]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
revert change "hf list topaz" to "hf list nfc"
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
e30c654b 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
902cb3c0 17#include "cmd.h"
9ab7a6c7 18
15c4dc5a 19#include "iso14443crc.h"
534983d7 20#include "iso14443a.h"
20f9a2a1
M
21#include "crapto1.h"
22#include "mifareutil.h"
3000dc4e 23#include "BigBuf.h"
534983d7 24static uint32_t iso14a_timeout;
1e262141 25int rsamples = 0;
1e262141 26uint8_t trigger = 0;
b0127e65 27// the block number for the ISO14443-4 PCB
28static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 29
7bc95e2e 30//
31// ISO14443 timing:
32//
33// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
34#define REQUEST_GUARD_TIME (7000/16 + 1)
35// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
36#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
37// bool LastCommandWasRequest = FALSE;
38
39//
40// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
41//
d714d3ef 42// When the PM acts as reader and is receiving tag data, it takes
43// 3 ticks delay in the AD converter
44// 16 ticks until the modulation detector completes and sets curbit
45// 8 ticks until bit_to_arm is assigned from curbit
46// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 47// 4*16 ticks until we measure the time
48// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 49#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 50
51// When the PM acts as a reader and is sending, it takes
52// 4*16 ticks until we can write data to the sending hold register
53// 8*16 ticks until the SHR is transferred to the Sending Shift Register
54// 8 ticks until the first transfer starts
55// 8 ticks later the FPGA samples the data
56// 1 tick to assign mod_sig_coil
57#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
58
59// When the PM acts as tag and is receiving it takes
d714d3ef 60// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 61// 3 ticks for the A/D conversion,
62// 8 ticks on average until the start of the SSC transfer,
63// 8 ticks until the SSC samples the first data
64// 7*16 ticks to complete the transfer from FPGA to ARM
65// 8 ticks until the next ssp_clk rising edge
d714d3ef 66// 4*16 ticks until we measure the time
7bc95e2e 67// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 68#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 69
70// The FPGA will report its internal sending delay in
71uint16_t FpgaSendQueueDelay;
72// the 5 first bits are the number of bits buffered in mod_sig_buf
73// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
74#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
75
76// When the PM acts as tag and is sending, it takes
d714d3ef 77// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 78// 8*16 ticks until the SHR is transferred to the Sending Shift Register
79// 8 ticks until the first transfer starts
80// 8 ticks later the FPGA samples the data
81// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
82// + 1 tick to assign mod_sig_coil
d714d3ef 83#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 84
85// When the PM acts as sniffer and is receiving tag data, it takes
86// 3 ticks A/D conversion
d714d3ef 87// 14 ticks to complete the modulation detection
88// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 89// + the delays in transferring data - which is the same for
90// sniffing reader and tag data and therefore not relevant
d714d3ef 91#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 92
d714d3ef 93// When the PM acts as sniffer and is receiving reader data, it takes
94// 2 ticks delay in analogue RF receiver (for the falling edge of the
95// start bit, which marks the start of the communication)
7bc95e2e 96// 3 ticks A/D conversion
d714d3ef 97// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 98// + the delays in transferring data - which is the same for
99// sniffing reader and tag data and therefore not relevant
d714d3ef 100#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 101
102//variables used for timing purposes:
103//these are in ssp_clk cycles:
6a1f2d82 104static uint32_t NextTransferTime;
105static uint32_t LastTimeProxToAirStart;
106static uint32_t LastProxToAirDuration;
7bc95e2e 107
108
109
8f51ddb0 110// CARD TO READER - manchester
72934aa3 111// Sequence D: 11110000 modulation with subcarrier during first half
112// Sequence E: 00001111 modulation with subcarrier during second half
113// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 114// READER TO CARD - miller
72934aa3 115// Sequence X: 00001100 drop after half a period
116// Sequence Y: 00000000 no drop
117// Sequence Z: 11000000 drop at start
118#define SEC_D 0xf0
119#define SEC_E 0x0f
120#define SEC_F 0x00
121#define SEC_X 0x0c
122#define SEC_Y 0x00
123#define SEC_Z 0xc0
15c4dc5a 124
1e262141 125const uint8_t OddByteParity[256] = {
15c4dc5a 126 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
142};
143
19a700a8 144
902cb3c0 145void iso14a_set_trigger(bool enable) {
534983d7 146 trigger = enable;
147}
148
d19929cb 149
b0127e65 150void iso14a_set_timeout(uint32_t timeout) {
151 iso14a_timeout = timeout;
19a700a8 152 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
b0127e65 153}
8556b852 154
19a700a8 155
156void iso14a_set_ATS_timeout(uint8_t *ats) {
157
158 uint8_t tb1;
159 uint8_t fwi;
160 uint32_t fwt;
161
162 if (ats[0] > 1) { // there is a format byte T0
163 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
164 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
165 tb1 = ats[3];
166 } else {
167 tb1 = ats[2];
168 }
169 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
170 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
171
172 iso14a_set_timeout(fwt/(8*16));
173 }
174 }
175}
176
177
15c4dc5a 178//-----------------------------------------------------------------------------
179// Generate the parity value for a byte sequence
e30c654b 180//
15c4dc5a 181//-----------------------------------------------------------------------------
20f9a2a1
M
182byte_t oddparity (const byte_t bt)
183{
5f6d6c90 184 return OddByteParity[bt];
20f9a2a1
M
185}
186
6a1f2d82 187void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
15c4dc5a 188{
6a1f2d82 189 uint16_t paritybit_cnt = 0;
190 uint16_t paritybyte_cnt = 0;
191 uint8_t parityBits = 0;
192
193 for (uint16_t i = 0; i < iLen; i++) {
194 // Generate the parity bits
195 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
196 if (paritybit_cnt == 7) {
197 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
198 parityBits = 0; // and advance to next Parity Byte
199 paritybyte_cnt++;
200 paritybit_cnt = 0;
201 } else {
202 paritybit_cnt++;
203 }
5f6d6c90 204 }
6a1f2d82 205
206 // save remaining parity bits
207 par[paritybyte_cnt] = parityBits;
208
15c4dc5a 209}
210
534983d7 211void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 212{
5f6d6c90 213 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 214}
215
7bc95e2e 216//=============================================================================
217// ISO 14443 Type A - Miller decoder
218//=============================================================================
219// Basics:
220// This decoder is used when the PM3 acts as a tag.
221// The reader will generate "pauses" by temporarily switching of the field.
222// At the PM3 antenna we will therefore measure a modulated antenna voltage.
223// The FPGA does a comparison with a threshold and would deliver e.g.:
224// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
225// The Miller decoder needs to identify the following sequences:
226// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
227// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
228// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
229// Note 1: the bitstream may start at any time. We therefore need to sync.
230// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 231//-----------------------------------------------------------------------------
b62a5a84 232static tUart Uart;
15c4dc5a 233
d7aa3739 234// Lookup-Table to decide if 4 raw bits are a modulation.
235// We accept two or three consecutive "0" in any position with the rest "1"
236const bool Mod_Miller_LUT[] = {
237 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
238 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
239};
240#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
241#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
242
7bc95e2e 243void UartReset()
15c4dc5a 244{
7bc95e2e 245 Uart.state = STATE_UNSYNCD;
246 Uart.bitCount = 0;
247 Uart.len = 0; // number of decoded data bytes
6a1f2d82 248 Uart.parityLen = 0; // number of decoded parity bytes
7bc95e2e 249 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
6a1f2d82 250 Uart.parityBits = 0; // holds 8 parity bits
ef00343c 251 Uart.fourBits = 0x00000000; // buffer for 4 Bits
7bc95e2e 252 Uart.startTime = 0;
253 Uart.endTime = 0;
254}
15c4dc5a 255
6a1f2d82 256void UartInit(uint8_t *data, uint8_t *parity)
257{
258 Uart.output = data;
259 Uart.parity = parity;
260 UartReset();
261}
d714d3ef 262
7bc95e2e 263// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
264static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
265{
15c4dc5a 266
ef00343c 267 Uart.fourBits = (Uart.fourBits << 8) | bit;
7bc95e2e 268
0c8d25eb 269 if (Uart.state == STATE_UNSYNCD) { // not yet synced
3fe4ff4f 270
ef00343c 271 Uart.syncBit = 9999; // not set
272 // we look for a ...xxxx1111111100x11111xxxxxx pattern
273 // (unmodulated, followed by the start bit = 8 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
274#define ISO14443A_STARTBIT_MASK 0x007FEF80 // mask is 00000000 01111111 11101111 10000000
275#define ISO14443A_STARTBIT_PATTERN 0x007F8F80 // pattern is 00000000 01111111 10001111 10000000
276 if ((Uart.fourBits & ISO14443A_STARTBIT_MASK) >> 0 == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
277 else if ((Uart.fourBits & ISO14443A_STARTBIT_MASK) >> 1 == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
278 else if ((Uart.fourBits & ISO14443A_STARTBIT_MASK) >> 2 == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
279 else if ((Uart.fourBits & ISO14443A_STARTBIT_MASK) >> 3 == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
280 else if ((Uart.fourBits & ISO14443A_STARTBIT_MASK) >> 4 == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
281 else if ((Uart.fourBits & ISO14443A_STARTBIT_MASK) >> 5 == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
282 else if ((Uart.fourBits & ISO14443A_STARTBIT_MASK) >> 6 == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
283 else if ((Uart.fourBits & ISO14443A_STARTBIT_MASK) >> 7 == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
284 if (Uart.syncBit != 9999) { // found a sync bit
285 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
286 Uart.startTime -= Uart.syncBit;
287 Uart.endTime = Uart.startTime;
288 Uart.state = STATE_START_OF_COMMUNICATION;
7bc95e2e 289 }
15c4dc5a 290
7bc95e2e 291 } else {
15c4dc5a 292
ef00343c 293 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
294 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
d7aa3739 295 UartReset();
d7aa3739 296 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 297 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
298 UartReset();
7bc95e2e 299 } else {
300 Uart.bitCount++;
301 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
302 Uart.state = STATE_MILLER_Z;
303 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
304 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
305 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
306 Uart.parityBits <<= 1; // make room for the parity bit
307 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
308 Uart.bitCount = 0;
309 Uart.shiftReg = 0;
6a1f2d82 310 if((Uart.len&0x0007) == 0) { // every 8 data bytes
311 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
312 Uart.parityBits = 0;
313 }
15c4dc5a 314 }
7bc95e2e 315 }
d7aa3739 316 }
317 } else {
ef00343c 318 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 319 Uart.bitCount++;
320 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
321 Uart.state = STATE_MILLER_X;
322 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
323 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
324 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
325 Uart.parityBits <<= 1; // make room for the new parity bit
326 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
327 Uart.bitCount = 0;
328 Uart.shiftReg = 0;
6a1f2d82 329 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
330 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
331 Uart.parityBits = 0;
332 }
7bc95e2e 333 }
d7aa3739 334 } else { // no modulation in both halves - Sequence Y
7bc95e2e 335 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 336 Uart.state = STATE_UNSYNCD;
6a1f2d82 337 Uart.bitCount--; // last "0" was part of EOC sequence
338 Uart.shiftReg <<= 1; // drop it
339 if(Uart.bitCount > 0) { // if we decoded some bits
340 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
341 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
342 Uart.parityBits <<= 1; // add a (void) parity bit
343 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
344 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
345 return TRUE;
346 } else if (Uart.len & 0x0007) { // there are some parity bits to store
347 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
348 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
52bfb955 349 }
350 if (Uart.len) {
6a1f2d82 351 return TRUE; // we are finished with decoding the raw data sequence
52bfb955 352 } else {
0c8d25eb 353 UartReset(); // Nothing received - start over
7bc95e2e 354 }
15c4dc5a 355 }
7bc95e2e 356 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
357 UartReset();
7bc95e2e 358 } else { // a logic "0"
359 Uart.bitCount++;
360 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
361 Uart.state = STATE_MILLER_Y;
362 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
363 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
364 Uart.parityBits <<= 1; // make room for the parity bit
365 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
366 Uart.bitCount = 0;
367 Uart.shiftReg = 0;
6a1f2d82 368 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
369 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
370 Uart.parityBits = 0;
371 }
15c4dc5a 372 }
373 }
d7aa3739 374 }
15c4dc5a 375 }
7bc95e2e 376
377 }
15c4dc5a 378
7bc95e2e 379 return FALSE; // not finished yet, need more data
15c4dc5a 380}
381
7bc95e2e 382
383
15c4dc5a 384//=============================================================================
e691fc45 385// ISO 14443 Type A - Manchester decoder
15c4dc5a 386//=============================================================================
e691fc45 387// Basics:
7bc95e2e 388// This decoder is used when the PM3 acts as a reader.
e691fc45 389// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
390// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
391// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
392// The Manchester decoder needs to identify the following sequences:
393// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
394// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
395// 8 ticks unmodulated: Sequence F = end of communication
396// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 397// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 398// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 399static tDemod Demod;
15c4dc5a 400
d7aa3739 401// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 402// We accept three or four "1" in any position
7bc95e2e 403const bool Mod_Manchester_LUT[] = {
d7aa3739 404 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 405 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 406};
407
408#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
409#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 410
2f2d9fc5 411
7bc95e2e 412void DemodReset()
e691fc45 413{
7bc95e2e 414 Demod.state = DEMOD_UNSYNCD;
415 Demod.len = 0; // number of decoded data bytes
6a1f2d82 416 Demod.parityLen = 0;
7bc95e2e 417 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
418 Demod.parityBits = 0; //
419 Demod.collisionPos = 0; // Position of collision bit
420 Demod.twoBits = 0xffff; // buffer for 2 Bits
421 Demod.highCnt = 0;
422 Demod.startTime = 0;
423 Demod.endTime = 0;
e691fc45 424}
15c4dc5a 425
6a1f2d82 426void DemodInit(uint8_t *data, uint8_t *parity)
427{
428 Demod.output = data;
429 Demod.parity = parity;
430 DemodReset();
431}
432
7bc95e2e 433// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
434static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 435{
7bc95e2e 436
437 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 438
7bc95e2e 439 if (Demod.state == DEMOD_UNSYNCD) {
440
441 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
442 if (Demod.twoBits == 0x0000) {
443 Demod.highCnt++;
444 } else {
445 Demod.highCnt = 0;
446 }
447 } else {
448 Demod.syncBit = 0xFFFF; // not set
449 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
450 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
451 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
452 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
453 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
454 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
455 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
456 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 457 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 458 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
459 Demod.startTime -= Demod.syncBit;
460 Demod.bitCount = offset; // number of decoded data bits
e691fc45 461 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 462 }
7bc95e2e 463 }
15c4dc5a 464
7bc95e2e 465 } else {
15c4dc5a 466
7bc95e2e 467 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
468 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 469 if (!Demod.collisionPos) {
470 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
471 }
472 } // modulation in first half only - Sequence D = 1
7bc95e2e 473 Demod.bitCount++;
474 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
475 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 476 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 477 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 478 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
479 Demod.bitCount = 0;
480 Demod.shiftReg = 0;
6a1f2d82 481 if((Demod.len&0x0007) == 0) { // every 8 data bytes
482 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
483 Demod.parityBits = 0;
484 }
15c4dc5a 485 }
7bc95e2e 486 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
487 } else { // no modulation in first half
488 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 489 Demod.bitCount++;
7bc95e2e 490 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 491 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 492 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 493 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 494 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
495 Demod.bitCount = 0;
496 Demod.shiftReg = 0;
6a1f2d82 497 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
498 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
499 Demod.parityBits = 0;
500 }
15c4dc5a 501 }
7bc95e2e 502 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 503 } else { // no modulation in both halves - End of communication
6a1f2d82 504 if(Demod.bitCount > 0) { // there are some remaining data bits
505 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
506 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
507 Demod.parityBits <<= 1; // add a (void) parity bit
508 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
509 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
510 return TRUE;
511 } else if (Demod.len & 0x0007) { // there are some parity bits to store
512 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
513 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
52bfb955 514 }
515 if (Demod.len) {
d7aa3739 516 return TRUE; // we are finished with decoding the raw data sequence
517 } else { // nothing received. Start over
518 DemodReset();
e691fc45 519 }
15c4dc5a 520 }
7bc95e2e 521 }
e691fc45 522
523 }
15c4dc5a 524
e691fc45 525 return FALSE; // not finished yet, need more data
15c4dc5a 526}
527
528//=============================================================================
529// Finally, a `sniffer' for ISO 14443 Type A
530// Both sides of communication!
531//=============================================================================
532
533//-----------------------------------------------------------------------------
534// Record the sequence of commands sent by the reader to the tag, with
535// triggering so that we start recording at the point that the tag is moved
536// near the reader.
537//-----------------------------------------------------------------------------
5cd9ec01
M
538void RAMFUNC SnoopIso14443a(uint8_t param) {
539 // param:
540 // bit 0 - trigger from first card answer
541 // bit 1 - trigger from first reader 7-bit request
542
543 LEDsoff();
5cd9ec01
M
544
545 // We won't start recording the frames that we acquire until we trigger;
546 // a good trigger condition to get started is probably when we see a
547 // response from the tag.
548 // triggered == FALSE -- to wait first for card
7bc95e2e 549 bool triggered = !(param & 0x03);
550
f71f4deb 551 // Allocate memory from BigBuf for some buffers
552 // free all previous allocations first
553 BigBuf_free();
554
5cd9ec01 555 // The command (reader -> tag) that we're receiving.
f71f4deb 556 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
557 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
6a1f2d82 558
5cd9ec01 559 // The response (tag -> reader) that we're receiving.
f71f4deb 560 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
561 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
5cd9ec01
M
562
563 // The DMA buffer, used to stream samples from the FPGA
f71f4deb 564 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
565
566 // init trace buffer
3000dc4e
MHS
567 clear_trace();
568 set_tracing(TRUE);
f71f4deb 569
7bc95e2e 570 uint8_t *data = dmaBuf;
571 uint8_t previous_data = 0;
5cd9ec01
M
572 int maxDataLen = 0;
573 int dataLen = 0;
7bc95e2e 574 bool TagIsActive = FALSE;
575 bool ReaderIsActive = FALSE;
576
577 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
15c4dc5a 578
5cd9ec01 579 // Set up the demodulator for tag -> reader responses.
6a1f2d82 580 DemodInit(receivedResponse, receivedResponsePar);
581
5cd9ec01 582 // Set up the demodulator for the reader -> tag commands
6a1f2d82 583 UartInit(receivedCmd, receivedCmdPar);
584
7bc95e2e 585 // Setup and start DMA.
5cd9ec01 586 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 587
5cd9ec01 588 // And now we loop, receiving samples.
7bc95e2e 589 for(uint32_t rsamples = 0; TRUE; ) {
590
5cd9ec01
M
591 if(BUTTON_PRESS()) {
592 DbpString("cancelled by button");
7bc95e2e 593 break;
5cd9ec01 594 }
15c4dc5a 595
5cd9ec01
M
596 LED_A_ON();
597 WDT_HIT();
15c4dc5a 598
5cd9ec01
M
599 int register readBufDataP = data - dmaBuf;
600 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
601 if (readBufDataP <= dmaBufDataP){
602 dataLen = dmaBufDataP - readBufDataP;
603 } else {
7bc95e2e 604 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
605 }
606 // test for length of buffer
607 if(dataLen > maxDataLen) {
608 maxDataLen = dataLen;
f71f4deb 609 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
7bc95e2e 610 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
611 break;
5cd9ec01
M
612 }
613 }
614 if(dataLen < 1) continue;
615
616 // primary buffer was stopped( <-- we lost data!
617 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
618 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
619 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 620 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
621 }
622 // secondary buffer sets as primary, secondary buffer was stopped
623 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
624 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
625 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
626 }
627
628 LED_A_OFF();
7bc95e2e 629
630 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 631
7bc95e2e 632 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
633 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
634 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
635 LED_C_ON();
5cd9ec01 636
7bc95e2e 637 // check - if there is a short 7bit request from reader
638 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 639
7bc95e2e 640 if(triggered) {
6a1f2d82 641 if (!LogTrace(receivedCmd,
642 Uart.len,
643 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
644 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
645 Uart.parity,
646 TRUE)) break;
7bc95e2e 647 }
648 /* And ready to receive another command. */
649 UartReset();
650 /* And also reset the demod code, which might have been */
651 /* false-triggered by the commands from the reader. */
652 DemodReset();
653 LED_B_OFF();
654 }
655 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 656 }
3be2a5ae 657
7bc95e2e 658 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
659 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
660 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
661 LED_B_ON();
5cd9ec01 662
6a1f2d82 663 if (!LogTrace(receivedResponse,
664 Demod.len,
665 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
666 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
667 Demod.parity,
668 FALSE)) break;
5cd9ec01 669
7bc95e2e 670 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 671
7bc95e2e 672 // And ready to receive another response.
673 DemodReset();
674 LED_C_OFF();
675 }
676 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
677 }
5cd9ec01
M
678 }
679
7bc95e2e 680 previous_data = *data;
681 rsamples++;
5cd9ec01 682 data++;
d714d3ef 683 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
684 data = dmaBuf;
685 }
686 } // main cycle
687
688 DbpString("COMMAND FINISHED");
15c4dc5a 689
7bc95e2e 690 FpgaDisableSscDma();
691 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
3000dc4e 692 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
5cd9ec01 693 LEDsoff();
15c4dc5a 694}
695
15c4dc5a 696//-----------------------------------------------------------------------------
697// Prepare tag messages
698//-----------------------------------------------------------------------------
6a1f2d82 699static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
15c4dc5a 700{
8f51ddb0 701 ToSendReset();
15c4dc5a 702
703 // Correction bit, might be removed when not needed
704 ToSendStuffBit(0);
705 ToSendStuffBit(0);
706 ToSendStuffBit(0);
707 ToSendStuffBit(0);
708 ToSendStuffBit(1); // 1
709 ToSendStuffBit(0);
710 ToSendStuffBit(0);
711 ToSendStuffBit(0);
8f51ddb0 712
15c4dc5a 713 // Send startbit
72934aa3 714 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 715 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 716
6a1f2d82 717 for(uint16_t i = 0; i < len; i++) {
8f51ddb0 718 uint8_t b = cmd[i];
15c4dc5a 719
720 // Data bits
6a1f2d82 721 for(uint16_t j = 0; j < 8; j++) {
15c4dc5a 722 if(b & 1) {
72934aa3 723 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 724 } else {
72934aa3 725 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
726 }
727 b >>= 1;
728 }
15c4dc5a 729
0014cb46 730 // Get the parity bit
6a1f2d82 731 if (parity[i>>3] & (0x80>>(i&0x0007))) {
8f51ddb0 732 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 733 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 734 } else {
72934aa3 735 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 736 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 737 }
8f51ddb0 738 }
15c4dc5a 739
8f51ddb0
M
740 // Send stopbit
741 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 742
8f51ddb0
M
743 // Convert from last byte pos to length
744 ToSendMax++;
8f51ddb0
M
745}
746
6a1f2d82 747static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
748{
749 uint8_t par[MAX_PARITY_SIZE];
750
751 GetParity(cmd, len, par);
752 CodeIso14443aAsTagPar(cmd, len, par);
15c4dc5a 753}
754
15c4dc5a 755
8f51ddb0
M
756static void Code4bitAnswerAsTag(uint8_t cmd)
757{
758 int i;
759
5f6d6c90 760 ToSendReset();
8f51ddb0
M
761
762 // Correction bit, might be removed when not needed
763 ToSendStuffBit(0);
764 ToSendStuffBit(0);
765 ToSendStuffBit(0);
766 ToSendStuffBit(0);
767 ToSendStuffBit(1); // 1
768 ToSendStuffBit(0);
769 ToSendStuffBit(0);
770 ToSendStuffBit(0);
771
772 // Send startbit
773 ToSend[++ToSendMax] = SEC_D;
774
775 uint8_t b = cmd;
776 for(i = 0; i < 4; i++) {
777 if(b & 1) {
778 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 779 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
780 } else {
781 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 782 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
783 }
784 b >>= 1;
785 }
786
787 // Send stopbit
788 ToSend[++ToSendMax] = SEC_F;
789
5f6d6c90 790 // Convert from last byte pos to length
791 ToSendMax++;
15c4dc5a 792}
793
794//-----------------------------------------------------------------------------
795// Wait for commands from reader
796// Stop when button is pressed
797// Or return TRUE when command is captured
798//-----------------------------------------------------------------------------
6a1f2d82 799static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
15c4dc5a 800{
801 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
802 // only, since we are receiving, not transmitting).
803 // Signal field is off with the appropriate LED
804 LED_D_OFF();
805 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
806
807 // Now run a `software UART' on the stream of incoming samples.
6a1f2d82 808 UartInit(received, parity);
7bc95e2e 809
810 // clear RXRDY:
811 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 812
813 for(;;) {
814 WDT_HIT();
815
816 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 817
15c4dc5a 818 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 819 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
820 if(MillerDecoding(b, 0)) {
821 *len = Uart.len;
15c4dc5a 822 return TRUE;
823 }
7bc95e2e 824 }
15c4dc5a 825 }
826}
28afbd2b 827
6a1f2d82 828static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
7bc95e2e 829int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 830int EmSend4bit(uint8_t resp);
6a1f2d82 831int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
832int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
833int EmSendCmd(uint8_t *resp, uint16_t respLen);
834int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
835bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
836 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
15c4dc5a 837
117d9ec2 838static uint8_t* free_buffer_pointer;
ce02f6f9 839
840typedef struct {
841 uint8_t* response;
842 size_t response_n;
843 uint8_t* modulation;
844 size_t modulation_n;
7bc95e2e 845 uint32_t ProxToAirDuration;
ce02f6f9 846} tag_response_info_t;
847
ce02f6f9 848bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 849 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 850 // This will need the following byte array for a modulation sequence
851 // 144 data bits (18 * 8)
852 // 18 parity bits
853 // 2 Start and stop
854 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
855 // 1 just for the case
856 // ----------- +
857 // 166 bytes, since every bit that needs to be send costs us a byte
858 //
f71f4deb 859
860
ce02f6f9 861 // Prepare the tag modulation bits from the message
862 CodeIso14443aAsTag(response_info->response,response_info->response_n);
863
864 // Make sure we do not exceed the free buffer space
865 if (ToSendMax > max_buffer_size) {
866 Dbprintf("Out of memory, when modulating bits for tag answer:");
867 Dbhexdump(response_info->response_n,response_info->response,false);
868 return false;
869 }
870
871 // Copy the byte array, used for this modulation to the buffer position
872 memcpy(response_info->modulation,ToSend,ToSendMax);
873
7bc95e2e 874 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 875 response_info->modulation_n = ToSendMax;
7bc95e2e 876 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 877
878 return true;
879}
880
f71f4deb 881
882// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
883// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
884// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
885// -> need 273 bytes buffer
886#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
887
ce02f6f9 888bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
889 // Retrieve and store the current buffer index
890 response_info->modulation = free_buffer_pointer;
891
892 // Determine the maximum size we can use from our buffer
f71f4deb 893 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
ce02f6f9 894
895 // Forward the prepare tag modulation function to the inner function
f71f4deb 896 if (prepare_tag_modulation(response_info, max_buffer_size)) {
ce02f6f9 897 // Update the free buffer offset
898 free_buffer_pointer += ToSendMax;
899 return true;
900 } else {
901 return false;
902 }
903}
904
15c4dc5a 905//-----------------------------------------------------------------------------
906// Main loop of simulated tag: receive commands from reader, decide what
907// response to send, and send it.
908//-----------------------------------------------------------------------------
28afbd2b 909void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
15c4dc5a 910{
81cd0474 911 uint8_t sak;
912
913 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
914 uint8_t response1[2];
915
916 switch (tagType) {
917 case 1: { // MIFARE Classic
918 // Says: I am Mifare 1k - original line
919 response1[0] = 0x04;
920 response1[1] = 0x00;
921 sak = 0x08;
922 } break;
923 case 2: { // MIFARE Ultralight
924 // Says: I am a stupid memory tag, no crypto
925 response1[0] = 0x04;
926 response1[1] = 0x00;
927 sak = 0x00;
928 } break;
929 case 3: { // MIFARE DESFire
930 // Says: I am a DESFire tag, ph33r me
931 response1[0] = 0x04;
932 response1[1] = 0x03;
933 sak = 0x20;
934 } break;
935 case 4: { // ISO/IEC 14443-4
936 // Says: I am a javacard (JCOP)
937 response1[0] = 0x04;
938 response1[1] = 0x00;
939 sak = 0x28;
940 } break;
3fe4ff4f 941 case 5: { // MIFARE TNP3XXX
942 // Says: I am a toy
943 response1[0] = 0x01;
944 response1[1] = 0x0f;
945 sak = 0x01;
946 } break;
81cd0474 947 default: {
948 Dbprintf("Error: unkown tagtype (%d)",tagType);
949 return;
950 } break;
951 }
952
953 // The second response contains the (mandatory) first 24 bits of the UID
c8b6da22 954 uint8_t response2[5] = {0x00};
81cd0474 955
956 // Check if the uid uses the (optional) part
c8b6da22 957 uint8_t response2a[5] = {0x00};
958
81cd0474 959 if (uid_2nd) {
960 response2[0] = 0x88;
961 num_to_bytes(uid_1st,3,response2+1);
962 num_to_bytes(uid_2nd,4,response2a);
963 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
964
965 // Configure the ATQA and SAK accordingly
966 response1[0] |= 0x40;
967 sak |= 0x04;
968 } else {
969 num_to_bytes(uid_1st,4,response2);
970 // Configure the ATQA and SAK accordingly
971 response1[0] &= 0xBF;
972 sak &= 0xFB;
973 }
974
975 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
976 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
977
978 // Prepare the mandatory SAK (for 4 and 7 byte UID)
c8b6da22 979 uint8_t response3[3] = {0x00};
81cd0474 980 response3[0] = sak;
981 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
982
983 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
c8b6da22 984 uint8_t response3a[3] = {0x00};
81cd0474 985 response3a[0] = sak & 0xFB;
986 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
987
254b70a4 988 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
6a1f2d82 989 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
990 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
991 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
992 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
993 // TC(1) = 0x02: CID supported, NAD not supported
ce02f6f9 994 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
995
7bc95e2e 996 #define TAG_RESPONSE_COUNT 7
997 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
998 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
999 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1000 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1001 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1002 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1003 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1004 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1005 };
1006
1007 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1008 // Such a response is less time critical, so we can prepare them on the fly
1009 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1010 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1011 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1012 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1013 tag_response_info_t dynamic_response_info = {
1014 .response = dynamic_response_buffer,
1015 .response_n = 0,
1016 .modulation = dynamic_modulation_buffer,
1017 .modulation_n = 0
1018 };
ce02f6f9 1019
f71f4deb 1020 BigBuf_free_keep_EM();
1021
1022 // allocate buffers:
1023 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1024 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1025 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1026
1027 // clear trace
3000dc4e
MHS
1028 clear_trace();
1029 set_tracing(TRUE);
f71f4deb 1030
7bc95e2e 1031 // Prepare the responses of the anticollision phase
ce02f6f9 1032 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 1033 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1034 prepare_allocated_tag_modulation(&responses[i]);
1035 }
15c4dc5a 1036
7bc95e2e 1037 int len = 0;
15c4dc5a 1038
1039 // To control where we are in the protocol
1040 int order = 0;
1041 int lastorder;
1042
1043 // Just to allow some checks
1044 int happened = 0;
1045 int happened2 = 0;
81cd0474 1046 int cmdsRecvd = 0;
15c4dc5a 1047
254b70a4 1048 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 1049 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
15c4dc5a 1050
254b70a4 1051 cmdsRecvd = 0;
7bc95e2e 1052 tag_response_info_t* p_response;
15c4dc5a 1053
254b70a4 1054 LED_A_ON();
1055 for(;;) {
7bc95e2e 1056 // Clean receive command buffer
1057
6a1f2d82 1058 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
ce02f6f9 1059 DbpString("Button press");
254b70a4 1060 break;
1061 }
7bc95e2e 1062
1063 p_response = NULL;
1064
254b70a4 1065 // Okay, look at the command now.
1066 lastorder = order;
1067 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1068 p_response = &responses[0]; order = 1;
254b70a4 1069 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1070 p_response = &responses[0]; order = 6;
254b70a4 1071 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1072 p_response = &responses[1]; order = 2;
6a1f2d82 1073 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1074 p_response = &responses[2]; order = 20;
254b70a4 1075 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1076 p_response = &responses[3]; order = 3;
254b70a4 1077 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1078 p_response = &responses[4]; order = 30;
254b70a4 1079 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
6a1f2d82 1080 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
7bc95e2e 1081 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
5f6d6c90 1082 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
7bc95e2e 1083 p_response = NULL;
254b70a4 1084 } else if(receivedCmd[0] == 0x50) { // Received a HALT
3fe4ff4f 1085
7bc95e2e 1086 if (tracing) {
6a1f2d82 1087 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1088 }
1089 p_response = NULL;
254b70a4 1090 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
ce02f6f9 1091 p_response = &responses[5]; order = 7;
254b70a4 1092 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1093 if (tagType == 1 || tagType == 2) { // RATS not supported
1094 EmSend4bit(CARD_NACK_NA);
1095 p_response = NULL;
1096 } else {
1097 p_response = &responses[6]; order = 70;
1098 }
6a1f2d82 1099 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
7bc95e2e 1100 if (tracing) {
6a1f2d82 1101 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1102 }
1103 uint32_t nr = bytes_to_num(receivedCmd,4);
1104 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1105 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1106 } else {
1107 // Check for ISO 14443A-4 compliant commands, look at left nibble
1108 switch (receivedCmd[0]) {
1109
1110 case 0x0B:
1111 case 0x0A: { // IBlock (command)
1112 dynamic_response_info.response[0] = receivedCmd[0];
1113 dynamic_response_info.response[1] = 0x00;
1114 dynamic_response_info.response[2] = 0x90;
1115 dynamic_response_info.response[3] = 0x00;
1116 dynamic_response_info.response_n = 4;
1117 } break;
1118
1119 case 0x1A:
1120 case 0x1B: { // Chaining command
1121 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1122 dynamic_response_info.response_n = 2;
1123 } break;
1124
1125 case 0xaa:
1126 case 0xbb: {
1127 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1128 dynamic_response_info.response_n = 2;
1129 } break;
1130
1131 case 0xBA: { //
1132 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1133 dynamic_response_info.response_n = 2;
1134 } break;
1135
1136 case 0xCA:
1137 case 0xC2: { // Readers sends deselect command
1138 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1139 dynamic_response_info.response_n = 2;
1140 } break;
1141
1142 default: {
1143 // Never seen this command before
1144 if (tracing) {
6a1f2d82 1145 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1146 }
1147 Dbprintf("Received unknown command (len=%d):",len);
1148 Dbhexdump(len,receivedCmd,false);
1149 // Do not respond
1150 dynamic_response_info.response_n = 0;
1151 } break;
1152 }
ce02f6f9 1153
7bc95e2e 1154 if (dynamic_response_info.response_n > 0) {
1155 // Copy the CID from the reader query
1156 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1157
7bc95e2e 1158 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1159 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1160 dynamic_response_info.response_n += 2;
ce02f6f9 1161
7bc95e2e 1162 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1163 Dbprintf("Error preparing tag response");
1164 if (tracing) {
6a1f2d82 1165 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1166 }
1167 break;
1168 }
1169 p_response = &dynamic_response_info;
1170 }
81cd0474 1171 }
15c4dc5a 1172
1173 // Count number of wakeups received after a halt
1174 if(order == 6 && lastorder == 5) { happened++; }
1175
1176 // Count number of other messages after a halt
1177 if(order != 6 && lastorder == 5) { happened2++; }
1178
15c4dc5a 1179 if(cmdsRecvd > 999) {
1180 DbpString("1000 commands later...");
254b70a4 1181 break;
15c4dc5a 1182 }
ce02f6f9 1183 cmdsRecvd++;
1184
1185 if (p_response != NULL) {
7bc95e2e 1186 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1187 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1188 uint8_t par[MAX_PARITY_SIZE];
1189 GetParity(p_response->response, p_response->response_n, par);
3fe4ff4f 1190
7bc95e2e 1191 EmLogTrace(Uart.output,
1192 Uart.len,
1193 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1194 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1195 Uart.parity,
7bc95e2e 1196 p_response->response,
1197 p_response->response_n,
1198 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1199 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1200 par);
7bc95e2e 1201 }
1202
1203 if (!tracing) {
1204 Dbprintf("Trace Full. Simulation stopped.");
1205 break;
1206 }
1207 }
15c4dc5a 1208
1209 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1210 LED_A_OFF();
f71f4deb 1211 BigBuf_free_keep_EM();
15c4dc5a 1212}
1213
9492e0b0 1214
1215// prepare a delayed transfer. This simply shifts ToSend[] by a number
1216// of bits specified in the delay parameter.
1217void PrepareDelayedTransfer(uint16_t delay)
1218{
1219 uint8_t bitmask = 0;
1220 uint8_t bits_to_shift = 0;
1221 uint8_t bits_shifted = 0;
1222
1223 delay &= 0x07;
1224 if (delay) {
1225 for (uint16_t i = 0; i < delay; i++) {
1226 bitmask |= (0x01 << i);
1227 }
7bc95e2e 1228 ToSend[ToSendMax++] = 0x00;
9492e0b0 1229 for (uint16_t i = 0; i < ToSendMax; i++) {
1230 bits_to_shift = ToSend[i] & bitmask;
1231 ToSend[i] = ToSend[i] >> delay;
1232 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1233 bits_shifted = bits_to_shift;
1234 }
1235 }
1236}
1237
7bc95e2e 1238
1239//-------------------------------------------------------------------------------------
15c4dc5a 1240// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1241// Parameter timing:
7bc95e2e 1242// if NULL: transfer at next possible time, taking into account
1243// request guard time and frame delay time
1244// if == 0: transfer immediately and return time of transfer
9492e0b0 1245// if != 0: delay transfer until time specified
7bc95e2e 1246//-------------------------------------------------------------------------------------
6a1f2d82 1247static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
15c4dc5a 1248{
7bc95e2e 1249
9492e0b0 1250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1251
7bc95e2e 1252 uint32_t ThisTransferTime = 0;
e30c654b 1253
9492e0b0 1254 if (timing) {
1255 if(*timing == 0) { // Measure time
7bc95e2e 1256 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1257 } else {
1258 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1259 }
7bc95e2e 1260 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1261 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1262 LastTimeProxToAirStart = *timing;
1263 } else {
1264 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1265 while(GetCountSspClk() < ThisTransferTime);
1266 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1267 }
1268
7bc95e2e 1269 // clear TXRDY
1270 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1271
7bc95e2e 1272 uint16_t c = 0;
9492e0b0 1273 for(;;) {
1274 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1275 AT91C_BASE_SSC->SSC_THR = cmd[c];
1276 c++;
1277 if(c >= len) {
1278 break;
1279 }
1280 }
1281 }
7bc95e2e 1282
1283 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
15c4dc5a 1284}
1285
7bc95e2e 1286
15c4dc5a 1287//-----------------------------------------------------------------------------
195af472 1288// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1289//-----------------------------------------------------------------------------
6a1f2d82 1290void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
15c4dc5a 1291{
7bc95e2e 1292 int i, j;
1293 int last;
1294 uint8_t b;
e30c654b 1295
7bc95e2e 1296 ToSendReset();
e30c654b 1297
7bc95e2e 1298 // Start of Communication (Seq. Z)
1299 ToSend[++ToSendMax] = SEC_Z;
1300 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1301 last = 0;
1302
1303 size_t bytecount = nbytes(bits);
1304 // Generate send structure for the data bits
1305 for (i = 0; i < bytecount; i++) {
1306 // Get the current byte to send
1307 b = cmd[i];
1308 size_t bitsleft = MIN((bits-(i*8)),8);
1309
1310 for (j = 0; j < bitsleft; j++) {
1311 if (b & 1) {
1312 // Sequence X
1313 ToSend[++ToSendMax] = SEC_X;
1314 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1315 last = 1;
1316 } else {
1317 if (last == 0) {
1318 // Sequence Z
1319 ToSend[++ToSendMax] = SEC_Z;
1320 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1321 } else {
1322 // Sequence Y
1323 ToSend[++ToSendMax] = SEC_Y;
1324 last = 0;
1325 }
1326 }
1327 b >>= 1;
1328 }
1329
6a1f2d82 1330 // Only transmit parity bit if we transmitted a complete byte
7bc95e2e 1331 if (j == 8) {
1332 // Get the parity bit
6a1f2d82 1333 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
7bc95e2e 1334 // Sequence X
1335 ToSend[++ToSendMax] = SEC_X;
1336 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1337 last = 1;
1338 } else {
1339 if (last == 0) {
1340 // Sequence Z
1341 ToSend[++ToSendMax] = SEC_Z;
1342 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1343 } else {
1344 // Sequence Y
1345 ToSend[++ToSendMax] = SEC_Y;
1346 last = 0;
1347 }
1348 }
1349 }
1350 }
e30c654b 1351
7bc95e2e 1352 // End of Communication: Logic 0 followed by Sequence Y
1353 if (last == 0) {
1354 // Sequence Z
1355 ToSend[++ToSendMax] = SEC_Z;
1356 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1357 } else {
1358 // Sequence Y
1359 ToSend[++ToSendMax] = SEC_Y;
1360 last = 0;
1361 }
1362 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1363
7bc95e2e 1364 // Convert to length of command:
1365 ToSendMax++;
15c4dc5a 1366}
1367
195af472 1368//-----------------------------------------------------------------------------
1369// Prepare reader command to send to FPGA
1370//-----------------------------------------------------------------------------
6a1f2d82 1371void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
195af472 1372{
6a1f2d82 1373 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
195af472 1374}
1375
0c8d25eb 1376
9ca155ba
M
1377//-----------------------------------------------------------------------------
1378// Wait for commands from reader
1379// Stop when button is pressed (return 1) or field was gone (return 2)
1380// Or return 0 when command is captured
1381//-----------------------------------------------------------------------------
6a1f2d82 1382static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
9ca155ba
M
1383{
1384 *len = 0;
1385
1386 uint32_t timer = 0, vtime = 0;
1387 int analogCnt = 0;
1388 int analogAVG = 0;
1389
1390 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1391 // only, since we are receiving, not transmitting).
1392 // Signal field is off with the appropriate LED
1393 LED_D_OFF();
1394 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1395
1396 // Set ADC to read field strength
1397 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1398 AT91C_BASE_ADC->ADC_MR =
0c8d25eb 1399 ADC_MODE_PRESCALE(63) |
1400 ADC_MODE_STARTUP_TIME(1) |
1401 ADC_MODE_SAMPLE_HOLD_TIME(15);
9ca155ba
M
1402 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1403 // start ADC
1404 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1405
1406 // Now run a 'software UART' on the stream of incoming samples.
6a1f2d82 1407 UartInit(received, parity);
7bc95e2e 1408
1409 // Clear RXRDY:
1410 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1411
9ca155ba
M
1412 for(;;) {
1413 WDT_HIT();
1414
1415 if (BUTTON_PRESS()) return 1;
1416
1417 // test if the field exists
1418 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1419 analogCnt++;
1420 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1421 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1422 if (analogCnt >= 32) {
0c8d25eb 1423 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
9ca155ba
M
1424 vtime = GetTickCount();
1425 if (!timer) timer = vtime;
1426 // 50ms no field --> card to idle state
1427 if (vtime - timer > 50) return 2;
1428 } else
1429 if (timer) timer = 0;
1430 analogCnt = 0;
1431 analogAVG = 0;
1432 }
1433 }
7bc95e2e 1434
9ca155ba 1435 // receive and test the miller decoding
7bc95e2e 1436 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1437 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1438 if(MillerDecoding(b, 0)) {
1439 *len = Uart.len;
9ca155ba
M
1440 return 0;
1441 }
7bc95e2e 1442 }
1443
9ca155ba
M
1444 }
1445}
1446
9ca155ba 1447
6a1f2d82 1448static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
7bc95e2e 1449{
1450 uint8_t b;
1451 uint16_t i = 0;
1452 uint32_t ThisTransferTime;
1453
9ca155ba
M
1454 // Modulate Manchester
1455 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1456
1457 // include correction bit if necessary
1458 if (Uart.parityBits & 0x01) {
1459 correctionNeeded = TRUE;
1460 }
1461 if(correctionNeeded) {
9ca155ba
M
1462 // 1236, so correction bit needed
1463 i = 0;
7bc95e2e 1464 } else {
1465 i = 1;
9ca155ba 1466 }
7bc95e2e 1467
d714d3ef 1468 // clear receiving shift register and holding register
7bc95e2e 1469 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1470 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1471 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1472 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1473
7bc95e2e 1474 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1475 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1476 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1477 if (AT91C_BASE_SSC->SSC_RHR) break;
1478 }
1479
1480 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1481
1482 // Clear TXRDY:
1483 AT91C_BASE_SSC->SSC_THR = SEC_F;
1484
9ca155ba 1485 // send cycle
bb42a03e 1486 for(; i < respLen; ) {
9ca155ba 1487 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1488 AT91C_BASE_SSC->SSC_THR = resp[i++];
1489 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1490 }
7bc95e2e 1491
9ca155ba
M
1492 if(BUTTON_PRESS()) {
1493 break;
1494 }
1495 }
1496
7bc95e2e 1497 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
0c8d25eb 1498 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1499 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
7bc95e2e 1500 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1501 AT91C_BASE_SSC->SSC_THR = SEC_F;
1502 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1503 i++;
1504 }
1505 }
0c8d25eb 1506
7bc95e2e 1507 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1508
9ca155ba
M
1509 return 0;
1510}
1511
7bc95e2e 1512int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1513 Code4bitAnswerAsTag(resp);
0a39986e 1514 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1515 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1516 uint8_t par[1];
1517 GetParity(&resp, 1, par);
7bc95e2e 1518 EmLogTrace(Uart.output,
1519 Uart.len,
1520 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1521 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1522 Uart.parity,
7bc95e2e 1523 &resp,
1524 1,
1525 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1526 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1527 par);
0a39986e 1528 return res;
9ca155ba
M
1529}
1530
8f51ddb0 1531int EmSend4bit(uint8_t resp){
7bc95e2e 1532 return EmSend4bitEx(resp, false);
8f51ddb0
M
1533}
1534
6a1f2d82 1535int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
7bc95e2e 1536 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1537 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1538 // do the tracing for the previous reader request and this tag answer:
1539 EmLogTrace(Uart.output,
1540 Uart.len,
1541 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1542 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1543 Uart.parity,
7bc95e2e 1544 resp,
1545 respLen,
1546 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1547 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1548 par);
8f51ddb0
M
1549 return res;
1550}
1551
6a1f2d82 1552int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1553 uint8_t par[MAX_PARITY_SIZE];
1554 GetParity(resp, respLen, par);
1555 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
8f51ddb0
M
1556}
1557
6a1f2d82 1558int EmSendCmd(uint8_t *resp, uint16_t respLen){
1559 uint8_t par[MAX_PARITY_SIZE];
1560 GetParity(resp, respLen, par);
1561 return EmSendCmdExPar(resp, respLen, false, par);
8f51ddb0
M
1562}
1563
6a1f2d82 1564int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
7bc95e2e 1565 return EmSendCmdExPar(resp, respLen, false, par);
1566}
1567
6a1f2d82 1568bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1569 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
7bc95e2e 1570{
1571 if (tracing) {
1572 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1573 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1574 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1575 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1576 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1577 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1578 reader_EndTime = tag_StartTime - exact_fdt;
1579 reader_StartTime = reader_EndTime - reader_modlen;
6a1f2d82 1580 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
7bc95e2e 1581 return FALSE;
6a1f2d82 1582 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
7bc95e2e 1583 } else {
1584 return TRUE;
1585 }
9ca155ba
M
1586}
1587
15c4dc5a 1588//-----------------------------------------------------------------------------
1589// Wait a certain time for tag response
1590// If a response is captured return TRUE
e691fc45 1591// If it takes too long return FALSE
15c4dc5a 1592//-----------------------------------------------------------------------------
6a1f2d82 1593static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
15c4dc5a 1594{
52bfb955 1595 uint32_t c;
e691fc45 1596
15c4dc5a 1597 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1598 // only, since we are receiving, not transmitting).
1599 // Signal field is on with the appropriate LED
1600 LED_D_ON();
1601 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1602
534983d7 1603 // Now get the answer from the card
6a1f2d82 1604 DemodInit(receivedResponse, receivedResponsePar);
15c4dc5a 1605
7bc95e2e 1606 // clear RXRDY:
1607 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1608
15c4dc5a 1609 c = 0;
1610 for(;;) {
534983d7 1611 WDT_HIT();
15c4dc5a 1612
534983d7 1613 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1614 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1615 if(ManchesterDecoding(b, offset, 0)) {
1616 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1617 return TRUE;
19a700a8 1618 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
7bc95e2e 1619 return FALSE;
15c4dc5a 1620 }
534983d7 1621 }
1622 }
15c4dc5a 1623}
1624
6a1f2d82 1625void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
15c4dc5a 1626{
6a1f2d82 1627 CodeIso14443aBitsAsReaderPar(frame, bits, par);
dfc3c505 1628
7bc95e2e 1629 // Send command to tag
1630 TransmitFor14443a(ToSend, ToSendMax, timing);
1631 if(trigger)
1632 LED_A_ON();
dfc3c505 1633
7bc95e2e 1634 // Log reader command in trace buffer
1635 if (tracing) {
6a1f2d82 1636 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
7bc95e2e 1637 }
15c4dc5a 1638}
1639
6a1f2d82 1640void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
dfc3c505 1641{
6a1f2d82 1642 ReaderTransmitBitsPar(frame, len*8, par, timing);
dfc3c505 1643}
15c4dc5a 1644
6a1f2d82 1645void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
e691fc45 1646{
1647 // Generate parity and redirect
6a1f2d82 1648 uint8_t par[MAX_PARITY_SIZE];
1649 GetParity(frame, len/8, par);
1650 ReaderTransmitBitsPar(frame, len, par, timing);
e691fc45 1651}
1652
6a1f2d82 1653void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
15c4dc5a 1654{
1655 // Generate parity and redirect
6a1f2d82 1656 uint8_t par[MAX_PARITY_SIZE];
1657 GetParity(frame, len, par);
1658 ReaderTransmitBitsPar(frame, len*8, par, timing);
15c4dc5a 1659}
1660
6a1f2d82 1661int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
e691fc45 1662{
6a1f2d82 1663 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
7bc95e2e 1664 if (tracing) {
6a1f2d82 1665 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1666 }
e691fc45 1667 return Demod.len;
1668}
1669
6a1f2d82 1670int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
15c4dc5a 1671{
6a1f2d82 1672 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
7bc95e2e 1673 if (tracing) {
6a1f2d82 1674 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1675 }
e691fc45 1676 return Demod.len;
f89c7050
M
1677}
1678
e691fc45 1679/* performs iso14443a anticollision procedure
534983d7 1680 * fills the uid pointer unless NULL
1681 * fills resp_data unless NULL */
6a1f2d82 1682int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1683 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1684 uint8_t sel_all[] = { 0x93,0x20 };
1685 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1686 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
f71f4deb 1687 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1688 uint8_t resp_par[MAX_PARITY_SIZE];
6a1f2d82 1689 byte_t uid_resp[4];
1690 size_t uid_resp_len;
1691
1692 uint8_t sak = 0x04; // cascade uid
1693 int cascade_level = 0;
1694 int len;
1695
1696 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
9492e0b0 1697 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1698
6a1f2d82 1699 // Receive the ATQA
1700 if(!ReaderReceive(resp, resp_par)) return 0;
6a1f2d82 1701
1702 if(p_hi14a_card) {
1703 memcpy(p_hi14a_card->atqa, resp, 2);
1704 p_hi14a_card->uidlen = 0;
1705 memset(p_hi14a_card->uid,0,10);
1706 }
5f6d6c90 1707
6a1f2d82 1708 // clear uid
1709 if (uid_ptr) {
1710 memset(uid_ptr,0,10);
1711 }
79a73ab2 1712
ee1eadee 1713 // check for proprietary anticollision:
1714 if ((resp[0] & 0x1F) == 0) {
1715 return 3;
1716 }
1717
6a1f2d82 1718 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1719 // which case we need to make a cascade 2 request and select - this is a long UID
1720 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1721 for(; sak & 0x04; cascade_level++) {
1722 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1723 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1724
1725 // SELECT_ALL
1726 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1727 if (!ReaderReceive(resp, resp_par)) return 0;
1728
1729 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1730 memset(uid_resp, 0, 4);
1731 uint16_t uid_resp_bits = 0;
1732 uint16_t collision_answer_offset = 0;
1733 // anti-collision-loop:
1734 while (Demod.collisionPos) {
1735 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1736 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1737 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
758f1fd1 1738 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
6a1f2d82 1739 }
1740 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1741 uid_resp_bits++;
1742 // construct anticollosion command:
1743 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1744 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1745 sel_uid[2+i] = uid_resp[i];
1746 }
1747 collision_answer_offset = uid_resp_bits%8;
1748 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1749 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
e691fc45 1750 }
6a1f2d82 1751 // finally, add the last bits and BCC of the UID
1752 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1753 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1754 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
e691fc45 1755 }
e691fc45 1756
6a1f2d82 1757 } else { // no collision, use the response to SELECT_ALL as current uid
1758 memcpy(uid_resp, resp, 4);
1759 }
1760 uid_resp_len = 4;
5f6d6c90 1761
6a1f2d82 1762 // calculate crypto UID. Always use last 4 Bytes.
1763 if(cuid_ptr) {
1764 *cuid_ptr = bytes_to_num(uid_resp, 4);
1765 }
e30c654b 1766
6a1f2d82 1767 // Construct SELECT UID command
1768 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1769 memcpy(sel_uid+2, uid_resp, 4); // the UID
1770 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1771 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1772 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1773
1774 // Receive the SAK
1775 if (!ReaderReceive(resp, resp_par)) return 0;
1776 sak = resp[0];
1777
52ab55ab 1778 // Test if more parts of the uid are coming
6a1f2d82 1779 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1780 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1781 // http://www.nxp.com/documents/application_note/AN10927.pdf
6a1f2d82 1782 uid_resp[0] = uid_resp[1];
1783 uid_resp[1] = uid_resp[2];
1784 uid_resp[2] = uid_resp[3];
1785
1786 uid_resp_len = 3;
1787 }
5f6d6c90 1788
6a1f2d82 1789 if(uid_ptr) {
1790 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1791 }
5f6d6c90 1792
6a1f2d82 1793 if(p_hi14a_card) {
1794 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1795 p_hi14a_card->uidlen += uid_resp_len;
1796 }
1797 }
79a73ab2 1798
6a1f2d82 1799 if(p_hi14a_card) {
1800 p_hi14a_card->sak = sak;
1801 p_hi14a_card->ats_len = 0;
1802 }
534983d7 1803
3fe4ff4f 1804 // non iso14443a compliant tag
1805 if( (sak & 0x20) == 0) return 2;
534983d7 1806
6a1f2d82 1807 // Request for answer to select
1808 AppendCrc14443a(rats, 2);
1809 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 1810
6a1f2d82 1811 if (!(len = ReaderReceive(resp, resp_par))) return 0;
5191b3d1 1812
3fe4ff4f 1813
6a1f2d82 1814 if(p_hi14a_card) {
1815 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1816 p_hi14a_card->ats_len = len;
1817 }
5f6d6c90 1818
6a1f2d82 1819 // reset the PCB block number
1820 iso14_pcb_blocknum = 0;
19a700a8 1821
1822 // set default timeout based on ATS
1823 iso14a_set_ATS_timeout(resp);
1824
6a1f2d82 1825 return 1;
7e758047 1826}
15c4dc5a 1827
7bc95e2e 1828void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 1829 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 1830 // Set up the synchronous serial port
1831 FpgaSetupSsc();
7bc95e2e 1832 // connect Demodulated Signal to ADC:
7e758047 1833 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 1834
7e758047 1835 // Signal field is on with the appropriate LED
7bc95e2e 1836 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1837 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1838 LED_D_ON();
1839 } else {
1840 LED_D_OFF();
1841 }
1842 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 1843
7bc95e2e 1844 // Start the timer
1845 StartCountSspClk();
1846
1847 DemodReset();
1848 UartReset();
1849 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1850 iso14a_set_timeout(1050); // 10ms default
7e758047 1851}
15c4dc5a 1852
6a1f2d82 1853int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1854 uint8_t parity[MAX_PARITY_SIZE];
534983d7 1855 uint8_t real_cmd[cmd_len+4];
1856 real_cmd[0] = 0x0a; //I-Block
b0127e65 1857 // put block number into the PCB
1858 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 1859 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1860 memcpy(real_cmd+2, cmd, cmd_len);
1861 AppendCrc14443a(real_cmd,cmd_len+2);
1862
9492e0b0 1863 ReaderTransmit(real_cmd, cmd_len+4, NULL);
6a1f2d82 1864 size_t len = ReaderReceive(data, parity);
1865 uint8_t *data_bytes = (uint8_t *) data;
b0127e65 1866 if (!len)
1867 return 0; //DATA LINK ERROR
1868 // if we received an I- or R(ACK)-Block with a block number equal to the
1869 // current block number, toggle the current block number
1870 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1871 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1872 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1873 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1874 {
1875 iso14_pcb_blocknum ^= 1;
1876 }
1877
534983d7 1878 return len;
1879}
1880
7e758047 1881//-----------------------------------------------------------------------------
1882// Read an ISO 14443a tag. Send out commands and store answers.
1883//
1884//-----------------------------------------------------------------------------
7bc95e2e 1885void ReaderIso14443a(UsbCommand *c)
7e758047 1886{
534983d7 1887 iso14a_command_t param = c->arg[0];
7bc95e2e 1888 uint8_t *cmd = c->d.asBytes;
04bc1c66 1889 size_t len = c->arg[1] & 0xffff;
1890 size_t lenbits = c->arg[1] >> 16;
1891 uint32_t timeout = c->arg[2];
9492e0b0 1892 uint32_t arg0 = 0;
1893 byte_t buf[USB_CMD_DATA_SIZE];
6a1f2d82 1894 uint8_t par[MAX_PARITY_SIZE];
902cb3c0 1895
5f6d6c90 1896 if(param & ISO14A_CONNECT) {
3000dc4e 1897 clear_trace();
5f6d6c90 1898 }
e691fc45 1899
3000dc4e 1900 set_tracing(TRUE);
e30c654b 1901
79a73ab2 1902 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1903 iso14a_set_trigger(TRUE);
9492e0b0 1904 }
15c4dc5a 1905
534983d7 1906 if(param & ISO14A_CONNECT) {
7bc95e2e 1907 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 1908 if(!(param & ISO14A_NO_SELECT)) {
1909 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1910 arg0 = iso14443a_select_card(NULL,card,NULL);
1911 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1912 }
534983d7 1913 }
e30c654b 1914
534983d7 1915 if(param & ISO14A_SET_TIMEOUT) {
04bc1c66 1916 iso14a_set_timeout(timeout);
534983d7 1917 }
e30c654b 1918
534983d7 1919 if(param & ISO14A_APDU) {
902cb3c0 1920 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 1921 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1922 }
e30c654b 1923
534983d7 1924 if(param & ISO14A_RAW) {
1925 if(param & ISO14A_APPEND_CRC) {
1926 AppendCrc14443a(cmd,len);
1927 len += 2;
c7324bef 1928 if (lenbits) lenbits += 16;
15c4dc5a 1929 }
5f6d6c90 1930 if(lenbits>0) {
6a1f2d82 1931 GetParity(cmd, lenbits/8, par);
1932 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
5f6d6c90 1933 } else {
1934 ReaderTransmit(cmd,len, NULL);
1935 }
6a1f2d82 1936 arg0 = ReaderReceive(buf, par);
9492e0b0 1937 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1938 }
15c4dc5a 1939
79a73ab2 1940 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1941 iso14a_set_trigger(FALSE);
9492e0b0 1942 }
15c4dc5a 1943
79a73ab2 1944 if(param & ISO14A_NO_DISCONNECT) {
534983d7 1945 return;
9492e0b0 1946 }
15c4dc5a 1947
15c4dc5a 1948 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1949 LEDsoff();
15c4dc5a 1950}
b0127e65 1951
1c611bbd 1952
1c611bbd 1953// Determine the distance between two nonces.
1954// Assume that the difference is small, but we don't know which is first.
1955// Therefore try in alternating directions.
1956int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1957
1958 uint16_t i;
1959 uint32_t nttmp1, nttmp2;
e772353f 1960
1c611bbd 1961 if (nt1 == nt2) return 0;
1962
1963 nttmp1 = nt1;
1964 nttmp2 = nt2;
1965
1966 for (i = 1; i < 32768; i++) {
1967 nttmp1 = prng_successor(nttmp1, 1);
1968 if (nttmp1 == nt2) return i;
1969 nttmp2 = prng_successor(nttmp2, 1);
1970 if (nttmp2 == nt1) return -i;
1971 }
1972
1973 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 1974}
1975
e772353f 1976
1c611bbd 1977//-----------------------------------------------------------------------------
1978// Recover several bits of the cypher stream. This implements (first stages of)
1979// the algorithm described in "The Dark Side of Security by Obscurity and
1980// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1981// (article by Nicolas T. Courtois, 2009)
1982//-----------------------------------------------------------------------------
1983void ReaderMifare(bool first_try)
1984{
1985 // Mifare AUTH
1986 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1987 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1988 static uint8_t mf_nr_ar3;
e772353f 1989
f71f4deb 1990 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
1991 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
7bc95e2e 1992
f71f4deb 1993 // free eventually allocated BigBuf memory. We want all for tracing.
1994 BigBuf_free();
1995
3000dc4e
MHS
1996 clear_trace();
1997 set_tracing(TRUE);
e772353f 1998
1c611bbd 1999 byte_t nt_diff = 0;
6a1f2d82 2000 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1c611bbd 2001 static byte_t par_low = 0;
2002 bool led_on = TRUE;
ca4714cd 2003 uint8_t uid[10] ={0};
1c611bbd 2004 uint32_t cuid;
e772353f 2005
6a1f2d82 2006 uint32_t nt = 0;
2ed270a8 2007 uint32_t previous_nt = 0;
1c611bbd 2008 static uint32_t nt_attacked = 0;
3fe4ff4f 2009 byte_t par_list[8] = {0x00};
2010 byte_t ks_list[8] = {0x00};
e772353f 2011
1c611bbd 2012 static uint32_t sync_time;
2013 static uint32_t sync_cycles;
2014 int catch_up_cycles = 0;
2015 int last_catch_up = 0;
2016 uint16_t consecutive_resyncs = 0;
2017 int isOK = 0;
e772353f 2018
1c611bbd 2019 if (first_try) {
1c611bbd 2020 mf_nr_ar3 = 0;
7bc95e2e 2021 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2022 sync_time = GetCountSspClk() & 0xfffffff8;
1c611bbd 2023 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2024 nt_attacked = 0;
2025 nt = 0;
6a1f2d82 2026 par[0] = 0;
1c611bbd 2027 }
2028 else {
2029 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1c611bbd 2030 mf_nr_ar3++;
2031 mf_nr_ar[3] = mf_nr_ar3;
6a1f2d82 2032 par[0] = par_low;
1c611bbd 2033 }
e30c654b 2034
15c4dc5a 2035 LED_A_ON();
2036 LED_B_OFF();
2037 LED_C_OFF();
1c611bbd 2038
7bc95e2e 2039
1c611bbd 2040 for(uint16_t i = 0; TRUE; i++) {
2041
2042 WDT_HIT();
e30c654b 2043
1c611bbd 2044 // Test if the action was cancelled
2045 if(BUTTON_PRESS()) {
2046 break;
2047 }
2048
2049 LED_C_ON();
e30c654b 2050
1c611bbd 2051 if(!iso14443a_select_card(uid, NULL, &cuid)) {
9492e0b0 2052 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 2053 continue;
2054 }
2055
9492e0b0 2056 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
1c611bbd 2057 catch_up_cycles = 0;
2058
2059 // if we missed the sync time already, advance to the next nonce repeat
7bc95e2e 2060 while(GetCountSspClk() > sync_time) {
9492e0b0 2061 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
1c611bbd 2062 }
e30c654b 2063
9492e0b0 2064 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2065 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
f89c7050 2066
1c611bbd 2067 // Receive the (4 Byte) "random" nonce
6a1f2d82 2068 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2069 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2070 continue;
2071 }
2072
1c611bbd 2073 previous_nt = nt;
2074 nt = bytes_to_num(receivedAnswer, 4);
2075
2076 // Transmit reader nonce with fake par
9492e0b0 2077 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2078
2079 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2080 int nt_distance = dist_nt(previous_nt, nt);
2081 if (nt_distance == 0) {
2082 nt_attacked = nt;
2083 }
2084 else {
2085 if (nt_distance == -99999) { // invalid nonce received, try again
2086 continue;
2087 }
2088 sync_cycles = (sync_cycles - nt_distance);
9492e0b0 2089 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
1c611bbd 2090 continue;
2091 }
2092 }
2093
2094 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2095 catch_up_cycles = -dist_nt(nt_attacked, nt);
2096 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2097 catch_up_cycles = 0;
2098 continue;
2099 }
2100 if (catch_up_cycles == last_catch_up) {
2101 consecutive_resyncs++;
2102 }
2103 else {
2104 last_catch_up = catch_up_cycles;
2105 consecutive_resyncs = 0;
2106 }
2107 if (consecutive_resyncs < 3) {
9492e0b0 2108 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2109 }
2110 else {
2111 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2112 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
1c611bbd 2113 }
2114 continue;
2115 }
2116
2117 consecutive_resyncs = 0;
2118
2119 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
6a1f2d82 2120 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
1c611bbd 2121 {
9492e0b0 2122 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2123
2124 if (nt_diff == 0)
2125 {
6a1f2d82 2126 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
1c611bbd 2127 }
2128
2129 led_on = !led_on;
2130 if(led_on) LED_B_ON(); else LED_B_OFF();
2131
6a1f2d82 2132 par_list[nt_diff] = SwapBits(par[0], 8);
1c611bbd 2133 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2134
2135 // Test if the information is complete
2136 if (nt_diff == 0x07) {
2137 isOK = 1;
2138 break;
2139 }
2140
2141 nt_diff = (nt_diff + 1) & 0x07;
2142 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
6a1f2d82 2143 par[0] = par_low;
1c611bbd 2144 } else {
2145 if (nt_diff == 0 && first_try)
2146 {
6a1f2d82 2147 par[0]++;
1c611bbd 2148 } else {
6a1f2d82 2149 par[0] = ((par[0] & 0x1F) + 1) | par_low;
1c611bbd 2150 }
2151 }
2152 }
2153
1c611bbd 2154
2155 mf_nr_ar[3] &= 0x1F;
2156
2157 byte_t buf[28];
2158 memcpy(buf + 0, uid, 4);
2159 num_to_bytes(nt, 4, buf + 4);
2160 memcpy(buf + 8, par_list, 8);
2161 memcpy(buf + 16, ks_list, 8);
2162 memcpy(buf + 24, mf_nr_ar, 4);
2163
2164 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2165
2166 // Thats it...
2167 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2168 LEDsoff();
7bc95e2e 2169
3000dc4e 2170 set_tracing(FALSE);
20f9a2a1 2171}
1c611bbd 2172
d2f487af 2173/**
2174 *MIFARE 1K simulate.
2175 *
2176 *@param flags :
2177 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2178 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2179 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2180 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2181 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2182 */
2183void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2184{
50193c1e 2185 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2186 int _7BUID = 0;
9ca155ba 2187 int vHf = 0; // in mV
8f51ddb0 2188 int res;
0a39986e
M
2189 uint32_t selTimer = 0;
2190 uint32_t authTimer = 0;
6a1f2d82 2191 uint16_t len = 0;
8f51ddb0 2192 uint8_t cardWRBL = 0;
9ca155ba
M
2193 uint8_t cardAUTHSC = 0;
2194 uint8_t cardAUTHKEY = 0xff; // no authentication
51969283 2195 uint32_t cardRr = 0;
9ca155ba 2196 uint32_t cuid = 0;
d2f487af 2197 //uint32_t rn_enc = 0;
51969283 2198 uint32_t ans = 0;
0014cb46
M
2199 uint32_t cardINTREG = 0;
2200 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2201 struct Crypto1State mpcs = {0, 0};
2202 struct Crypto1State *pcs;
2203 pcs = &mpcs;
d2f487af 2204 uint32_t numReads = 0;//Counts numer of times reader read a block
f71f4deb 2205 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2206 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2207 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2208 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
9ca155ba 2209
d2f487af 2210 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2211 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2212 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2213 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2214 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2215
d2f487af 2216 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2217 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2218
d2f487af 2219 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2220 // This can be used in a reader-only attack.
2221 // (it can also be retrieved via 'hf 14a list', but hey...
2222 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2223 uint8_t ar_nr_collected = 0;
0014cb46 2224
f71f4deb 2225 // free eventually allocated BigBuf memory but keep Emulator Memory
2226 BigBuf_free_keep_EM();
0c8d25eb 2227
0a39986e 2228 // clear trace
3000dc4e
MHS
2229 clear_trace();
2230 set_tracing(TRUE);
51969283 2231
7bc95e2e 2232 // Authenticate response - nonce
51969283 2233 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2234
d2f487af 2235 //-- Determine the UID
2236 // Can be set from emulator memory, incoming data
2237 // and can be 7 or 4 bytes long
7bc95e2e 2238 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2239 {
2240 // 4B uid comes from data-portion of packet
2241 memcpy(rUIDBCC1,datain,4);
8556b852 2242 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2243
7bc95e2e 2244 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2245 // 7B uid comes from data-portion of packet
2246 memcpy(&rUIDBCC1[1],datain,3);
2247 memcpy(rUIDBCC2, datain+3, 4);
2248 _7BUID = true;
7bc95e2e 2249 } else {
d2f487af 2250 // get UID from emul memory
2251 emlGetMemBt(receivedCmd, 7, 1);
2252 _7BUID = !(receivedCmd[0] == 0x00);
2253 if (!_7BUID) { // ---------- 4BUID
2254 emlGetMemBt(rUIDBCC1, 0, 4);
2255 } else { // ---------- 7BUID
2256 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2257 emlGetMemBt(rUIDBCC2, 3, 4);
2258 }
2259 }
7bc95e2e 2260
d2f487af 2261 /*
2262 * Regardless of what method was used to set the UID, set fifth byte and modify
2263 * the ATQA for 4 or 7-byte UID
2264 */
d2f487af 2265 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2266 if (_7BUID) {
d2f487af 2267 rATQA[0] = 0x44;
8556b852 2268 rUIDBCC1[0] = 0x88;
8556b852
M
2269 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2270 }
2271
9ca155ba 2272 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 2273 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
9ca155ba 2274
9ca155ba 2275
d2f487af 2276 if (MF_DBGLEVEL >= 1) {
2277 if (!_7BUID) {
b03c0f2d 2278 Dbprintf("4B UID: %02x%02x%02x%02x",
2279 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
7bc95e2e 2280 } else {
b03c0f2d 2281 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2282 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2283 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
d2f487af 2284 }
2285 }
7bc95e2e 2286
2287 bool finished = FALSE;
d2f487af 2288 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2289 WDT_HIT();
9ca155ba
M
2290
2291 // find reader field
9ca155ba 2292 if (cardSTATE == MFEMUL_NOFIELD) {
0c8d25eb 2293 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
9ca155ba 2294 if (vHf > MF_MINFIELDV) {
0014cb46 2295 cardSTATE_TO_IDLE();
9ca155ba
M
2296 LED_A_ON();
2297 }
2298 }
d2f487af 2299 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2300
d2f487af 2301 //Now, get data
2302
6a1f2d82 2303 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
d2f487af 2304 if (res == 2) { //Field is off!
2305 cardSTATE = MFEMUL_NOFIELD;
2306 LEDsoff();
2307 continue;
7bc95e2e 2308 } else if (res == 1) {
2309 break; //return value 1 means button press
2310 }
2311
d2f487af 2312 // REQ or WUP request in ANY state and WUP in HALTED state
2313 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2314 selTimer = GetTickCount();
2315 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2316 cardSTATE = MFEMUL_SELECT1;
2317
2318 // init crypto block
2319 LED_B_OFF();
2320 LED_C_OFF();
2321 crypto1_destroy(pcs);
2322 cardAUTHKEY = 0xff;
2323 continue;
0a39986e 2324 }
7bc95e2e 2325
50193c1e 2326 switch (cardSTATE) {
d2f487af 2327 case MFEMUL_NOFIELD:
2328 case MFEMUL_HALTED:
50193c1e 2329 case MFEMUL_IDLE:{
6a1f2d82 2330 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
50193c1e
M
2331 break;
2332 }
2333 case MFEMUL_SELECT1:{
9ca155ba
M
2334 // select all
2335 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2336 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2337 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2338 break;
9ca155ba
M
2339 }
2340
d2f487af 2341 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2342 {
2343 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2344 }
9ca155ba 2345 // select card
0a39986e
M
2346 if (len == 9 &&
2347 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
bfb6a143 2348 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
9ca155ba 2349 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2350 if (!_7BUID) {
2351 cardSTATE = MFEMUL_WORK;
0014cb46
M
2352 LED_B_ON();
2353 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2354 break;
8556b852
M
2355 } else {
2356 cardSTATE = MFEMUL_SELECT2;
8556b852 2357 }
9ca155ba 2358 }
50193c1e
M
2359 break;
2360 }
d2f487af 2361 case MFEMUL_AUTH1:{
2362 if( len != 8)
2363 {
2364 cardSTATE_TO_IDLE();
6a1f2d82 2365 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2366 break;
2367 }
0c8d25eb 2368
d2f487af 2369 uint32_t ar = bytes_to_num(receivedCmd, 4);
6a1f2d82 2370 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
d2f487af 2371
2372 //Collect AR/NR
2373 if(ar_nr_collected < 2){
273b57a7 2374 if(ar_nr_responses[2] != ar)
2375 {// Avoid duplicates... probably not necessary, ar should vary.
d2f487af 2376 ar_nr_responses[ar_nr_collected*4] = cuid;
2377 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2378 ar_nr_responses[ar_nr_collected*4+2] = ar;
2379 ar_nr_responses[ar_nr_collected*4+3] = nr;
273b57a7 2380 ar_nr_collected++;
d2f487af 2381 }
2382 }
2383
2384 // --- crypto
2385 crypto1_word(pcs, ar , 1);
2386 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2387
2388 // test if auth OK
2389 if (cardRr != prng_successor(nonce, 64)){
b03c0f2d 2390 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2391 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2392 cardRr, prng_successor(nonce, 64));
7bc95e2e 2393 // Shouldn't we respond anything here?
d2f487af 2394 // Right now, we don't nack or anything, which causes the
2395 // reader to do a WUPA after a while. /Martin
b03c0f2d 2396 // -- which is the correct response. /piwi
d2f487af 2397 cardSTATE_TO_IDLE();
6a1f2d82 2398 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2399 break;
2400 }
2401
2402 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2403
2404 num_to_bytes(ans, 4, rAUTH_AT);
2405 // --- crypto
2406 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2407 LED_C_ON();
2408 cardSTATE = MFEMUL_WORK;
b03c0f2d 2409 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2410 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2411 GetTickCount() - authTimer);
d2f487af 2412 break;
2413 }
50193c1e 2414 case MFEMUL_SELECT2:{
7bc95e2e 2415 if (!len) {
6a1f2d82 2416 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2417 break;
2418 }
8556b852 2419 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2420 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2421 break;
2422 }
9ca155ba 2423
8556b852
M
2424 // select 2 card
2425 if (len == 9 &&
2426 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2427 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2428 cuid = bytes_to_num(rUIDBCC2, 4);
2429 cardSTATE = MFEMUL_WORK;
2430 LED_B_ON();
0014cb46 2431 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2432 break;
2433 }
0014cb46
M
2434
2435 // i guess there is a command). go into the work state.
7bc95e2e 2436 if (len != 4) {
6a1f2d82 2437 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2438 break;
2439 }
0014cb46 2440 cardSTATE = MFEMUL_WORK;
d2f487af 2441 //goto lbWORK;
2442 //intentional fall-through to the next case-stmt
50193c1e 2443 }
51969283 2444
7bc95e2e 2445 case MFEMUL_WORK:{
2446 if (len == 0) {
6a1f2d82 2447 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2448 break;
2449 }
2450
d2f487af 2451 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2452
7bc95e2e 2453 if(encrypted_data) {
51969283
M
2454 // decrypt seqence
2455 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2456 }
7bc95e2e 2457
d2f487af 2458 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2459 authTimer = GetTickCount();
2460 cardAUTHSC = receivedCmd[1] / 4; // received block num
2461 cardAUTHKEY = receivedCmd[0] - 0x60;
2462 crypto1_destroy(pcs);//Added by martin
2463 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2464
d2f487af 2465 if (!encrypted_data) { // first authentication
b03c0f2d 2466 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2467
d2f487af 2468 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2469 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2470 } else { // nested authentication
b03c0f2d 2471 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2472 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2473 num_to_bytes(ans, 4, rAUTH_AT);
2474 }
0c8d25eb 2475
d2f487af 2476 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2477 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2478 cardSTATE = MFEMUL_AUTH1;
2479 break;
51969283 2480 }
7bc95e2e 2481
8f51ddb0
M
2482 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2483 // BUT... ACK --> NACK
2484 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2485 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2486 break;
2487 }
2488
2489 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2490 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2491 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2492 break;
0a39986e
M
2493 }
2494
7bc95e2e 2495 if(len != 4) {
6a1f2d82 2496 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2497 break;
2498 }
d2f487af 2499
2500 if(receivedCmd[0] == 0x30 // read block
2501 || receivedCmd[0] == 0xA0 // write block
b03c0f2d 2502 || receivedCmd[0] == 0xC0 // inc
2503 || receivedCmd[0] == 0xC1 // dec
2504 || receivedCmd[0] == 0xC2 // restore
7bc95e2e 2505 || receivedCmd[0] == 0xB0) { // transfer
2506 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2507 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2508 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2509 break;
2510 }
2511
7bc95e2e 2512 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2513 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
d2f487af 2514 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2515 break;
2516 }
d2f487af 2517 }
2518 // read block
2519 if (receivedCmd[0] == 0x30) {
b03c0f2d 2520 if (MF_DBGLEVEL >= 4) {
d2f487af 2521 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2522 }
8f51ddb0
M
2523 emlGetMem(response, receivedCmd[1], 1);
2524 AppendCrc14443a(response, 16);
6a1f2d82 2525 mf_crypto1_encrypt(pcs, response, 18, response_par);
2526 EmSendCmdPar(response, 18, response_par);
d2f487af 2527 numReads++;
7bc95e2e 2528 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
d2f487af 2529 Dbprintf("%d reads done, exiting", numReads);
2530 finished = true;
2531 }
0a39986e
M
2532 break;
2533 }
0a39986e 2534 // write block
d2f487af 2535 if (receivedCmd[0] == 0xA0) {
b03c0f2d 2536 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2537 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2538 cardSTATE = MFEMUL_WRITEBL2;
2539 cardWRBL = receivedCmd[1];
0a39986e 2540 break;
7bc95e2e 2541 }
0014cb46 2542 // increment, decrement, restore
d2f487af 2543 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
b03c0f2d 2544 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2545 if (emlCheckValBl(receivedCmd[1])) {
2546 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2547 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2548 break;
2549 }
2550 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2551 if (receivedCmd[0] == 0xC1)
2552 cardSTATE = MFEMUL_INTREG_INC;
2553 if (receivedCmd[0] == 0xC0)
2554 cardSTATE = MFEMUL_INTREG_DEC;
2555 if (receivedCmd[0] == 0xC2)
2556 cardSTATE = MFEMUL_INTREG_REST;
2557 cardWRBL = receivedCmd[1];
0014cb46
M
2558 break;
2559 }
0014cb46 2560 // transfer
d2f487af 2561 if (receivedCmd[0] == 0xB0) {
b03c0f2d 2562 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2563 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2564 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2565 else
2566 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2567 break;
2568 }
9ca155ba 2569 // halt
d2f487af 2570 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2571 LED_B_OFF();
0a39986e 2572 LED_C_OFF();
0014cb46
M
2573 cardSTATE = MFEMUL_HALTED;
2574 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
6a1f2d82 2575 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0a39986e 2576 break;
9ca155ba 2577 }
d2f487af 2578 // RATS
2579 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2580 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2581 break;
2582 }
d2f487af 2583 // command not allowed
2584 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2585 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2586 break;
8f51ddb0
M
2587 }
2588 case MFEMUL_WRITEBL2:{
2589 if (len == 18){
2590 mf_crypto1_decrypt(pcs, receivedCmd, len);
2591 emlSetMem(receivedCmd, cardWRBL, 1);
2592 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2593 cardSTATE = MFEMUL_WORK;
51969283 2594 } else {
0014cb46 2595 cardSTATE_TO_IDLE();
6a1f2d82 2596 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
8f51ddb0 2597 }
8f51ddb0 2598 break;
50193c1e 2599 }
0014cb46
M
2600
2601 case MFEMUL_INTREG_INC:{
2602 mf_crypto1_decrypt(pcs, receivedCmd, len);
2603 memcpy(&ans, receivedCmd, 4);
2604 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2605 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2606 cardSTATE_TO_IDLE();
2607 break;
7bc95e2e 2608 }
6a1f2d82 2609 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2610 cardINTREG = cardINTREG + ans;
2611 cardSTATE = MFEMUL_WORK;
2612 break;
2613 }
2614 case MFEMUL_INTREG_DEC:{
2615 mf_crypto1_decrypt(pcs, receivedCmd, len);
2616 memcpy(&ans, receivedCmd, 4);
2617 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2618 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2619 cardSTATE_TO_IDLE();
2620 break;
2621 }
6a1f2d82 2622 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2623 cardINTREG = cardINTREG - ans;
2624 cardSTATE = MFEMUL_WORK;
2625 break;
2626 }
2627 case MFEMUL_INTREG_REST:{
2628 mf_crypto1_decrypt(pcs, receivedCmd, len);
2629 memcpy(&ans, receivedCmd, 4);
2630 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2631 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2632 cardSTATE_TO_IDLE();
2633 break;
2634 }
6a1f2d82 2635 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2636 cardSTATE = MFEMUL_WORK;
2637 break;
2638 }
50193c1e 2639 }
50193c1e
M
2640 }
2641
9ca155ba
M
2642 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2643 LEDsoff();
2644
d2f487af 2645 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2646 {
2647 //May just aswell send the collected ar_nr in the response aswell
2648 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2649 }
d714d3ef 2650
d2f487af 2651 if(flags & FLAG_NR_AR_ATTACK)
2652 {
7bc95e2e 2653 if(ar_nr_collected > 1) {
d2f487af 2654 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
d714d3ef 2655 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
0c8d25eb 2656 ar_nr_responses[0], // UID
d2f487af 2657 ar_nr_responses[1], //NT
2658 ar_nr_responses[2], //AR1
2659 ar_nr_responses[3], //NR1
2660 ar_nr_responses[6], //AR2
2661 ar_nr_responses[7] //NR2
2662 );
7bc95e2e 2663 } else {
d2f487af 2664 Dbprintf("Failed to obtain two AR/NR pairs!");
7bc95e2e 2665 if(ar_nr_collected >0) {
d714d3ef 2666 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
d2f487af 2667 ar_nr_responses[0], // UID
2668 ar_nr_responses[1], //NT
2669 ar_nr_responses[2], //AR1
2670 ar_nr_responses[3] //NR1
2671 );
2672 }
2673 }
2674 }
3000dc4e 2675 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
0c8d25eb 2676
15c4dc5a 2677}
b62a5a84 2678
d2f487af 2679
2680
b62a5a84
M
2681//-----------------------------------------------------------------------------
2682// MIFARE sniffer.
2683//
2684//-----------------------------------------------------------------------------
5cd9ec01
M
2685void RAMFUNC SniffMifare(uint8_t param) {
2686 // param:
2687 // bit 0 - trigger from first card answer
2688 // bit 1 - trigger from first reader 7-bit request
39864b0b
M
2689
2690 // C(red) A(yellow) B(green)
b62a5a84
M
2691 LEDsoff();
2692 // init trace buffer
3000dc4e
MHS
2693 clear_trace();
2694 set_tracing(TRUE);
b62a5a84 2695
b62a5a84
M
2696 // The command (reader -> tag) that we're receiving.
2697 // The length of a received command will in most cases be no more than 18 bytes.
2698 // So 32 should be enough!
f71f4deb 2699 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2700 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
b62a5a84 2701 // The response (tag -> reader) that we're receiving.
f71f4deb 2702 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2703 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
b62a5a84
M
2704
2705 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2706 // into trace, along with its length and other annotations.
2707 //uint8_t *trace = (uint8_t *)BigBuf;
2708
f71f4deb 2709 // free eventually allocated BigBuf memory
2710 BigBuf_free();
2711 // allocate the DMA buffer, used to stream samples from the FPGA
2712 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
7bc95e2e 2713 uint8_t *data = dmaBuf;
2714 uint8_t previous_data = 0;
5cd9ec01
M
2715 int maxDataLen = 0;
2716 int dataLen = 0;
7bc95e2e 2717 bool ReaderIsActive = FALSE;
2718 bool TagIsActive = FALSE;
2719
2720 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
b62a5a84
M
2721
2722 // Set up the demodulator for tag -> reader responses.
6a1f2d82 2723 DemodInit(receivedResponse, receivedResponsePar);
b62a5a84
M
2724
2725 // Set up the demodulator for the reader -> tag commands
6a1f2d82 2726 UartInit(receivedCmd, receivedCmdPar);
b62a5a84
M
2727
2728 // Setup for the DMA.
7bc95e2e 2729 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 2730
b62a5a84 2731 LED_D_OFF();
39864b0b
M
2732
2733 // init sniffer
2734 MfSniffInit();
b62a5a84 2735
b62a5a84 2736 // And now we loop, receiving samples.
7bc95e2e 2737 for(uint32_t sniffCounter = 0; TRUE; ) {
2738
5cd9ec01
M
2739 if(BUTTON_PRESS()) {
2740 DbpString("cancelled by button");
7bc95e2e 2741 break;
5cd9ec01
M
2742 }
2743
b62a5a84
M
2744 LED_A_ON();
2745 WDT_HIT();
39864b0b 2746
7bc95e2e 2747 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2748 // check if a transaction is completed (timeout after 2000ms).
2749 // if yes, stop the DMA transfer and send what we have so far to the client
2750 if (MfSniffSend(2000)) {
2751 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2752 sniffCounter = 0;
2753 data = dmaBuf;
2754 maxDataLen = 0;
2755 ReaderIsActive = FALSE;
2756 TagIsActive = FALSE;
2757 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 2758 }
39864b0b 2759 }
7bc95e2e 2760
2761 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2762 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2763 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2764 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2765 } else {
2766 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
2767 }
2768 // test for length of buffer
7bc95e2e 2769 if(dataLen > maxDataLen) { // we are more behind than ever...
2770 maxDataLen = dataLen;
f71f4deb 2771 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
5cd9ec01 2772 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 2773 break;
b62a5a84
M
2774 }
2775 }
5cd9ec01 2776 if(dataLen < 1) continue;
b62a5a84 2777
7bc95e2e 2778 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
2779 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2780 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2781 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 2782 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
2783 }
2784 // secondary buffer sets as primary, secondary buffer was stopped
2785 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2786 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
2787 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2788 }
5cd9ec01
M
2789
2790 LED_A_OFF();
b62a5a84 2791
7bc95e2e 2792 if (sniffCounter & 0x01) {
b62a5a84 2793
7bc95e2e 2794 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2795 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2796 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2797 LED_C_INV();
6a1f2d82 2798 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
b62a5a84 2799
7bc95e2e 2800 /* And ready to receive another command. */
2801 UartReset();
2802
2803 /* And also reset the demod code */
2804 DemodReset();
2805 }
2806 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2807 }
2808
2809 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2810 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2811 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2812 LED_C_INV();
b62a5a84 2813
6a1f2d82 2814 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
39864b0b 2815
7bc95e2e 2816 // And ready to receive another response.
2817 DemodReset();
2818 }
2819 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2820 }
b62a5a84
M
2821 }
2822
7bc95e2e 2823 previous_data = *data;
2824 sniffCounter++;
5cd9ec01 2825 data++;
d714d3ef 2826 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 2827 data = dmaBuf;
b62a5a84 2828 }
7bc95e2e 2829
b62a5a84
M
2830 } // main cycle
2831
2832 DbpString("COMMAND FINISHED");
2833
55acbb2a 2834 FpgaDisableSscDma();
39864b0b
M
2835 MfSniffEnd();
2836
7bc95e2e 2837 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
b62a5a84 2838 LEDsoff();
3803d529 2839}
Impressum, Datenschutz