1);
969 // ToSendStuffBit(1);
970 // }
971
972 // // Convert from last byte pos to length
973 // ToSendMax++;
974// }
975
976//-----------------------------------------------------------------------------
977// The software UART that receives commands from the reader, and its state
978// variables.
979//-----------------------------------------------------------------------------
62577a62 980/*
3e134b4c 981static struct {
982 enum {
983 STATE_UNSYNCD,
984 STATE_GOT_FALLING_EDGE_OF_SOF,
985 STATE_AWAITING_START_BIT,
986 STATE_RECEIVING_DATA
987 } state;
988 uint16_t shiftReg;
989 int bitCnt;
990 int byteCnt;
991 int byteCntMax;
992 int posCnt;
993 uint8_t *output;
994} Uart;
62577a62 995*/
3e134b4c 996/* Receive & handle a bit coming from the reader.
997 *
998 * This function is called 4 times per bit (every 2 subcarrier cycles).
999 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1000 *
1001 * LED handling:
1002 * LED A -> ON once we have received the SOF and are expecting the rest.
1003 * LED A -> OFF once we have received EOF or are in error state or unsynced
1004 *
1005 * Returns: true if we received a EOF
1006 * false if we are still waiting for some more
1007 */
1008// static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1009// {
1010 // switch(Uart.state) {
1011 // case STATE_UNSYNCD:
1012 // if(!bit) {
1013 // // we went low, so this could be the beginning of an SOF
1014 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1015 // Uart.posCnt = 0;
1016 // Uart.bitCnt = 0;
1017 // }
1018 // break;
1019
1020 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1021 // Uart.posCnt++;
1022 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1023 // if(bit) {
1024 // if(Uart.bitCnt > 9) {
1025 // // we've seen enough consecutive
1026 // // zeros that it's a valid SOF
1027 // Uart.posCnt = 0;
1028 // Uart.byteCnt = 0;
1029 // Uart.state = STATE_AWAITING_START_BIT;
1030 // LED_A_ON(); // Indicate we got a valid SOF
1031 // } else {
1032 // // didn't stay down long enough
1033 // // before going high, error
1034 // Uart.state = STATE_UNSYNCD;
1035 // }
1036 // } else {
1037 // // do nothing, keep waiting
1038 // }
1039 // Uart.bitCnt++;
1040 // }
1041 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1042 // if(Uart.bitCnt > 12) {
1043 // // Give up if we see too many zeros without
1044 // // a one, too.
1045 // LED_A_OFF();
1046 // Uart.state = STATE_UNSYNCD;
1047 // }
1048 // break;
1049
1050 // case STATE_AWAITING_START_BIT:
1051 // Uart.posCnt++;
1052 // if(bit) {
1053 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1054 // // stayed high for too long between
1055 // // characters, error
1056 // Uart.state = STATE_UNSYNCD;
1057 // }
1058 // } else {
1059 // // falling edge, this starts the data byte
1060 // Uart.posCnt = 0;
1061 // Uart.bitCnt = 0;
1062 // Uart.shiftReg = 0;
1063 // Uart.state = STATE_RECEIVING_DATA;
1064 // }
1065 // break;
1066
1067 // case STATE_RECEIVING_DATA:
1068 // Uart.posCnt++;
1069 // if(Uart.posCnt == 2) {
1070 // // time to sample a bit
1071 // Uart.shiftReg >>= 1;
1072 // if(bit) {
1073 // Uart.shiftReg |= 0x200;
1074 // }
1075 // Uart.bitCnt++;
1076 // }
1077 // if(Uart.posCnt >= 4) {
1078 // Uart.posCnt = 0;
1079 // }
1080 // if(Uart.bitCnt == 10) {
1081 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1082 // {
1083 // // this is a data byte, with correct
1084 // // start and stop bits
1085 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1086 // Uart.byteCnt++;
1087
1088 // if(Uart.byteCnt >= Uart.byteCntMax) {
1089 // // Buffer overflowed, give up
1090 // LED_A_OFF();
1091 // Uart.state = STATE_UNSYNCD;
1092 // } else {
1093 // // so get the next byte now
1094 // Uart.posCnt = 0;
1095 // Uart.state = STATE_AWAITING_START_BIT;
1096 // }
1097 // } else if (Uart.shiftReg == 0x000) {
1098 // // this is an EOF byte
1099 // LED_A_OFF(); // Finished receiving
1100 // Uart.state = STATE_UNSYNCD;
1101 // if (Uart.byteCnt != 0) {
1102 // return TRUE;
1103 // }
1104 // } else {
1105 // // this is an error
1106 // LED_A_OFF();
1107 // Uart.state = STATE_UNSYNCD;
1108 // }
1109 // }
1110 // break;
1111
1112 // default:
1113 // LED_A_OFF();
1114 // Uart.state = STATE_UNSYNCD;
1115 // break;
1116 // }
1117
1118 // return FALSE;
1119// }
62577a62 1120/*
3e134b4c 1121
f7b42573 1122static void UartReset() {
1123 Uart.byteCntMax = 3;
3e134b4c 1124 Uart.state = STATE_UNSYNCD;
1125 Uart.byteCnt = 0;
1126 Uart.bitCnt = 0;
1127 Uart.posCnt = 0;
f7b42573 1128 memset(Uart.output, 0x00, 3);
3e134b4c 1129}
62577a62 1130*/
f7b42573 1131// static void UartInit(uint8_t *data) {
3e134b4c 1132 // Uart.output = data;
1133 // UartReset();
1134// }
1135
1136//=============================================================================
1137// An LEGIC reader. We take layer two commands, code them
1138// appropriately, and then send them to the tag. We then listen for the
1139// tag's response, which we leave in the buffer to be demodulated on the
1140// PC side.
1141//=============================================================================
62577a62 1142/*
3e134b4c 1143static struct {
1144 enum {
1145 DEMOD_UNSYNCD,
1146 DEMOD_PHASE_REF_TRAINING,
1147 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
1148 DEMOD_GOT_FALLING_EDGE_OF_SOF,
1149 DEMOD_AWAITING_START_BIT,
1150 DEMOD_RECEIVING_DATA
1151 } state;
1152 int bitCount;
1153 int posCount;
1154 int thisBit;
1155 uint16_t shiftReg;
1156 uint8_t *output;
1157 int len;
1158 int sumI;
1159 int sumQ;
1160} Demod;
62577a62 1161*/
3e134b4c 1162/*
1163 * Handles reception of a bit from the tag
1164 *
1165 * This function is called 2 times per bit (every 4 subcarrier cycles).
1166 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1167 *
1168 * LED handling:
1169 * LED C -> ON once we have received the SOF and are expecting the rest.
1170 * LED C -> OFF once we have received EOF or are unsynced
1171 *
1172 * Returns: true if we received a EOF
1173 * false if we are still waiting for some more
1174 *
1175 */
3e134b4c 1176
62577a62 1177/*
3e134b4c 1178static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
1179{
1180 int v = 0;
1181 int ai = ABS(ci);
1182 int aq = ABS(cq);
1183 int halfci = (ai >> 1);
1184 int halfcq = (aq >> 1);
1185
1186 switch(Demod.state) {
1187 case DEMOD_UNSYNCD:
1188
1189 CHECK_FOR_SUBCARRIER()
1190
1191 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
1192 Demod.state = DEMOD_PHASE_REF_TRAINING;
1193 Demod.sumI = ci;
1194 Demod.sumQ = cq;
1195 Demod.posCount = 1;
1196 }
1197 break;
1198
1199 case DEMOD_PHASE_REF_TRAINING:
1200 if(Demod.posCount < 8) {
1201
1202 CHECK_FOR_SUBCARRIER()
1203
1204 if (v > SUBCARRIER_DETECT_THRESHOLD) {
1205 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1206 // note: synchronization time > 80 1/fs
1207 Demod.sumI += ci;
1208 Demod.sumQ += cq;
1209 ++Demod.posCount;
1210 } else {
1211 // subcarrier lost
1212 Demod.state = DEMOD_UNSYNCD;
1213 }
1214 } else {
1215 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
1216 }
1217 break;
1218
1219 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
1220
1221 MAKE_SOFT_DECISION()
1222
1223 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1224 // logic '0' detected
1225 if (v <= 0) {
1226
1227 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
1228
1229 // start of SOF sequence
1230 Demod.posCount = 0;
1231 } else {
1232 // maximum length of TR1 = 200 1/fs
1233 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
1234 }
1235 ++Demod.posCount;
1236 break;
1237
1238 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
1239 ++Demod.posCount;
1240
1241 MAKE_SOFT_DECISION()
1242
1243 if(v > 0) {
1244 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1245 if(Demod.posCount < 10*2) {
1246 Demod.state = DEMOD_UNSYNCD;
1247 } else {
1248 LED_C_ON(); // Got SOF
1249 Demod.state = DEMOD_AWAITING_START_BIT;
1250 Demod.posCount = 0;
1251 Demod.len = 0;
1252 }
1253 } else {
1254 // low phase of SOF too long (> 12 etu)
1255 if(Demod.posCount > 13*2) {
1256 Demod.state = DEMOD_UNSYNCD;
1257 LED_C_OFF();
1258 }
1259 }
1260 break;
1261
1262 case DEMOD_AWAITING_START_BIT:
1263 ++Demod.posCount;
1264
1265 MAKE_SOFT_DECISION()
1266
1267 if(v > 0) {
1268 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1269 if(Demod.posCount > 3*2) {
1270 Demod.state = DEMOD_UNSYNCD;
1271 LED_C_OFF();
1272 }
1273 } else {
1274 // start bit detected
1275 Demod.bitCount = 0;
1276 Demod.posCount = 1; // this was the first half
1277 Demod.thisBit = v;
1278 Demod.shiftReg = 0;
1279 Demod.state = DEMOD_RECEIVING_DATA;
1280 }
1281 break;
1282
1283 case DEMOD_RECEIVING_DATA:
1284
1285 MAKE_SOFT_DECISION()
1286
1287 if(Demod.posCount == 0) {
1288 // first half of bit
1289 Demod.thisBit = v;
1290 Demod.posCount = 1;
1291 } else {
1292 // second half of bit
1293 Demod.thisBit += v;
1294 Demod.shiftReg >>= 1;
1295 // logic '1'
1296 if(Demod.thisBit > 0)
1297 Demod.shiftReg |= 0x200;
1298
1299 ++Demod.bitCount;
1300
1301 if(Demod.bitCount == 10) {
1302
1303 uint16_t s = Demod.shiftReg;
1304
1305 if((s & 0x200) && !(s & 0x001)) {
1306 // stop bit == '1', start bit == '0'
1307 uint8_t b = (s >> 1);
1308 Demod.output[Demod.len] = b;
1309 ++Demod.len;
1310 Demod.state = DEMOD_AWAITING_START_BIT;
1311 } else {
1312 Demod.state = DEMOD_UNSYNCD;
1313 LED_C_OFF();
1314
1315 if(s == 0x000) {
1316 // This is EOF (start, stop and all data bits == '0'
1317 return TRUE;
1318 }
1319 }
1320 }
1321 Demod.posCount = 0;
1322 }
1323 break;
1324
1325 default:
1326 Demod.state = DEMOD_UNSYNCD;
1327 LED_C_OFF();
1328 break;
1329 }
1330 return FALSE;
1331}
62577a62 1332*/
1333/*
3e134b4c 1334// Clear out the state of the "UART" that receives from the tag.
1335static void DemodReset() {
1336 Demod.len = 0;
1337 Demod.state = DEMOD_UNSYNCD;
1338 Demod.posCount = 0;
1339 Demod.sumI = 0;
1340 Demod.sumQ = 0;
1341 Demod.bitCount = 0;
1342 Demod.thisBit = 0;
1343 Demod.shiftReg = 0;
f7b42573 1344 memset(Demod.output, 0x00, 3);
3e134b4c 1345}
1346
1347static void DemodInit(uint8_t *data) {
1348 Demod.output = data;
1349 DemodReset();
1350}
62577a62 1351*/
3e134b4c 1352
1353/*
1354 * Demodulate the samples we received from the tag, also log to tracebuffer
1355 * quiet: set to 'TRUE' to disable debug output
1356 */
62577a62 1357
1358 /*
3e134b4c 1359 #define LEGIC_DMA_BUFFER_SIZE 256
62577a62 1360
1361 static void GetSamplesForLegicDemod(int n, bool quiet)
3e134b4c 1362{
1363 int max = 0;
1364 bool gotFrame = FALSE;
1365 int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1366 int ci, cq, samples = 0;
1367
1368 BigBuf_free();
1369
1370 // And put the FPGA in the appropriate mode
1371 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
1372
1373 // The response (tag -> reader) that we're receiving.
1374 // Set up the demodulator for tag -> reader responses.
1375 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1376
1377 // The DMA buffer, used to stream samples from the FPGA
1378 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
1379 int8_t *upTo = dmaBuf;
1380
1381 // Setup and start DMA.
1382 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
1383 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1384 return;
1385 }
1386
1387 // Signal field is ON with the appropriate LED:
1388 LED_D_ON();
1389 for(;;) {
1390 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
1391 if(behindBy > max) max = behindBy;
1392
1393 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
1394 ci = upTo[0];
1395 cq = upTo[1];
1396 upTo += 2;
1397 if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
1398 upTo = dmaBuf;
1399 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
1400 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
1401 }
1402 lastRxCounter -= 2;
1403 if(lastRxCounter <= 0)
1404 lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1405
1406 samples += 2;
1407
1408 gotFrame = HandleLegicSamplesDemod(ci , cq );
1409 if ( gotFrame )
1410 break;
1411 }
1412
1413 if(samples > n || gotFrame)
1414 break;
1415 }
1416
1417 FpgaDisableSscDma();
1418
1419 if (!quiet && Demod.len == 0) {
1420 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1421 max,
1422 samples,
1423 gotFrame,
1424 Demod.len,
1425 Demod.sumI,
1426 Demod.sumQ
1427 );
1428 }
1429
1430 //Tracing
1431 if (Demod.len > 0) {
1432 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
1433 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
1434 }
1435}
62577a62 1436
1437*/
1438
3e134b4c 1439//-----------------------------------------------------------------------------
1440// Transmit the command (to the tag) that was placed in ToSend[].
1441//-----------------------------------------------------------------------------
62577a62 1442/*
3e134b4c 1443static void TransmitForLegic(void)
1444{
1445 int c;
1446
1447 FpgaSetupSsc();
1448
1449 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
1450 AT91C_BASE_SSC->SSC_THR = 0xff;
1451
1452 // Signal field is ON with the appropriate Red LED
1453 LED_D_ON();
1454
1455 // Signal we are transmitting with the Green LED
1456 LED_B_ON();
1457 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1458
1459 for(c = 0; c < 10;) {
1460 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1461 AT91C_BASE_SSC->SSC_THR = 0xff;
1462 c++;
1463 }
1464 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1465 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1466 (void)r;
1467 }
1468 WDT_HIT();
1469 }
1470
1471 c = 0;
1472 for(;;) {
1473 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1474 AT91C_BASE_SSC->SSC_THR = ToSend[c];
1475 legic_prng_forward(1); // forward the lfsr
1476 c++;
1477 if(c >= ToSendMax) {
1478 break;
1479 }
1480 }
1481 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1482 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1483 (void)r;
1484 }
1485 WDT_HIT();
1486 }
1487 LED_B_OFF();
1488}
62577a62 1489*/
3e134b4c 1490
1491//-----------------------------------------------------------------------------
1492// Code a layer 2 command (string of octets, including CRC) into ToSend[],
1493// so that it is ready to transmit to the tag using TransmitForLegic().
1494//-----------------------------------------------------------------------------
62577a62 1495/*
bf2cd644 1496static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
3e134b4c 1497{
1498 int i, j;
1499 uint8_t b;
1500
1501 ToSendReset();
1502
1503 // Send SOF
bf2cd644 1504 for(i = 0; i < 7; i++)
3e134b4c 1505 ToSendStuffBit(1);
3e134b4c 1506
bf2cd644 1507
1508 for(i = 0; i < cmdlen; i++) {
3e134b4c 1509 // Start bit
1510 ToSendStuffBit(0);
1511
1512 // Data bits
1513 b = cmd[i];
bf2cd644 1514 for(j = 0; j < bits; j++) {
3e134b4c 1515 if(b & 1) {
1516 ToSendStuffBit(1);
1517 } else {
1518 ToSendStuffBit(0);
1519 }
1520 b >>= 1;
1521 }
1522 }
1523
1524 // Convert from last character reference to length
1525 ++ToSendMax;
1526}
62577a62 1527*/
3e134b4c 1528/**
1529 Convenience function to encode, transmit and trace Legic comms
1530 **/
62577a62 1531/*
1532 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
3e134b4c 1533{
bf2cd644 1534 CodeLegicBitsAsReader(cmd, cmdlen, bits);
3e134b4c 1535 TransmitForLegic();
1536 if (tracing) {
1537 uint8_t parity[1] = {0x00};
3e82f956 1538 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
3e134b4c 1539 }
1540}
1541
62577a62 1542*/
3e134b4c 1543// Set up LEGIC communication
62577a62 1544/*
3e134b4c 1545void ice_legic_setup() {
1546
1547 // standard things.
1548 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1549 BigBuf_free(); BigBuf_Clear_ext(false);
1550 clear_trace();
1551 set_tracing(TRUE);
1552 DemodReset();
1553 UartReset();
1554
1555 // Set up the synchronous serial port
1556 FpgaSetupSsc();
1557
1558 // connect Demodulated Signal to ADC:
1559 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1560
1561 // Signal field is on with the appropriate LED
1562 LED_D_ON();
1563 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
f7b42573 1564 SpinDelay(20);
3e134b4c 1565 // Start the timer
1566 //StartCountSspClk();
1567
1568 // initalize CRC
1569 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
1570
1571 // initalize prng
1572 legic_prng_init(0);
62577a62 1573}
1574*/
Impressum, Datenschutz