]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Gerhard de Koning Gans - May 2008 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Routines to support ISO 14443 type A. | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "string.h" | |
15 | ||
16 | #include "iso14443crc.h" | |
17 | ||
18 | static uint8_t *trace = (uint8_t *) BigBuf; | |
19 | static int traceLen = 0; | |
20 | static int rsamples = 0; | |
21 | static int tracing = TRUE; | |
22 | ||
23 | typedef enum { | |
24 | SEC_D = 1, | |
25 | SEC_E = 2, | |
26 | SEC_F = 3, | |
27 | SEC_X = 4, | |
28 | SEC_Y = 5, | |
29 | SEC_Z = 6 | |
30 | } SecType; | |
31 | ||
32 | static const uint8_t OddByteParity[256] = { | |
33 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
34 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
35 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
36 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
37 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
38 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
39 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
40 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
41 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
42 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
43 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
44 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
45 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
46 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
47 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
48 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 | |
49 | }; | |
50 | ||
51 | // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT | |
52 | #define RECV_CMD_OFFSET 3032 | |
53 | #define RECV_RES_OFFSET 3096 | |
54 | #define DMA_BUFFER_OFFSET 3160 | |
55 | #define DMA_BUFFER_SIZE 4096 | |
56 | #define TRACE_LENGTH 3000 | |
57 | ||
58 | //----------------------------------------------------------------------------- | |
59 | // Generate the parity value for a byte sequence | |
60 | // | |
61 | //----------------------------------------------------------------------------- | |
62 | uint32_t GetParity(const uint8_t * pbtCmd, int iLen) | |
63 | { | |
64 | int i; | |
65 | uint32_t dwPar = 0; | |
66 | ||
67 | // Generate the encrypted data | |
68 | for (i = 0; i < iLen; i++) { | |
69 | // Save the encrypted parity bit | |
70 | dwPar |= ((OddByteParity[pbtCmd[i]]) << i); | |
71 | } | |
72 | return dwPar; | |
73 | } | |
74 | ||
75 | static void AppendCrc14443a(uint8_t* data, int len) | |
76 | { | |
77 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); | |
78 | } | |
79 | ||
80 | int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader) | |
81 | { | |
82 | // Return when trace is full | |
83 | if (traceLen >= TRACE_LENGTH) return FALSE; | |
84 | ||
85 | // Trace the random, i'm curious | |
86 | rsamples += iSamples; | |
87 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
88 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
89 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
90 | trace[traceLen++] = ((rsamples >> 24) & 0xff); | |
91 | if (!bReader) { | |
92 | trace[traceLen - 1] |= 0x80; | |
93 | } | |
94 | trace[traceLen++] = ((dwParity >> 0) & 0xff); | |
95 | trace[traceLen++] = ((dwParity >> 8) & 0xff); | |
96 | trace[traceLen++] = ((dwParity >> 16) & 0xff); | |
97 | trace[traceLen++] = ((dwParity >> 24) & 0xff); | |
98 | trace[traceLen++] = iLen; | |
99 | memcpy(trace + traceLen, btBytes, iLen); | |
100 | traceLen += iLen; | |
101 | return TRUE; | |
102 | } | |
103 | ||
104 | int LogTraceInfo(byte_t* data, size_t len) | |
105 | { | |
106 | return LogTrace(data,len,0,GetParity(data,len),TRUE); | |
107 | } | |
108 | ||
109 | //----------------------------------------------------------------------------- | |
110 | // The software UART that receives commands from the reader, and its state | |
111 | // variables. | |
112 | //----------------------------------------------------------------------------- | |
113 | static struct { | |
114 | enum { | |
115 | STATE_UNSYNCD, | |
116 | STATE_START_OF_COMMUNICATION, | |
117 | STATE_MILLER_X, | |
118 | STATE_MILLER_Y, | |
119 | STATE_MILLER_Z, | |
120 | STATE_ERROR_WAIT | |
121 | } state; | |
122 | uint16_t shiftReg; | |
123 | int bitCnt; | |
124 | int byteCnt; | |
125 | int byteCntMax; | |
126 | int posCnt; | |
127 | int syncBit; | |
128 | int parityBits; | |
129 | int samples; | |
130 | int highCnt; | |
131 | int bitBuffer; | |
132 | enum { | |
133 | DROP_NONE, | |
134 | DROP_FIRST_HALF, | |
135 | DROP_SECOND_HALF | |
136 | } drop; | |
137 | uint8_t *output; | |
138 | } Uart; | |
139 | ||
140 | static int MillerDecoding(int bit) | |
141 | { | |
142 | int error = 0; | |
143 | int bitright; | |
144 | ||
145 | if(!Uart.bitBuffer) { | |
146 | Uart.bitBuffer = bit ^ 0xFF0; | |
147 | return FALSE; | |
148 | } | |
149 | else { | |
150 | Uart.bitBuffer <<= 4; | |
151 | Uart.bitBuffer ^= bit; | |
152 | } | |
153 | ||
154 | int EOC = FALSE; | |
155 | ||
156 | if(Uart.state != STATE_UNSYNCD) { | |
157 | Uart.posCnt++; | |
158 | ||
159 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
160 | bit = 0x00; | |
161 | } | |
162 | else { | |
163 | bit = 0x01; | |
164 | } | |
165 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
166 | bitright = 0x00; | |
167 | } | |
168 | else { | |
169 | bitright = 0x01; | |
170 | } | |
171 | if(bit != bitright) { bit = bitright; } | |
172 | ||
173 | if(Uart.posCnt == 1) { | |
174 | // measurement first half bitperiod | |
175 | if(!bit) { | |
176 | Uart.drop = DROP_FIRST_HALF; | |
177 | } | |
178 | } | |
179 | else { | |
180 | // measurement second half bitperiod | |
181 | if(!bit & (Uart.drop == DROP_NONE)) { | |
182 | Uart.drop = DROP_SECOND_HALF; | |
183 | } | |
184 | else if(!bit) { | |
185 | // measured a drop in first and second half | |
186 | // which should not be possible | |
187 | Uart.state = STATE_ERROR_WAIT; | |
188 | error = 0x01; | |
189 | } | |
190 | ||
191 | Uart.posCnt = 0; | |
192 | ||
193 | switch(Uart.state) { | |
194 | case STATE_START_OF_COMMUNICATION: | |
195 | Uart.shiftReg = 0; | |
196 | if(Uart.drop == DROP_SECOND_HALF) { | |
197 | // error, should not happen in SOC | |
198 | Uart.state = STATE_ERROR_WAIT; | |
199 | error = 0x02; | |
200 | } | |
201 | else { | |
202 | // correct SOC | |
203 | Uart.state = STATE_MILLER_Z; | |
204 | } | |
205 | break; | |
206 | ||
207 | case STATE_MILLER_Z: | |
208 | Uart.bitCnt++; | |
209 | Uart.shiftReg >>= 1; | |
210 | if(Uart.drop == DROP_NONE) { | |
211 | // logic '0' followed by sequence Y | |
212 | // end of communication | |
213 | Uart.state = STATE_UNSYNCD; | |
214 | EOC = TRUE; | |
215 | } | |
216 | // if(Uart.drop == DROP_FIRST_HALF) { | |
217 | // Uart.state = STATE_MILLER_Z; stay the same | |
218 | // we see a logic '0' } | |
219 | if(Uart.drop == DROP_SECOND_HALF) { | |
220 | // we see a logic '1' | |
221 | Uart.shiftReg |= 0x100; | |
222 | Uart.state = STATE_MILLER_X; | |
223 | } | |
224 | break; | |
225 | ||
226 | case STATE_MILLER_X: | |
227 | Uart.shiftReg >>= 1; | |
228 | if(Uart.drop == DROP_NONE) { | |
229 | // sequence Y, we see a '0' | |
230 | Uart.state = STATE_MILLER_Y; | |
231 | Uart.bitCnt++; | |
232 | } | |
233 | if(Uart.drop == DROP_FIRST_HALF) { | |
234 | // Would be STATE_MILLER_Z | |
235 | // but Z does not follow X, so error | |
236 | Uart.state = STATE_ERROR_WAIT; | |
237 | error = 0x03; | |
238 | } | |
239 | if(Uart.drop == DROP_SECOND_HALF) { | |
240 | // We see a '1' and stay in state X | |
241 | Uart.shiftReg |= 0x100; | |
242 | Uart.bitCnt++; | |
243 | } | |
244 | break; | |
245 | ||
246 | case STATE_MILLER_Y: | |
247 | Uart.bitCnt++; | |
248 | Uart.shiftReg >>= 1; | |
249 | if(Uart.drop == DROP_NONE) { | |
250 | // logic '0' followed by sequence Y | |
251 | // end of communication | |
252 | Uart.state = STATE_UNSYNCD; | |
253 | EOC = TRUE; | |
254 | } | |
255 | if(Uart.drop == DROP_FIRST_HALF) { | |
256 | // we see a '0' | |
257 | Uart.state = STATE_MILLER_Z; | |
258 | } | |
259 | if(Uart.drop == DROP_SECOND_HALF) { | |
260 | // We see a '1' and go to state X | |
261 | Uart.shiftReg |= 0x100; | |
262 | Uart.state = STATE_MILLER_X; | |
263 | } | |
264 | break; | |
265 | ||
266 | case STATE_ERROR_WAIT: | |
267 | // That went wrong. Now wait for at least two bit periods | |
268 | // and try to sync again | |
269 | if(Uart.drop == DROP_NONE) { | |
270 | Uart.highCnt = 6; | |
271 | Uart.state = STATE_UNSYNCD; | |
272 | } | |
273 | break; | |
274 | ||
275 | default: | |
276 | Uart.state = STATE_UNSYNCD; | |
277 | Uart.highCnt = 0; | |
278 | break; | |
279 | } | |
280 | ||
281 | Uart.drop = DROP_NONE; | |
282 | ||
283 | // should have received at least one whole byte... | |
284 | if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { | |
285 | return TRUE; | |
286 | } | |
287 | ||
288 | if(Uart.bitCnt == 9) { | |
289 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
290 | Uart.byteCnt++; | |
291 | ||
292 | Uart.parityBits <<= 1; | |
293 | Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); | |
294 | ||
295 | if(EOC) { | |
296 | // when End of Communication received and | |
297 | // all data bits processed.. | |
298 | return TRUE; | |
299 | } | |
300 | Uart.bitCnt = 0; | |
301 | } | |
302 | ||
303 | /*if(error) { | |
304 | Uart.output[Uart.byteCnt] = 0xAA; | |
305 | Uart.byteCnt++; | |
306 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
307 | Uart.byteCnt++; | |
308 | Uart.output[Uart.byteCnt] = 0xAA; | |
309 | Uart.byteCnt++; | |
310 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
311 | Uart.byteCnt++; | |
312 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
313 | Uart.byteCnt++; | |
314 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
315 | Uart.byteCnt++; | |
316 | Uart.output[Uart.byteCnt] = 0xAA; | |
317 | Uart.byteCnt++; | |
318 | return TRUE; | |
319 | }*/ | |
320 | } | |
321 | ||
322 | } | |
323 | else { | |
324 | bit = Uart.bitBuffer & 0xf0; | |
325 | bit >>= 4; | |
326 | bit ^= 0x0F; | |
327 | if(bit) { | |
328 | // should have been high or at least (4 * 128) / fc | |
329 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
330 | if(Uart.highCnt == 8) { | |
331 | // we went low, so this could be start of communication | |
332 | // it turns out to be safer to choose a less significant | |
333 | // syncbit... so we check whether the neighbour also represents the drop | |
334 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
335 | Uart.syncBit = bit & 8; | |
336 | Uart.samples = 3; | |
337 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
338 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
339 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
340 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
341 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
342 | if(Uart.syncBit & (Uart.bitBuffer & 8)) { | |
343 | Uart.syncBit = 8; | |
344 | ||
345 | // the first half bit period is expected in next sample | |
346 | Uart.posCnt = 0; | |
347 | Uart.samples = 3; | |
348 | } | |
349 | } | |
350 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
351 | ||
352 | Uart.syncBit <<= 4; | |
353 | Uart.state = STATE_START_OF_COMMUNICATION; | |
354 | Uart.drop = DROP_FIRST_HALF; | |
355 | Uart.bitCnt = 0; | |
356 | Uart.byteCnt = 0; | |
357 | Uart.parityBits = 0; | |
358 | error = 0; | |
359 | } | |
360 | else { | |
361 | Uart.highCnt = 0; | |
362 | } | |
363 | } | |
364 | else { | |
365 | if(Uart.highCnt < 8) { | |
366 | Uart.highCnt++; | |
367 | } | |
368 | } | |
369 | } | |
370 | ||
371 | return FALSE; | |
372 | } | |
373 | ||
374 | //============================================================================= | |
375 | // ISO 14443 Type A - Manchester | |
376 | //============================================================================= | |
377 | ||
378 | static struct { | |
379 | enum { | |
380 | DEMOD_UNSYNCD, | |
381 | DEMOD_START_OF_COMMUNICATION, | |
382 | DEMOD_MANCHESTER_D, | |
383 | DEMOD_MANCHESTER_E, | |
384 | DEMOD_MANCHESTER_F, | |
385 | DEMOD_ERROR_WAIT | |
386 | } state; | |
387 | int bitCount; | |
388 | int posCount; | |
389 | int syncBit; | |
390 | int parityBits; | |
391 | uint16_t shiftReg; | |
392 | int buffer; | |
393 | int buff; | |
394 | int samples; | |
395 | int len; | |
396 | enum { | |
397 | SUB_NONE, | |
398 | SUB_FIRST_HALF, | |
399 | SUB_SECOND_HALF | |
400 | } sub; | |
401 | uint8_t *output; | |
402 | } Demod; | |
403 | ||
404 | static int ManchesterDecoding(int v) | |
405 | { | |
406 | int bit; | |
407 | int modulation; | |
408 | int error = 0; | |
409 | ||
410 | if(!Demod.buff) { | |
411 | Demod.buff = 1; | |
412 | Demod.buffer = v; | |
413 | return FALSE; | |
414 | } | |
415 | else { | |
416 | bit = Demod.buffer; | |
417 | Demod.buffer = v; | |
418 | } | |
419 | ||
420 | if(Demod.state==DEMOD_UNSYNCD) { | |
421 | Demod.output[Demod.len] = 0xfa; | |
422 | Demod.syncBit = 0; | |
423 | //Demod.samples = 0; | |
424 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
425 | if(bit & 0x08) { Demod.syncBit = 0x08; } | |
426 | if(!Demod.syncBit) { | |
427 | if(bit & 0x04) { Demod.syncBit = 0x04; } | |
428 | } | |
429 | else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; } | |
430 | if(!Demod.syncBit) { | |
431 | if(bit & 0x02) { Demod.syncBit = 0x02; } | |
432 | } | |
433 | else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; } | |
434 | if(!Demod.syncBit) { | |
435 | if(bit & 0x01) { Demod.syncBit = 0x01; } | |
436 | ||
437 | if(Demod.syncBit & (Demod.buffer & 0x08)) { | |
438 | Demod.syncBit = 0x08; | |
439 | ||
440 | // The first half bitperiod is expected in next sample | |
441 | Demod.posCount = 0; | |
442 | Demod.output[Demod.len] = 0xfb; | |
443 | } | |
444 | } | |
445 | else if(bit & 0x01) { Demod.syncBit = 0x01; } | |
446 | ||
447 | if(Demod.syncBit) { | |
448 | Demod.len = 0; | |
449 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
450 | Demod.sub = SUB_FIRST_HALF; | |
451 | Demod.bitCount = 0; | |
452 | Demod.shiftReg = 0; | |
453 | Demod.parityBits = 0; | |
454 | Demod.samples = 0; | |
455 | if(Demod.posCount) { | |
456 | switch(Demod.syncBit) { | |
457 | case 0x08: Demod.samples = 3; break; | |
458 | case 0x04: Demod.samples = 2; break; | |
459 | case 0x02: Demod.samples = 1; break; | |
460 | case 0x01: Demod.samples = 0; break; | |
461 | } | |
462 | } | |
463 | error = 0; | |
464 | } | |
465 | } | |
466 | else { | |
467 | //modulation = bit & Demod.syncBit; | |
468 | modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
469 | ||
470 | Demod.samples += 4; | |
471 | ||
472 | if(Demod.posCount==0) { | |
473 | Demod.posCount = 1; | |
474 | if(modulation) { | |
475 | Demod.sub = SUB_FIRST_HALF; | |
476 | } | |
477 | else { | |
478 | Demod.sub = SUB_NONE; | |
479 | } | |
480 | } | |
481 | else { | |
482 | Demod.posCount = 0; | |
483 | if(modulation && (Demod.sub == SUB_FIRST_HALF)) { | |
484 | if(Demod.state!=DEMOD_ERROR_WAIT) { | |
485 | Demod.state = DEMOD_ERROR_WAIT; | |
486 | Demod.output[Demod.len] = 0xaa; | |
487 | error = 0x01; | |
488 | } | |
489 | } | |
490 | else if(modulation) { | |
491 | Demod.sub = SUB_SECOND_HALF; | |
492 | } | |
493 | ||
494 | switch(Demod.state) { | |
495 | case DEMOD_START_OF_COMMUNICATION: | |
496 | if(Demod.sub == SUB_FIRST_HALF) { | |
497 | Demod.state = DEMOD_MANCHESTER_D; | |
498 | } | |
499 | else { | |
500 | Demod.output[Demod.len] = 0xab; | |
501 | Demod.state = DEMOD_ERROR_WAIT; | |
502 | error = 0x02; | |
503 | } | |
504 | break; | |
505 | ||
506 | case DEMOD_MANCHESTER_D: | |
507 | case DEMOD_MANCHESTER_E: | |
508 | if(Demod.sub == SUB_FIRST_HALF) { | |
509 | Demod.bitCount++; | |
510 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
511 | Demod.state = DEMOD_MANCHESTER_D; | |
512 | } | |
513 | else if(Demod.sub == SUB_SECOND_HALF) { | |
514 | Demod.bitCount++; | |
515 | Demod.shiftReg >>= 1; | |
516 | Demod.state = DEMOD_MANCHESTER_E; | |
517 | } | |
518 | else { | |
519 | Demod.state = DEMOD_MANCHESTER_F; | |
520 | } | |
521 | break; | |
522 | ||
523 | case DEMOD_MANCHESTER_F: | |
524 | // Tag response does not need to be a complete byte! | |
525 | if(Demod.len > 0 || Demod.bitCount > 0) { | |
526 | if(Demod.bitCount > 0) { | |
527 | Demod.shiftReg >>= (9 - Demod.bitCount); | |
528 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
529 | Demod.len++; | |
530 | // No parity bit, so just shift a 0 | |
531 | Demod.parityBits <<= 1; | |
532 | } | |
533 | ||
534 | Demod.state = DEMOD_UNSYNCD; | |
535 | return TRUE; | |
536 | } | |
537 | else { | |
538 | Demod.output[Demod.len] = 0xad; | |
539 | Demod.state = DEMOD_ERROR_WAIT; | |
540 | error = 0x03; | |
541 | } | |
542 | break; | |
543 | ||
544 | case DEMOD_ERROR_WAIT: | |
545 | Demod.state = DEMOD_UNSYNCD; | |
546 | break; | |
547 | ||
548 | default: | |
549 | Demod.output[Demod.len] = 0xdd; | |
550 | Demod.state = DEMOD_UNSYNCD; | |
551 | break; | |
552 | } | |
553 | ||
554 | if(Demod.bitCount>=9) { | |
555 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
556 | Demod.len++; | |
557 | ||
558 | Demod.parityBits <<= 1; | |
559 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); | |
560 | ||
561 | Demod.bitCount = 0; | |
562 | Demod.shiftReg = 0; | |
563 | } | |
564 | ||
565 | /*if(error) { | |
566 | Demod.output[Demod.len] = 0xBB; | |
567 | Demod.len++; | |
568 | Demod.output[Demod.len] = error & 0xFF; | |
569 | Demod.len++; | |
570 | Demod.output[Demod.len] = 0xBB; | |
571 | Demod.len++; | |
572 | Demod.output[Demod.len] = bit & 0xFF; | |
573 | Demod.len++; | |
574 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
575 | Demod.len++; | |
576 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
577 | Demod.len++; | |
578 | Demod.output[Demod.len] = 0xBB; | |
579 | Demod.len++; | |
580 | return TRUE; | |
581 | }*/ | |
582 | ||
583 | } | |
584 | ||
585 | } // end (state != UNSYNCED) | |
586 | ||
587 | return FALSE; | |
588 | } | |
589 | ||
590 | //============================================================================= | |
591 | // Finally, a `sniffer' for ISO 14443 Type A | |
592 | // Both sides of communication! | |
593 | //============================================================================= | |
594 | ||
595 | //----------------------------------------------------------------------------- | |
596 | // Record the sequence of commands sent by the reader to the tag, with | |
597 | // triggering so that we start recording at the point that the tag is moved | |
598 | // near the reader. | |
599 | //----------------------------------------------------------------------------- | |
600 | void SnoopIso14443a(void) | |
601 | { | |
602 | // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values | |
603 | // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values | |
604 | // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values | |
605 | // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values | |
606 | // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values | |
607 | ||
608 | // We won't start recording the frames that we acquire until we trigger; | |
609 | // a good trigger condition to get started is probably when we see a | |
610 | // response from the tag. | |
611 | int triggered = TRUE; // FALSE to wait first for card | |
612 | ||
613 | // The command (reader -> tag) that we're receiving. | |
614 | // The length of a received command will in most cases be no more than 18 bytes. | |
615 | // So 32 should be enough! | |
616 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
617 | // The response (tag -> reader) that we're receiving. | |
618 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
619 | ||
620 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
621 | // into trace, along with its length and other annotations. | |
622 | //uint8_t *trace = (uint8_t *)BigBuf; | |
623 | //int traceLen = 0; | |
624 | ||
625 | // The DMA buffer, used to stream samples from the FPGA | |
626 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
627 | int lastRxCounter; | |
628 | int8_t *upTo; | |
629 | int smpl; | |
630 | int maxBehindBy = 0; | |
631 | ||
632 | // Count of samples received so far, so that we can include timing | |
633 | // information in the trace buffer. | |
634 | int samples = 0; | |
635 | int rsamples = 0; | |
636 | ||
637 | memset(trace, 0x44, RECV_CMD_OFFSET); | |
638 | ||
639 | // Set up the demodulator for tag -> reader responses. | |
640 | Demod.output = receivedResponse; | |
641 | Demod.len = 0; | |
642 | Demod.state = DEMOD_UNSYNCD; | |
643 | ||
644 | // And the reader -> tag commands | |
645 | memset(&Uart, 0, sizeof(Uart)); | |
646 | Uart.output = receivedCmd; | |
647 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// | |
648 | Uart.state = STATE_UNSYNCD; | |
649 | ||
650 | // And put the FPGA in the appropriate mode | |
651 | // Signal field is off with the appropriate LED | |
652 | LED_D_OFF(); | |
653 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
654 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
655 | ||
656 | // Setup for the DMA. | |
657 | FpgaSetupSsc(); | |
658 | upTo = dmaBuf; | |
659 | lastRxCounter = DMA_BUFFER_SIZE; | |
660 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
661 | ||
662 | LED_A_ON(); | |
663 | ||
664 | // And now we loop, receiving samples. | |
665 | for(;;) { | |
666 | WDT_HIT(); | |
667 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
668 | (DMA_BUFFER_SIZE-1); | |
669 | if(behindBy > maxBehindBy) { | |
670 | maxBehindBy = behindBy; | |
671 | if(behindBy > 400) { | |
672 | DbpString("blew circular buffer!"); | |
673 | goto done; | |
674 | } | |
675 | } | |
676 | if(behindBy < 1) continue; | |
677 | ||
678 | smpl = upTo[0]; | |
679 | upTo++; | |
680 | lastRxCounter -= 1; | |
681 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
682 | upTo -= DMA_BUFFER_SIZE; | |
683 | lastRxCounter += DMA_BUFFER_SIZE; | |
684 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
685 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
686 | } | |
687 | ||
688 | samples += 4; | |
689 | #define HANDLE_BIT_IF_BODY \ | |
690 | LED_C_ON(); \ | |
691 | if(triggered) { \ | |
692 | trace[traceLen++] = ((rsamples >> 0) & 0xff); \ | |
693 | trace[traceLen++] = ((rsamples >> 8) & 0xff); \ | |
694 | trace[traceLen++] = ((rsamples >> 16) & 0xff); \ | |
695 | trace[traceLen++] = ((rsamples >> 24) & 0xff); \ | |
696 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \ | |
697 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \ | |
698 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \ | |
699 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \ | |
700 | trace[traceLen++] = Uart.byteCnt; \ | |
701 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \ | |
702 | traceLen += Uart.byteCnt; \ | |
703 | if(traceLen > TRACE_LENGTH) break; \ | |
704 | } \ | |
705 | /* And ready to receive another command. */ \ | |
706 | Uart.state = STATE_UNSYNCD; \ | |
707 | /* And also reset the demod code, which might have been */ \ | |
708 | /* false-triggered by the commands from the reader. */ \ | |
709 | Demod.state = DEMOD_UNSYNCD; \ | |
710 | LED_B_OFF(); \ | |
711 | ||
712 | if(MillerDecoding((smpl & 0xF0) >> 4)) { | |
713 | rsamples = samples - Uart.samples; | |
714 | HANDLE_BIT_IF_BODY | |
715 | } | |
716 | if(ManchesterDecoding(smpl & 0x0F)) { | |
717 | rsamples = samples - Demod.samples; | |
718 | LED_B_ON(); | |
719 | ||
720 | // timestamp, as a count of samples | |
721 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
722 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
723 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
724 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); | |
725 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); | |
726 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); | |
727 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); | |
728 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); | |
729 | // length | |
730 | trace[traceLen++] = Demod.len; | |
731 | memcpy(trace+traceLen, receivedResponse, Demod.len); | |
732 | traceLen += Demod.len; | |
733 | if(traceLen > TRACE_LENGTH) break; | |
734 | ||
735 | triggered = TRUE; | |
736 | ||
737 | // And ready to receive another response. | |
738 | memset(&Demod, 0, sizeof(Demod)); | |
739 | Demod.output = receivedResponse; | |
740 | Demod.state = DEMOD_UNSYNCD; | |
741 | LED_C_OFF(); | |
742 | } | |
743 | ||
744 | if(BUTTON_PRESS()) { | |
745 | DbpString("cancelled_a"); | |
746 | goto done; | |
747 | } | |
748 | } | |
749 | ||
750 | DbpString("COMMAND FINISHED"); | |
751 | ||
752 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
753 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
754 | ||
755 | done: | |
756 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
757 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
758 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
759 | LED_A_OFF(); | |
760 | LED_B_OFF(); | |
761 | LED_C_OFF(); | |
762 | LED_D_OFF(); | |
763 | } | |
764 | ||
765 | // Prepare communication bits to send to FPGA | |
766 | void Sequence(SecType seq) | |
767 | { | |
768 | ToSendMax++; | |
769 | switch(seq) { | |
770 | // CARD TO READER | |
771 | case SEC_D: | |
772 | // Sequence D: 11110000 | |
773 | // modulation with subcarrier during first half | |
774 | ToSend[ToSendMax] = 0xf0; | |
775 | break; | |
776 | case SEC_E: | |
777 | // Sequence E: 00001111 | |
778 | // modulation with subcarrier during second half | |
779 | ToSend[ToSendMax] = 0x0f; | |
780 | break; | |
781 | case SEC_F: | |
782 | // Sequence F: 00000000 | |
783 | // no modulation with subcarrier | |
784 | ToSend[ToSendMax] = 0x00; | |
785 | break; | |
786 | // READER TO CARD | |
787 | case SEC_X: | |
788 | // Sequence X: 00001100 | |
789 | // drop after half a period | |
790 | ToSend[ToSendMax] = 0x0c; | |
791 | break; | |
792 | case SEC_Y: | |
793 | default: | |
794 | // Sequence Y: 00000000 | |
795 | // no drop | |
796 | ToSend[ToSendMax] = 0x00; | |
797 | break; | |
798 | case SEC_Z: | |
799 | // Sequence Z: 11000000 | |
800 | // drop at start | |
801 | ToSend[ToSendMax] = 0xc0; | |
802 | break; | |
803 | } | |
804 | } | |
805 | ||
806 | //----------------------------------------------------------------------------- | |
807 | // Prepare tag messages | |
808 | //----------------------------------------------------------------------------- | |
809 | static void CodeIso14443aAsTag(const uint8_t *cmd, int len) | |
810 | { | |
811 | int i; | |
812 | int oddparity; | |
813 | ||
814 | ToSendReset(); | |
815 | ||
816 | // Correction bit, might be removed when not needed | |
817 | ToSendStuffBit(0); | |
818 | ToSendStuffBit(0); | |
819 | ToSendStuffBit(0); | |
820 | ToSendStuffBit(0); | |
821 | ToSendStuffBit(1); // 1 | |
822 | ToSendStuffBit(0); | |
823 | ToSendStuffBit(0); | |
824 | ToSendStuffBit(0); | |
825 | ||
826 | // Send startbit | |
827 | Sequence(SEC_D); | |
828 | ||
829 | for(i = 0; i < len; i++) { | |
830 | int j; | |
831 | uint8_t b = cmd[i]; | |
832 | ||
833 | // Data bits | |
834 | oddparity = 0x01; | |
835 | for(j = 0; j < 8; j++) { | |
836 | oddparity ^= (b & 1); | |
837 | if(b & 1) { | |
838 | Sequence(SEC_D); | |
839 | } else { | |
840 | Sequence(SEC_E); | |
841 | } | |
842 | b >>= 1; | |
843 | } | |
844 | ||
845 | // Parity bit | |
846 | if(oddparity) { | |
847 | Sequence(SEC_D); | |
848 | } else { | |
849 | Sequence(SEC_E); | |
850 | } | |
851 | } | |
852 | ||
853 | // Send stopbit | |
854 | Sequence(SEC_F); | |
855 | ||
856 | // Flush the buffer in FPGA!! | |
857 | for(i = 0; i < 5; i++) { | |
858 | Sequence(SEC_F); | |
859 | } | |
860 | ||
861 | // Convert from last byte pos to length | |
862 | ToSendMax++; | |
863 | ||
864 | // Add a few more for slop | |
865 | ToSend[ToSendMax++] = 0x00; | |
866 | ToSend[ToSendMax++] = 0x00; | |
867 | //ToSendMax += 2; | |
868 | } | |
869 | ||
870 | //----------------------------------------------------------------------------- | |
871 | // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 | |
872 | //----------------------------------------------------------------------------- | |
873 | static void CodeStrangeAnswer() | |
874 | { | |
875 | int i; | |
876 | ||
877 | ToSendReset(); | |
878 | ||
879 | // Correction bit, might be removed when not needed | |
880 | ToSendStuffBit(0); | |
881 | ToSendStuffBit(0); | |
882 | ToSendStuffBit(0); | |
883 | ToSendStuffBit(0); | |
884 | ToSendStuffBit(1); // 1 | |
885 | ToSendStuffBit(0); | |
886 | ToSendStuffBit(0); | |
887 | ToSendStuffBit(0); | |
888 | ||
889 | // Send startbit | |
890 | Sequence(SEC_D); | |
891 | ||
892 | // 0 | |
893 | Sequence(SEC_E); | |
894 | ||
895 | // 0 | |
896 | Sequence(SEC_E); | |
897 | ||
898 | // 1 | |
899 | Sequence(SEC_D); | |
900 | ||
901 | // Send stopbit | |
902 | Sequence(SEC_F); | |
903 | ||
904 | // Flush the buffer in FPGA!! | |
905 | for(i = 0; i < 5; i++) { | |
906 | Sequence(SEC_F); | |
907 | } | |
908 | ||
909 | // Convert from last byte pos to length | |
910 | ToSendMax++; | |
911 | ||
912 | // Add a few more for slop | |
913 | ToSend[ToSendMax++] = 0x00; | |
914 | ToSend[ToSendMax++] = 0x00; | |
915 | //ToSendMax += 2; | |
916 | } | |
917 | ||
918 | //----------------------------------------------------------------------------- | |
919 | // Wait for commands from reader | |
920 | // Stop when button is pressed | |
921 | // Or return TRUE when command is captured | |
922 | //----------------------------------------------------------------------------- | |
923 | static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) | |
924 | { | |
925 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
926 | // only, since we are receiving, not transmitting). | |
927 | // Signal field is off with the appropriate LED | |
928 | LED_D_OFF(); | |
929 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
930 | ||
931 | // Now run a `software UART' on the stream of incoming samples. | |
932 | Uart.output = received; | |
933 | Uart.byteCntMax = maxLen; | |
934 | Uart.state = STATE_UNSYNCD; | |
935 | ||
936 | for(;;) { | |
937 | WDT_HIT(); | |
938 | ||
939 | if(BUTTON_PRESS()) return FALSE; | |
940 | ||
941 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
942 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
943 | } | |
944 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
945 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
946 | if(MillerDecoding((b & 0xf0) >> 4)) { | |
947 | *len = Uart.byteCnt; | |
948 | return TRUE; | |
949 | } | |
950 | if(MillerDecoding(b & 0x0f)) { | |
951 | *len = Uart.byteCnt; | |
952 | return TRUE; | |
953 | } | |
954 | } | |
955 | } | |
956 | } | |
957 | ||
958 | //----------------------------------------------------------------------------- | |
959 | // Main loop of simulated tag: receive commands from reader, decide what | |
960 | // response to send, and send it. | |
961 | //----------------------------------------------------------------------------- | |
962 | void SimulateIso14443aTag(int tagType, int TagUid) | |
963 | { | |
964 | // This function contains the tag emulation | |
965 | ||
966 | // Prepare protocol messages | |
967 | // static const uint8_t cmd1[] = { 0x26 }; | |
968 | // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg | |
969 | // | |
970 | static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me | |
971 | // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me | |
972 | ||
973 | // UID response | |
974 | // static const uint8_t cmd2[] = { 0x93, 0x20 }; | |
975 | //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg | |
976 | ||
977 | ||
978 | ||
979 | // my desfire | |
980 | static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips | |
981 | ||
982 | ||
983 | // When reader selects us during cascade1 it will send cmd3 | |
984 | //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE) | |
985 | uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire) | |
986 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); | |
987 | ||
988 | // send cascade2 2nd half of UID | |
989 | static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck | |
990 | // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID | |
991 | ||
992 | ||
993 | // When reader selects us during cascade2 it will send cmd3a | |
994 | //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE) | |
995 | uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire) | |
996 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); | |
997 | ||
998 | static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce | |
999 | ||
1000 | uint8_t *resp; | |
1001 | int respLen; | |
1002 | ||
1003 | // Longest possible response will be 16 bytes + 2 CRC = 18 bytes | |
1004 | // This will need | |
1005 | // 144 data bits (18 * 8) | |
1006 | // 18 parity bits | |
1007 | // 2 Start and stop | |
1008 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) | |
1009 | // 1 just for the case | |
1010 | // ----------- + | |
1011 | // 166 | |
1012 | // | |
1013 | // 166 bytes, since every bit that needs to be send costs us a byte | |
1014 | // | |
1015 | ||
1016 | ||
1017 | // Respond with card type | |
1018 | uint8_t *resp1 = (((uint8_t *)BigBuf) + 800); | |
1019 | int resp1Len; | |
1020 | ||
1021 | // Anticollision cascade1 - respond with uid | |
1022 | uint8_t *resp2 = (((uint8_t *)BigBuf) + 970); | |
1023 | int resp2Len; | |
1024 | ||
1025 | // Anticollision cascade2 - respond with 2nd half of uid if asked | |
1026 | // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 | |
1027 | uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140); | |
1028 | int resp2aLen; | |
1029 | ||
1030 | // Acknowledge select - cascade 1 | |
1031 | uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310); | |
1032 | int resp3Len; | |
1033 | ||
1034 | // Acknowledge select - cascade 2 | |
1035 | uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480); | |
1036 | int resp3aLen; | |
1037 | ||
1038 | // Response to a read request - not implemented atm | |
1039 | uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550); | |
1040 | int resp4Len; | |
1041 | ||
1042 | // Authenticate response - nonce | |
1043 | uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720); | |
1044 | int resp5Len; | |
1045 | ||
1046 | uint8_t *receivedCmd = (uint8_t *)BigBuf; | |
1047 | int len; | |
1048 | ||
1049 | int i; | |
1050 | int u; | |
1051 | uint8_t b; | |
1052 | ||
1053 | // To control where we are in the protocol | |
1054 | int order = 0; | |
1055 | int lastorder; | |
1056 | ||
1057 | // Just to allow some checks | |
1058 | int happened = 0; | |
1059 | int happened2 = 0; | |
1060 | ||
1061 | int cmdsRecvd = 0; | |
1062 | ||
1063 | int fdt_indicator; | |
1064 | ||
1065 | memset(receivedCmd, 0x44, 400); | |
1066 | ||
1067 | // Prepare the responses of the anticollision phase | |
1068 | // there will be not enough time to do this at the moment the reader sends it REQA | |
1069 | ||
1070 | // Answer to request | |
1071 | CodeIso14443aAsTag(response1, sizeof(response1)); | |
1072 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; | |
1073 | ||
1074 | // Send our UID (cascade 1) | |
1075 | CodeIso14443aAsTag(response2, sizeof(response2)); | |
1076 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; | |
1077 | ||
1078 | // Answer to select (cascade1) | |
1079 | CodeIso14443aAsTag(response3, sizeof(response3)); | |
1080 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; | |
1081 | ||
1082 | // Send the cascade 2 2nd part of the uid | |
1083 | CodeIso14443aAsTag(response2a, sizeof(response2a)); | |
1084 | memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; | |
1085 | ||
1086 | // Answer to select (cascade 2) | |
1087 | CodeIso14443aAsTag(response3a, sizeof(response3a)); | |
1088 | memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; | |
1089 | ||
1090 | // Strange answer is an example of rare message size (3 bits) | |
1091 | CodeStrangeAnswer(); | |
1092 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; | |
1093 | ||
1094 | // Authentication answer (random nonce) | |
1095 | CodeIso14443aAsTag(response5, sizeof(response5)); | |
1096 | memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; | |
1097 | ||
1098 | // We need to listen to the high-frequency, peak-detected path. | |
1099 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1100 | FpgaSetupSsc(); | |
1101 | ||
1102 | cmdsRecvd = 0; | |
1103 | ||
1104 | LED_A_ON(); | |
1105 | for(;;) { | |
1106 | ||
1107 | if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) { | |
1108 | DbpString("button press"); | |
1109 | break; | |
1110 | } | |
1111 | // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated | |
1112 | // Okay, look at the command now. | |
1113 | lastorder = order; | |
1114 | i = 1; // first byte transmitted | |
1115 | if(receivedCmd[0] == 0x26) { | |
1116 | // Received a REQUEST | |
1117 | resp = resp1; respLen = resp1Len; order = 1; | |
1118 | //DbpString("Hello request from reader:"); | |
1119 | } else if(receivedCmd[0] == 0x52) { | |
1120 | // Received a WAKEUP | |
1121 | resp = resp1; respLen = resp1Len; order = 6; | |
1122 | // //DbpString("Wakeup request from reader:"); | |
1123 | ||
1124 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision | |
1125 | // Received request for UID (cascade 1) | |
1126 | resp = resp2; respLen = resp2Len; order = 2; | |
1127 | // DbpString("UID (cascade 1) request from reader:"); | |
1128 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1129 | ||
1130 | ||
1131 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision | |
1132 | // Received request for UID (cascade 2) | |
1133 | resp = resp2a; respLen = resp2aLen; order = 20; | |
1134 | // DbpString("UID (cascade 2) request from reader:"); | |
1135 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1136 | ||
1137 | ||
1138 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select | |
1139 | // Received a SELECT | |
1140 | resp = resp3; respLen = resp3Len; order = 3; | |
1141 | // DbpString("Select (cascade 1) request from reader:"); | |
1142 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1143 | ||
1144 | ||
1145 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select | |
1146 | // Received a SELECT | |
1147 | resp = resp3a; respLen = resp3aLen; order = 30; | |
1148 | // DbpString("Select (cascade 2) request from reader:"); | |
1149 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1150 | ||
1151 | ||
1152 | } else if(receivedCmd[0] == 0x30) { | |
1153 | // Received a READ | |
1154 | resp = resp4; respLen = resp4Len; order = 4; // Do nothing | |
1155 | Dbprintf("Read request from reader: %x %x %x", | |
1156 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1157 | ||
1158 | ||
1159 | } else if(receivedCmd[0] == 0x50) { | |
1160 | // Received a HALT | |
1161 | resp = resp1; respLen = 0; order = 5; // Do nothing | |
1162 | DbpString("Reader requested we HALT!:"); | |
1163 | ||
1164 | } else if(receivedCmd[0] == 0x60) { | |
1165 | // Received an authentication request | |
1166 | resp = resp5; respLen = resp5Len; order = 7; | |
1167 | Dbprintf("Authenticate request from reader: %x %x %x", | |
1168 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1169 | ||
1170 | } else if(receivedCmd[0] == 0xE0) { | |
1171 | // Received a RATS request | |
1172 | resp = resp1; respLen = 0;order = 70; | |
1173 | Dbprintf("RATS request from reader: %x %x %x", | |
1174 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1175 | } else { | |
1176 | // Never seen this command before | |
1177 | Dbprintf("Unknown command received from reader: %x %x %x %x %x %x %x %x %x", | |
1178 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1179 | receivedCmd[3], receivedCmd[3], receivedCmd[4], | |
1180 | receivedCmd[5], receivedCmd[6], receivedCmd[7]); | |
1181 | // Do not respond | |
1182 | resp = resp1; respLen = 0; order = 0; | |
1183 | } | |
1184 | ||
1185 | // Count number of wakeups received after a halt | |
1186 | if(order == 6 && lastorder == 5) { happened++; } | |
1187 | ||
1188 | // Count number of other messages after a halt | |
1189 | if(order != 6 && lastorder == 5) { happened2++; } | |
1190 | ||
1191 | // Look at last parity bit to determine timing of answer | |
1192 | if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { | |
1193 | // 1236, so correction bit needed | |
1194 | i = 0; | |
1195 | } | |
1196 | ||
1197 | memset(receivedCmd, 0x44, 32); | |
1198 | ||
1199 | if(cmdsRecvd > 999) { | |
1200 | DbpString("1000 commands later..."); | |
1201 | break; | |
1202 | } | |
1203 | else { | |
1204 | cmdsRecvd++; | |
1205 | } | |
1206 | ||
1207 | if(respLen <= 0) continue; | |
1208 | ||
1209 | // Modulate Manchester | |
1210 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
1211 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1212 | FpgaSetupSsc(); | |
1213 | ||
1214 | // ### Transmit the response ### | |
1215 | u = 0; | |
1216 | b = 0x00; | |
1217 | fdt_indicator = FALSE; | |
1218 | for(;;) { | |
1219 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1220 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1221 | (void)b; | |
1222 | } | |
1223 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1224 | if(i > respLen) { | |
1225 | b = 0x00; | |
1226 | u++; | |
1227 | } else { | |
1228 | b = resp[i]; | |
1229 | i++; | |
1230 | } | |
1231 | AT91C_BASE_SSC->SSC_THR = b; | |
1232 | ||
1233 | if(u > 4) { | |
1234 | break; | |
1235 | } | |
1236 | } | |
1237 | if(BUTTON_PRESS()) { | |
1238 | break; | |
1239 | } | |
1240 | } | |
1241 | ||
1242 | } | |
1243 | ||
1244 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
1245 | LED_A_OFF(); | |
1246 | } | |
1247 | ||
1248 | //----------------------------------------------------------------------------- | |
1249 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1250 | //----------------------------------------------------------------------------- | |
1251 | static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait) | |
1252 | { | |
1253 | int c; | |
1254 | ||
1255 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1256 | ||
1257 | if (wait) | |
1258 | if(*wait < 10) | |
1259 | *wait = 10; | |
1260 | ||
1261 | for(c = 0; c < *wait;) { | |
1262 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1263 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! | |
1264 | c++; | |
1265 | } | |
1266 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1267 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1268 | (void)r; | |
1269 | } | |
1270 | WDT_HIT(); | |
1271 | } | |
1272 | ||
1273 | c = 0; | |
1274 | for(;;) { | |
1275 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1276 | AT91C_BASE_SSC->SSC_THR = cmd[c]; | |
1277 | c++; | |
1278 | if(c >= len) { | |
1279 | break; | |
1280 | } | |
1281 | } | |
1282 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1283 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1284 | (void)r; | |
1285 | } | |
1286 | WDT_HIT(); | |
1287 | } | |
1288 | if (samples) *samples = (c + *wait) << 3; | |
1289 | } | |
1290 | ||
1291 | //----------------------------------------------------------------------------- | |
1292 | // To generate an arbitrary stream from reader | |
1293 | // | |
1294 | //----------------------------------------------------------------------------- | |
1295 | void ArbitraryFromReader(const uint8_t *cmd, int parity, int len) | |
1296 | { | |
1297 | int i; | |
1298 | int j; | |
1299 | int last; | |
1300 | uint8_t b; | |
1301 | ||
1302 | ToSendReset(); | |
1303 | ||
1304 | // Start of Communication (Seq. Z) | |
1305 | Sequence(SEC_Z); | |
1306 | last = 0; | |
1307 | ||
1308 | for(i = 0; i < len; i++) { | |
1309 | // Data bits | |
1310 | b = cmd[i]; | |
1311 | for(j = 0; j < 8; j++) { | |
1312 | if(b & 1) { | |
1313 | // Sequence X | |
1314 | Sequence(SEC_X); | |
1315 | last = 1; | |
1316 | } else { | |
1317 | if(last == 0) { | |
1318 | // Sequence Z | |
1319 | Sequence(SEC_Z); | |
1320 | } | |
1321 | else { | |
1322 | // Sequence Y | |
1323 | Sequence(SEC_Y); | |
1324 | last = 0; | |
1325 | } | |
1326 | } | |
1327 | b >>= 1; | |
1328 | ||
1329 | } | |
1330 | ||
1331 | // Predefined parity bit, the flipper flips when needed, because of flips in byte sent | |
1332 | if(((parity >> (len - i - 1)) & 1)) { | |
1333 | // Sequence X | |
1334 | Sequence(SEC_X); | |
1335 | last = 1; | |
1336 | } else { | |
1337 | if(last == 0) { | |
1338 | // Sequence Z | |
1339 | Sequence(SEC_Z); | |
1340 | } | |
1341 | else { | |
1342 | // Sequence Y | |
1343 | Sequence(SEC_Y); | |
1344 | last = 0; | |
1345 | } | |
1346 | } | |
1347 | } | |
1348 | ||
1349 | // End of Communication | |
1350 | if(last == 0) { | |
1351 | // Sequence Z | |
1352 | Sequence(SEC_Z); | |
1353 | } | |
1354 | else { | |
1355 | // Sequence Y | |
1356 | Sequence(SEC_Y); | |
1357 | last = 0; | |
1358 | } | |
1359 | // Sequence Y | |
1360 | Sequence(SEC_Y); | |
1361 | ||
1362 | // Just to be sure! | |
1363 | Sequence(SEC_Y); | |
1364 | Sequence(SEC_Y); | |
1365 | Sequence(SEC_Y); | |
1366 | ||
1367 | // Convert from last character reference to length | |
1368 | ToSendMax++; | |
1369 | } | |
1370 | ||
1371 | //----------------------------------------------------------------------------- | |
1372 | // Code a 7-bit command without parity bit | |
1373 | // This is especially for 0x26 and 0x52 (REQA and WUPA) | |
1374 | //----------------------------------------------------------------------------- | |
1375 | void ShortFrameFromReader(const uint8_t bt) | |
1376 | { | |
1377 | int j; | |
1378 | int last; | |
1379 | uint8_t b; | |
1380 | ||
1381 | ToSendReset(); | |
1382 | ||
1383 | // Start of Communication (Seq. Z) | |
1384 | Sequence(SEC_Z); | |
1385 | last = 0; | |
1386 | ||
1387 | b = bt; | |
1388 | for(j = 0; j < 7; j++) { | |
1389 | if(b & 1) { | |
1390 | // Sequence X | |
1391 | Sequence(SEC_X); | |
1392 | last = 1; | |
1393 | } else { | |
1394 | if(last == 0) { | |
1395 | // Sequence Z | |
1396 | Sequence(SEC_Z); | |
1397 | } | |
1398 | else { | |
1399 | // Sequence Y | |
1400 | Sequence(SEC_Y); | |
1401 | last = 0; | |
1402 | } | |
1403 | } | |
1404 | b >>= 1; | |
1405 | } | |
1406 | ||
1407 | // End of Communication | |
1408 | if(last == 0) { | |
1409 | // Sequence Z | |
1410 | Sequence(SEC_Z); | |
1411 | } | |
1412 | else { | |
1413 | // Sequence Y | |
1414 | Sequence(SEC_Y); | |
1415 | last = 0; | |
1416 | } | |
1417 | // Sequence Y | |
1418 | Sequence(SEC_Y); | |
1419 | ||
1420 | // Just to be sure! | |
1421 | Sequence(SEC_Y); | |
1422 | Sequence(SEC_Y); | |
1423 | Sequence(SEC_Y); | |
1424 | ||
1425 | // Convert from last character reference to length | |
1426 | ToSendMax++; | |
1427 | } | |
1428 | ||
1429 | //----------------------------------------------------------------------------- | |
1430 | // Prepare reader command to send to FPGA | |
1431 | // | |
1432 | //----------------------------------------------------------------------------- | |
1433 | void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) | |
1434 | { | |
1435 | int i, j; | |
1436 | int last; | |
1437 | uint8_t b; | |
1438 | ||
1439 | ToSendReset(); | |
1440 | ||
1441 | // Start of Communication (Seq. Z) | |
1442 | Sequence(SEC_Z); | |
1443 | last = 0; | |
1444 | ||
1445 | // Generate send structure for the data bits | |
1446 | for (i = 0; i < len; i++) { | |
1447 | // Get the current byte to send | |
1448 | b = cmd[i]; | |
1449 | ||
1450 | for (j = 0; j < 8; j++) { | |
1451 | if (b & 1) { | |
1452 | // Sequence X | |
1453 | Sequence(SEC_X); | |
1454 | last = 1; | |
1455 | } else { | |
1456 | if (last == 0) { | |
1457 | // Sequence Z | |
1458 | Sequence(SEC_Z); | |
1459 | } else { | |
1460 | // Sequence Y | |
1461 | Sequence(SEC_Y); | |
1462 | last = 0; | |
1463 | } | |
1464 | } | |
1465 | b >>= 1; | |
1466 | } | |
1467 | ||
1468 | // Get the parity bit | |
1469 | if ((dwParity >> i) & 0x01) { | |
1470 | // Sequence X | |
1471 | Sequence(SEC_X); | |
1472 | last = 1; | |
1473 | } else { | |
1474 | if (last == 0) { | |
1475 | // Sequence Z | |
1476 | Sequence(SEC_Z); | |
1477 | } else { | |
1478 | // Sequence Y | |
1479 | Sequence(SEC_Y); | |
1480 | last = 0; | |
1481 | } | |
1482 | } | |
1483 | } | |
1484 | ||
1485 | // End of Communication | |
1486 | if (last == 0) { | |
1487 | // Sequence Z | |
1488 | Sequence(SEC_Z); | |
1489 | } else { | |
1490 | // Sequence Y | |
1491 | Sequence(SEC_Y); | |
1492 | last = 0; | |
1493 | } | |
1494 | // Sequence Y | |
1495 | Sequence(SEC_Y); | |
1496 | ||
1497 | // Just to be sure! | |
1498 | Sequence(SEC_Y); | |
1499 | Sequence(SEC_Y); | |
1500 | Sequence(SEC_Y); | |
1501 | ||
1502 | // Convert from last character reference to length | |
1503 | ToSendMax++; | |
1504 | } | |
1505 | ||
1506 | //----------------------------------------------------------------------------- | |
1507 | // Wait a certain time for tag response | |
1508 | // If a response is captured return TRUE | |
1509 | // If it takes to long return FALSE | |
1510 | //----------------------------------------------------------------------------- | |
1511 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer | |
1512 | { | |
1513 | // buffer needs to be 512 bytes | |
1514 | int c; | |
1515 | ||
1516 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1517 | // only, since we are receiving, not transmitting). | |
1518 | // Signal field is on with the appropriate LED | |
1519 | LED_D_ON(); | |
1520 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1521 | ||
1522 | // Now get the answer from the card | |
1523 | Demod.output = receivedResponse; | |
1524 | Demod.len = 0; | |
1525 | Demod.state = DEMOD_UNSYNCD; | |
1526 | ||
1527 | uint8_t b; | |
1528 | if (elapsed) *elapsed = 0; | |
1529 | ||
1530 | c = 0; | |
1531 | for(;;) { | |
1532 | WDT_HIT(); | |
1533 | ||
1534 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1535 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1536 | if (elapsed) (*elapsed)++; | |
1537 | } | |
1538 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1539 | if(c < 512) { c++; } else { return FALSE; } | |
1540 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1541 | if(ManchesterDecoding((b & 0xf0) >> 4)) { | |
1542 | *samples = ((c - 1) << 3) + 4; | |
1543 | return TRUE; | |
1544 | } | |
1545 | if(ManchesterDecoding(b & 0x0f)) { | |
1546 | *samples = c << 3; | |
1547 | return TRUE; | |
1548 | } | |
1549 | } | |
1550 | } | |
1551 | } | |
1552 | ||
1553 | void ReaderTransmitShort(const uint8_t* bt) | |
1554 | { | |
1555 | int wait = 0; | |
1556 | int samples = 0; | |
1557 | ||
1558 | ShortFrameFromReader(*bt); | |
1559 | ||
1560 | // Select the card | |
1561 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); | |
1562 | ||
1563 | // Store reader command in buffer | |
1564 | if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE); | |
1565 | } | |
1566 | ||
1567 | void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par) | |
1568 | { | |
1569 | int wait = 0; | |
1570 | int samples = 0; | |
1571 | ||
1572 | // This is tied to other size changes | |
1573 | // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; | |
1574 | CodeIso14443aAsReaderPar(frame,len,par); | |
1575 | ||
1576 | // Select the card | |
1577 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); | |
1578 | ||
1579 | // Store reader command in buffer | |
1580 | if (tracing) LogTrace(frame,len,0,par,TRUE); | |
1581 | } | |
1582 | ||
1583 | ||
1584 | void ReaderTransmit(uint8_t* frame, int len) | |
1585 | { | |
1586 | // Generate parity and redirect | |
1587 | ReaderTransmitPar(frame,len,GetParity(frame,len)); | |
1588 | } | |
1589 | ||
1590 | int ReaderReceive(uint8_t* receivedAnswer) | |
1591 | { | |
1592 | int samples = 0; | |
1593 | if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE; | |
1594 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); | |
1595 | return TRUE; | |
1596 | } | |
1597 | ||
1598 | //----------------------------------------------------------------------------- | |
1599 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1600 | // | |
1601 | //----------------------------------------------------------------------------- | |
1602 | void ReaderIso14443a(uint32_t parameter) | |
1603 | { | |
1604 | // Anticollision | |
1605 | uint8_t wupa[] = { 0x52 }; | |
1606 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1607 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1608 | uint8_t sel_all_c2[] = { 0x95,0x20 }; | |
1609 | uint8_t sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1610 | ||
1611 | // Mifare AUTH | |
1612 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
1613 | // uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00 }; | |
1614 | ||
1615 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1616 | traceLen = 0; | |
1617 | ||
1618 | // Setup SSC | |
1619 | FpgaSetupSsc(); | |
1620 | ||
1621 | // Start from off (no field generated) | |
1622 | // Signal field is off with the appropriate LED | |
1623 | LED_D_OFF(); | |
1624 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1625 | SpinDelay(200); | |
1626 | ||
1627 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1628 | FpgaSetupSsc(); | |
1629 | ||
1630 | // Now give it time to spin up. | |
1631 | // Signal field is on with the appropriate LED | |
1632 | LED_D_ON(); | |
1633 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1634 | SpinDelay(200); | |
1635 | ||
1636 | LED_A_ON(); | |
1637 | LED_B_OFF(); | |
1638 | LED_C_OFF(); | |
1639 | ||
1640 | while(traceLen < TRACE_LENGTH) | |
1641 | { | |
1642 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
1643 | ReaderTransmitShort(wupa); | |
1644 | ||
1645 | // Test if the action was cancelled | |
1646 | if(BUTTON_PRESS()) { | |
1647 | break; | |
1648 | } | |
1649 | ||
1650 | // Receive the ATQA | |
1651 | if (!ReaderReceive(receivedAnswer)) continue; | |
1652 | ||
1653 | // Transmit SELECT_ALL | |
1654 | ReaderTransmit(sel_all,sizeof(sel_all)); | |
1655 | ||
1656 | // Receive the UID | |
1657 | if (!ReaderReceive(receivedAnswer)) continue; | |
1658 | ||
1659 | // Construct SELECT UID command | |
1660 | // First copy the 5 bytes (Mifare Classic) after the 93 70 | |
1661 | memcpy(sel_uid+2,receivedAnswer,5); | |
1662 | // Secondly compute the two CRC bytes at the end | |
1663 | AppendCrc14443a(sel_uid,7); | |
1664 | ||
1665 | // Transmit SELECT_UID | |
1666 | ReaderTransmit(sel_uid,sizeof(sel_uid)); | |
1667 | ||
1668 | // Receive the SAK | |
1669 | if (!ReaderReceive(receivedAnswer)) continue; | |
1670 | ||
1671 | // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in | |
1672 | // which case we need to make a cascade 2 request and select - this is a long UID | |
1673 | // When the UID is not complete, the 3nd bit (from the right) is set in the SAK. | |
1674 | if (receivedAnswer[0] &= 0x04) | |
1675 | { | |
1676 | // Transmit SELECT_ALL | |
1677 | ReaderTransmit(sel_all_c2,sizeof(sel_all_c2)); | |
1678 | ||
1679 | // Receive the UID | |
1680 | if (!ReaderReceive(receivedAnswer)) continue; | |
1681 | ||
1682 | // Construct SELECT UID command | |
1683 | memcpy(sel_uid_c2+2,receivedAnswer,5); | |
1684 | // Secondly compute the two CRC bytes at the end | |
1685 | AppendCrc14443a(sel_uid_c2,7); | |
1686 | ||
1687 | // Transmit SELECT_UID | |
1688 | ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2)); | |
1689 | ||
1690 | // Receive the SAK | |
1691 | if (!ReaderReceive(receivedAnswer)) continue; | |
1692 | } | |
1693 | ||
1694 | // Transmit MIFARE_CLASSIC_AUTH | |
1695 | ReaderTransmit(mf_auth,sizeof(mf_auth)); | |
1696 | ||
1697 | // Receive the (16 bit) "random" nonce | |
1698 | if (!ReaderReceive(receivedAnswer)) continue; | |
1699 | } | |
1700 | ||
1701 | // Thats it... | |
1702 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1703 | LEDsoff(); | |
1704 | Dbprintf("%x %x %x", rsamples, 0xCC, 0xCC); | |
1705 | DbpString("ready.."); | |
1706 | } | |
1707 | ||
1708 | //----------------------------------------------------------------------------- | |
1709 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1710 | // | |
1711 | //----------------------------------------------------------------------------- | |
1712 | void ReaderMifare(uint32_t parameter) | |
1713 | { | |
1714 | ||
1715 | // Anticollision | |
1716 | uint8_t wupa[] = { 0x52 }; | |
1717 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1718 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1719 | ||
1720 | // Mifare AUTH | |
1721 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
1722 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1723 | ||
1724 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1725 | traceLen = 0; | |
1726 | tracing = false; | |
1727 | ||
1728 | // Setup SSC | |
1729 | FpgaSetupSsc(); | |
1730 | ||
1731 | // Start from off (no field generated) | |
1732 | // Signal field is off with the appropriate LED | |
1733 | LED_D_OFF(); | |
1734 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1735 | SpinDelay(200); | |
1736 | ||
1737 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1738 | FpgaSetupSsc(); | |
1739 | ||
1740 | // Now give it time to spin up. | |
1741 | // Signal field is on with the appropriate LED | |
1742 | LED_D_ON(); | |
1743 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1744 | SpinDelay(200); | |
1745 | ||
1746 | LED_A_ON(); | |
1747 | LED_B_OFF(); | |
1748 | LED_C_OFF(); | |
1749 | ||
1750 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
1751 | ReaderTransmitShort(wupa); | |
1752 | // Receive the ATQA | |
1753 | ReaderReceive(receivedAnswer); | |
1754 | // Transmit SELECT_ALL | |
1755 | ReaderTransmit(sel_all,sizeof(sel_all)); | |
1756 | // Receive the UID | |
1757 | ReaderReceive(receivedAnswer); | |
1758 | // Construct SELECT UID command | |
1759 | // First copy the 5 bytes (Mifare Classic) after the 93 70 | |
1760 | memcpy(sel_uid+2,receivedAnswer,5); | |
1761 | // Secondly compute the two CRC bytes at the end | |
1762 | AppendCrc14443a(sel_uid,7); | |
1763 | ||
1764 | byte_t nt_diff = 0; | |
1765 | LED_A_OFF(); | |
1766 | byte_t par = 0; | |
1767 | byte_t par_mask = 0xff; | |
1768 | byte_t par_low = 0; | |
1769 | int led_on = TRUE; | |
1770 | ||
1771 | tracing = FALSE; | |
1772 | byte_t nt[4]; | |
1773 | byte_t nt_attacked[4]; | |
1774 | byte_t par_list[8]; | |
1775 | byte_t ks_list[8]; | |
1776 | num_to_bytes(parameter,4,nt_attacked); | |
1777 | ||
1778 | while(TRUE) | |
1779 | { | |
1780 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1781 | SpinDelay(200); | |
1782 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1783 | ||
1784 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
1785 | ReaderTransmitShort(wupa); | |
1786 | ||
1787 | // Test if the action was cancelled | |
1788 | if(BUTTON_PRESS()) { | |
1789 | break; | |
1790 | } | |
1791 | ||
1792 | // Receive the ATQA | |
1793 | if (!ReaderReceive(receivedAnswer)) continue; | |
1794 | ||
1795 | // Transmit SELECT_ALL | |
1796 | ReaderTransmit(sel_all,sizeof(sel_all)); | |
1797 | ||
1798 | // Receive the UID | |
1799 | if (!ReaderReceive(receivedAnswer)) continue; | |
1800 | ||
1801 | // Transmit SELECT_UID | |
1802 | ReaderTransmit(sel_uid,sizeof(sel_uid)); | |
1803 | ||
1804 | // Receive the SAK | |
1805 | if (!ReaderReceive(receivedAnswer)) continue; | |
1806 | ||
1807 | // Transmit MIFARE_CLASSIC_AUTH | |
1808 | ReaderTransmit(mf_auth,sizeof(mf_auth)); | |
1809 | ||
1810 | // Receive the (16 bit) "random" nonce | |
1811 | if (!ReaderReceive(receivedAnswer)) continue; | |
1812 | memcpy(nt,receivedAnswer,4); | |
1813 | ||
1814 | // Transmit reader nonce and reader answer | |
1815 | ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par); | |
1816 | ||
1817 | // Receive 4 bit answer | |
1818 | if (ReaderReceive(receivedAnswer)) | |
1819 | { | |
1820 | if (nt_diff == 0) | |
1821 | { | |
1822 | LED_A_ON(); | |
1823 | memcpy(nt_attacked,nt,4); | |
1824 | par_mask = 0xf8; | |
1825 | par_low = par & 0x07; | |
1826 | } | |
1827 | ||
1828 | if (memcmp(nt,nt_attacked,4) != 0) continue; | |
1829 | ||
1830 | led_on = !led_on; | |
1831 | if(led_on) LED_B_ON(); else LED_B_OFF(); | |
1832 | par_list[nt_diff] = par; | |
1833 | ks_list[nt_diff] = receivedAnswer[0]^0x05; | |
1834 | ||
1835 | // Test if the information is complete | |
1836 | if (nt_diff == 0x07) break; | |
1837 | ||
1838 | nt_diff = (nt_diff+1) & 0x07; | |
1839 | mf_nr_ar[3] = nt_diff << 5; | |
1840 | par = par_low; | |
1841 | } else { | |
1842 | if (nt_diff == 0) | |
1843 | { | |
1844 | par++; | |
1845 | } else { | |
1846 | par = (((par>>3)+1) << 3) | par_low; | |
1847 | } | |
1848 | } | |
1849 | } | |
1850 | ||
1851 | LogTraceInfo(sel_uid+2,4); | |
1852 | LogTraceInfo(nt,4); | |
1853 | LogTraceInfo(par_list,8); | |
1854 | LogTraceInfo(ks_list,8); | |
1855 | ||
1856 | // Thats it... | |
1857 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1858 | LEDsoff(); | |
1859 | tracing = TRUE; | |
1860 | } |