]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - common/lfdemod.c
CHG: `data plot`- the marking of clock, looks better without borders. It only connec...
[proxmark3-svn] / common / lfdemod.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// Copyright (C) 2014
3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Low frequency demod/decode commands
9//-----------------------------------------------------------------------------
10#include "lfdemod.h"
11
12//un_comment to allow debug print calls when used not on device
13void dummy(char *fmt, ...){}
14
15
16#ifndef ON_DEVICE
17# include "ui.h"
18# include "cmdparser.h"
19# include "cmddata.h"
20# define prnt PrintAndLog
21#else
22 uint8_t g_debugMode=0;
23# define prnt dummy
24#endif
25
26//test samples are not just noise
27uint8_t justNoise(uint8_t *bits, size_t size) {
28 #define THRESHOLD 123
29 uint8_t val = 1;
30 for(size_t idx=0; idx < size && val ;idx++)
31 val = bits[idx] < THRESHOLD;
32 return val;
33}
34
35//by marshmellow
36//get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
37int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
38{
39 *high=0;
40 *low=255;
41 // get high and low thresholds
42 for (size_t i=0; i < size; i++){
43 if (BitStream[i] > *high) *high = BitStream[i];
44 if (BitStream[i] < *low) *low = BitStream[i];
45 }
46 if (*high < 123) return -1; // just noise
47 *high = ((*high-128)*fuzzHi + 12800)/100;
48 *low = ((*low-128)*fuzzLo + 12800)/100;
49 return 1;
50}
51
52// by marshmellow
53// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
54// returns 1 if passed
55uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
56{
57 uint8_t ans = 0;
58 for (uint8_t i = 0; i < bitLen; i++){
59 ans ^= ((bits >> i) & 1);
60 }
61 if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits);
62 return (ans == pType);
63}
64
65//by marshmellow
66// takes a array of binary values, start position, length of bits per parity (includes parity bit),
67// Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
68size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
69{
70 uint32_t parityWd = 0;
71 size_t j = 0, bitCnt = 0;
72 for (int word = 0; word < (bLen); word += pLen){
73 for (int bit=0; bit < pLen; bit++){
74 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
75 BitStream[j++] = (BitStream[startIdx+word+bit]);
76 }
77 if (word+pLen > bLen) break;
78
79 j--; // overwrite parity with next data
80 // if parity fails then return 0
81 switch (pType) {
82 case 3: if (BitStream[j]==1) { return 0; } break; //should be 0 spacer bit
83 case 2: if (BitStream[j]==0) { return 0; } break; //should be 1 spacer bit
84 default: if (parityTest(parityWd, pLen, pType) == 0) { return 0; } break; //test parity
85 }
86 bitCnt += (pLen-1);
87 parityWd = 0;
88 }
89 // if we got here then all the parities passed
90 //return ID start index and size
91 return bitCnt;
92}
93
94// by marshmellow
95// takes a array of binary values, length of bits per parity (includes parity bit),
96// Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
97// Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
98size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
99{
100 uint32_t parityWd = 0;
101 size_t j = 0, bitCnt = 0;
102 for (int word = 0; word < sourceLen; word+=pLen-1) {
103 for (int bit=0; bit < pLen-1; bit++){
104 parityWd = (parityWd << 1) | BitSource[word+bit];
105 dest[j++] = (BitSource[word+bit]);
106 }
107
108 // if parity fails then return 0
109 switch (pType) {
110 case 3: dest[j++]=0; break; // marker bit which should be a 0
111 case 2: dest[j++]=1; break; // marker bit which should be a 1
112 default:
113 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
114 break;
115 }
116 bitCnt += pLen;
117 parityWd = 0;
118 }
119 // if we got here then all the parities passed
120 //return ID start index and size
121 return bitCnt;
122}
123
124uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
125{
126 uint32_t num = 0;
127 for(int i = 0 ; i < numbits ; i++) {
128 num = (num << 1) | (*src);
129 src++;
130 }
131 return num;
132}
133
134//least significant bit first
135uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
136{
137 uint32_t num = 0;
138 for(int i = 0 ; i < numbits ; i++) {
139 num = (num << 1) | *(src + (numbits-(i+1)));
140 }
141 return num;
142}
143
144//by marshmellow
145// search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found)
146bool preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx){
147 return preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false);
148}
149//by marshmellow
150//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
151// param @findone: look for a repeating preamble or only the first.
152// em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits
153bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone)
154{
155 // Sanity check. If preamble length is bigger than bitstream length.
156 if ( *size <= pLen ) return false;
157
158 uint8_t foundCnt = 0;
159 for (int idx = 0; idx < *size - pLen; idx++){
160 if (memcmp(BitStream+idx, preamble, pLen) == 0){
161 if (g_debugMode) prnt("DEBUG: preamble found at %i", idx);
162 //first index found
163 foundCnt++;
164 if (foundCnt == 1){
165 *startIdx = idx;
166 if (findone) return true;
167 }
168 if (foundCnt == 2){
169 *size = idx - *startIdx;
170 return true;
171 }
172 }
173 }
174 return false;
175}
176
177// find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
178size_t findModStart(uint8_t dest[], size_t size, uint8_t threshold_value, uint8_t expWaveSize) {
179 size_t i = 0;
180 size_t waveSizeCnt = 0;
181 uint8_t thresholdCnt = 0;
182 bool isAboveThreshold = dest[i++] >= threshold_value;
183 for (; i < size-20; i++ ) {
184 if(dest[i] < threshold_value && isAboveThreshold) {
185 thresholdCnt++;
186 if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break;
187 isAboveThreshold = false;
188 waveSizeCnt = 0;
189 } else if (dest[i] >= threshold_value && !isAboveThreshold) {
190 thresholdCnt++;
191 if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break;
192 isAboveThreshold = true;
193 waveSizeCnt = 0;
194 } else {
195 waveSizeCnt++;
196 }
197 if (thresholdCnt > 10) break;
198 }
199 if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt);
200 return i;
201}
202
203//by marshmellow
204//takes 1s and 0s and searches for EM410x format - output EM ID
205// actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
206int Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
207{
208 // sanity check
209 if (*size < 64) return -3;
210 if (BitStream[1] > 1) return -1;
211
212 uint8_t fmtlen;
213 *startIdx = 0;
214
215 // preamble 0111111111
216 // include 0 in front to help get start pos
217 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
218 if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx))
219 return -2;
220
221 //XL and normal size.
222 if (*size != 64 && *size != 128) return -3;
223
224 fmtlen = (*size == 128) ? 22 : 10;
225
226 //skip last 4bit parity row for simplicity
227 *size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, fmtlen * 5);
228
229 switch (*size) {
230 case 40: {
231 // std em410x format
232 *hi = 0;
233 *lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32));
234 break;
235 }
236 case 88: {
237 // long em format
238 *hi = (bytebits_to_byte(BitStream, 24));
239 *lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32));
240 break;
241 }
242 default: return -4;
243 }
244 return 1;
245}
246
247//by marshmellow
248//demodulates strong heavily clipped samples
249//RETURN: num of errors. if 0, is ok.
250int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
251{
252 size_t bitCnt=0, smplCnt=0, errCnt=0;
253 uint8_t waveHigh = 0;
254 for (size_t i=0; i < *size; i++){
255 if (BinStream[i] >= high && waveHigh){
256 smplCnt++;
257 } else if (BinStream[i] <= low && !waveHigh){
258 smplCnt++;
259 } else { //transition
260 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
261
262 if (smplCnt > clk-(clk/4)-1) { //full clock
263 if (smplCnt > clk + (clk/4)+1) { //too many samples
264 errCnt++;
265 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
266 BinStream[bitCnt++] = 7;
267 } else if (waveHigh) {
268 BinStream[bitCnt++] = invert;
269 BinStream[bitCnt++] = invert;
270 } else if (!waveHigh) {
271 BinStream[bitCnt++] = invert ^ 1;
272 BinStream[bitCnt++] = invert ^ 1;
273 }
274 waveHigh ^= 1;
275 smplCnt = 0;
276 } else if (smplCnt > (clk/2) - (clk/4)-1) {
277 if (waveHigh) {
278 BinStream[bitCnt++] = invert;
279 } else if (!waveHigh) {
280 BinStream[bitCnt++] = invert ^ 1;
281 }
282 waveHigh ^= 1;
283 smplCnt = 0;
284 } else if (!bitCnt) {
285 //first bit
286 waveHigh = (BinStream[i] >= high);
287 smplCnt = 1;
288 } else {
289 smplCnt++;
290 //transition bit oops
291 }
292 } else { //haven't hit new high or new low yet
293 smplCnt++;
294 }
295 }
296 }
297 *size = bitCnt;
298 return errCnt;
299}
300
301//by marshmellow
302void askAmp(uint8_t *BitStream, size_t size)
303{
304 uint8_t last = 128;
305 for(size_t i = 1; i < size; ++i){
306 if (BitStream[i]-BitStream[i-1] >= 30) //large jump up
307 last = 255;
308 else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down
309 last = 0;
310
311 BitStream[i] = last;
312 }
313}
314
315//by marshmellow
316//attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
317int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
318{
319 if (*size==0) return -1;
320 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
321
322 if (*clk==0 || start < 0) return -3;
323 if (*invert != 1) *invert = 0;
324 if (amp==1) askAmp(BinStream, *size);
325 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
326
327 uint8_t initLoopMax = 255;
328 if (initLoopMax > *size) initLoopMax = *size;
329 // Detect high and lows
330 //25% clip in case highs and lows aren't clipped [marshmellow]
331 int high, low;
332 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
333 return -2; //just noise
334
335 size_t errCnt = 0;
336 // if clean clipped waves detected run alternate demod
337 if (DetectCleanAskWave(BinStream, *size, high, low)) {
338 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
339 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
340 if (askType) //askman
341 return manrawdecode(BinStream, size, 0);
342 //askraw
343 return errCnt;
344 }
345 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
346
347 int lastBit; //set first clock check - can go negative
348 size_t i, bitnum = 0; //output counter
349 uint8_t midBit = 0;
350 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
351 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
352 size_t MaxBits = 3072; //max bits to collect
353 lastBit = start - *clk;
354
355 for (i = start; i < *size; ++i) {
356 if (i-lastBit >= *clk-tol){
357 if (BinStream[i] >= high) {
358 BinStream[bitnum++] = *invert;
359 } else if (BinStream[i] <= low) {
360 BinStream[bitnum++] = *invert ^ 1;
361 } else if (i-lastBit >= *clk+tol) {
362 if (bitnum > 0) {
363 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
364 BinStream[bitnum++]=7;
365 errCnt++;
366 }
367 } else { //in tolerance - looking for peak
368 continue;
369 }
370 midBit = 0;
371 lastBit += *clk;
372 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
373 if (BinStream[i] >= high) {
374 BinStream[bitnum++] = *invert;
375 } else if (BinStream[i] <= low) {
376 BinStream[bitnum++] = *invert ^ 1;
377 } else if (i-lastBit >= *clk/2+tol) {
378 BinStream[bitnum] = BinStream[bitnum-1];
379 bitnum++;
380 } else { //in tolerance - looking for peak
381 continue;
382 }
383 midBit = 1;
384 }
385 if (bitnum >= MaxBits) break;
386 }
387 *size = bitnum;
388 return errCnt;
389}
390//by marshmellow
391//take 10 and 01 and manchester decode
392//run through 2 times and take least errCnt
393int manrawdecode(uint8_t *BitStream, size_t *size, uint8_t invert){
394
395 // sanity check
396 if (*size < 16) return -1;
397
398 int errCnt = 0, bestErr = 1000;
399 uint16_t bitnum = 0, MaxBits = 512, bestRun = 0;
400 size_t i, k;
401
402 //find correct start position [alignment]
403 for (k = 0; k < 2; ++k){
404 for (i = k; i < *size-3; i += 2) {
405 if (BitStream[i] == BitStream[i+1])
406 errCnt++;
407 }
408 if (bestErr > errCnt){
409 bestErr = errCnt;
410 bestRun = k;
411 }
412 errCnt = 0;
413 }
414
415 //decode
416 for (i = bestRun; i < *size-3; i += 2){
417 if (BitStream[i] == 1 && (BitStream[i+1] == 0)){
418 BitStream[bitnum++] = invert;
419 } else if ((BitStream[i] == 0) && BitStream[i+1] == 1){
420 BitStream[bitnum++] = invert^1;
421 } else {
422 BitStream[bitnum++] = 7;
423 }
424 if (bitnum > MaxBits) break;
425 }
426 *size = bitnum;
427 return bestErr;
428}
429
430uint32_t manchesterEncode2Bytes(uint16_t datain) {
431 uint32_t output = 0;
432 uint8_t curBit = 0;
433 for (uint8_t i=0; i<16; i++) {
434 curBit = (datain >> (15-i) & 1);
435 output |= (1<<(((15-i)*2)+curBit));
436 }
437 return output;
438}
439
440//by marshmellow
441//encode binary data into binary manchester
442int ManchesterEncode(uint8_t *BitStream, size_t size)
443{
444 size_t modIdx=20000, i=0;
445 if (size>modIdx) return -1;
446 for (size_t idx=0; idx < size; idx++){
447 BitStream[idx+modIdx++] = BitStream[idx];
448 BitStream[idx+modIdx++] = BitStream[idx]^1;
449 }
450 for (; i<(size*2); i++){
451 BitStream[i] = BitStream[i+20000];
452 }
453 return i;
454}
455
456//by marshmellow
457//take 01 or 10 = 1 and 11 or 00 = 0
458//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
459//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
460int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
461{
462 uint16_t bitnum = 0;
463 uint16_t errCnt = 0;
464 size_t i = offset;
465 uint16_t MaxBits=512;
466 //if not enough samples - error
467 if (*size < 51) return -1;
468 //check for phase change faults - skip one sample if faulty
469 uint8_t offsetA = 1, offsetB = 1;
470 for (; i<48; i+=2){
471 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
472 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
473 }
474 if (!offsetA && offsetB) offset++;
475 for (i=offset; i<*size-3; i+=2){
476 //check for phase error
477 if (BitStream[i+1]==BitStream[i+2]) {
478 BitStream[bitnum++]=7;
479 errCnt++;
480 }
481 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
482 BitStream[bitnum++]=1^invert;
483 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
484 BitStream[bitnum++]=invert;
485 } else {
486 BitStream[bitnum++]=7;
487 errCnt++;
488 }
489 if(bitnum>MaxBits) break;
490 }
491 *size=bitnum;
492 return errCnt;
493}
494
495// by marshmellow
496// demod gProxIIDemod
497// error returns as -x
498// success returns start position in BitStream
499// BitStream must contain previously askrawdemod and biphasedemoded data
500int gProxII_Demod(uint8_t BitStream[], size_t *size)
501{
502 size_t startIdx=0;
503 uint8_t preamble[] = {1,1,1,1,1,0};
504
505 if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx))
506 return -3; //preamble not found
507
508 if (*size != 96) return -2; //should have found 96 bits
509
510 //check first 6 spacer bits to verify format
511 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
512 //confirmed proper separator bits found
513 //return start position
514 return (int) startIdx;
515 }
516 return -5; //spacer bits not found - not a valid gproxII
517}
518
519//translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
520size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
521{
522 size_t last_transition = 0;
523 size_t idx = 1;
524 if (fchigh==0) fchigh=10;
525 if (fclow==0) fclow=8;
526 //set the threshold close to 0 (graph) or 128 std to avoid static
527 uint8_t threshold_value = 123;
528 size_t preLastSample = 0;
529 size_t LastSample = 0;
530 size_t currSample = 0;
531 if ( size < 1024 ) return 0; // not enough samples
532
533 //find start of modulating data in trace
534 idx = findModStart(dest, size, threshold_value, fchigh);
535
536 // Need to threshold first sample
537 if(dest[idx] < threshold_value) dest[0] = 0;
538 else dest[0] = 1;
539 idx++;
540
541 size_t numBits = 0;
542 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
543 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
544 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
545 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
546 for(; idx < size-20; idx++) {
547 // threshold current value
548
549 if (dest[idx] < threshold_value) dest[idx] = 0;
550 else dest[idx] = 1;
551
552 // Check for 0->1 transition
553 if (dest[idx-1] < dest[idx]) {
554 preLastSample = LastSample;
555 LastSample = currSample;
556 currSample = idx-last_transition;
557 if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
558 //do nothing with extra garbage
559 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
560 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
561 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){
562 dest[numBits-1]=1;
563 }
564 dest[numBits++]=1;
565
566 } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage
567 //do nothing with beginning garbage and reset.. should be rare..
568 numBits = 0;
569 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
570 dest[numBits++]=1;
571 } else { //9+ = 10 sample waves (or 6+ = 7)
572 dest[numBits++]=0;
573 }
574 last_transition = idx;
575 }
576 }
577 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
578}
579
580//translate 11111100000 to 10
581//rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
582size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
583 uint8_t invert, uint8_t fchigh, uint8_t fclow)
584{
585 uint8_t lastval=dest[0];
586 size_t idx=0;
587 size_t numBits=0;
588 uint32_t n=1;
589 for( idx=1; idx < size; idx++) {
590 n++;
591 if (dest[idx]==lastval) continue; //skip until we hit a transition
592
593 //find out how many bits (n) we collected
594 //if lastval was 1, we have a 1->0 crossing
595 if (dest[idx-1]==1) {
596 n = (n * fclow + rfLen/2) / rfLen;
597 } else {// 0->1 crossing
598 n = (n * fchigh + rfLen/2) / rfLen;
599 }
600 if (n == 0) n = 1;
601
602 //add to our destination the bits we collected
603 memset(dest+numBits, dest[idx-1]^invert , n);
604 numBits += n;
605 n=0;
606 lastval=dest[idx];
607 }//end for
608 // if valid extra bits at the end were all the same frequency - add them in
609 if (n > rfLen/fchigh) {
610 if (dest[idx-2]==1) {
611 n = (n * fclow + rfLen/2) / rfLen;
612 } else {
613 n = (n * fchigh + rfLen/2) / rfLen;
614 }
615 memset(dest+numBits, dest[idx-1]^invert , n);
616 numBits += n;
617 }
618 return numBits;
619}
620
621//by marshmellow (from holiman's base)
622// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
623int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
624{
625 // FSK demodulator
626 size = fsk_wave_demod(dest, size, fchigh, fclow);
627 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
628 return size;
629}
630
631// loop to get raw HID waveform then FSK demodulate the TAG ID from it
632int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
633{
634 if (justNoise(dest, *size)) return -1;
635
636 size_t numStart=0, size2 = *size, startIdx=0;
637 // FSK demodulator
638 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
639 if (*size < 96*2) return -2;
640 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
641 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
642 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
643 return -3; //preamble not found
644
645 numStart = startIdx + sizeof(preamble);
646 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
647 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
648 if (dest[idx] == dest[idx+1]){
649 return -4; //not manchester data
650 }
651 *hi2 = (*hi2<<1)|(*hi>>31);
652 *hi = (*hi<<1)|(*lo>>31);
653 //Then, shift in a 0 or one into low
654 *lo <<= 1;
655 if (dest[idx] && !dest[idx+1]) // 1 0
656 *lo |= 1;
657 else // 0 1
658 *lo |= 0;
659 }
660 return (int)startIdx;
661}
662
663// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
664int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
665{
666 if (justNoise(dest, *size)) return -1;
667
668 size_t numStart=0, size2 = *size, startIdx=0;
669 // FSK demodulator
670 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
671 if (*size < 96) return -2;
672
673 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
674 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
675 if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
676 return -3; //preamble not found
677
678 numStart = startIdx + sizeof(preamble);
679 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
680 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
681 if (dest[idx] == dest[idx+1])
682 return -4; //not manchester data
683 *hi2 = (*hi2<<1)|(*hi>>31);
684 *hi = (*hi<<1)|(*lo>>31);
685 //Then, shift in a 0 or one into low
686 if (dest[idx] && !dest[idx+1]) // 1 0
687 *lo=(*lo<<1)|1;
688 else // 0 1
689 *lo=(*lo<<1)|0;
690 }
691 return (int)startIdx;
692}
693
694int IOdemodFSK(uint8_t *dest, size_t size)
695{
696 if (justNoise(dest, size)) return -1;
697 //make sure buffer has data
698 if (size < 66*64) return -2;
699 // FSK demodulator
700 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
701 if (size < 65) return -3; //did we get a good demod?
702 //Index map
703 //0 10 20 30 40 50 60
704 //| | | | | | |
705 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
706 //-----------------------------------------------------------------------------
707 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
708 //
709 //XSF(version)facility:codeone+codetwo
710 //Handle the data
711 size_t startIdx = 0;
712 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
713 if (! preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx))
714 return -4; //preamble not found
715
716 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
717 //confirmed proper separator bits found
718 //return start position
719 return (int) startIdx;
720 }
721 return -5;
722}
723
724// by marshmellow
725// find viking preamble 0xF200 in already demoded data
726int VikingDemod_AM(uint8_t *dest, size_t *size) {
727 //make sure buffer has data
728 if (*size < 64*2) return -2;
729 size_t startIdx = 0;
730 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
731 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
732 return -4; //preamble not found
733
734 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^
735 bytebits_to_byte(dest+startIdx+8,8) ^
736 bytebits_to_byte(dest+startIdx+16,8) ^
737 bytebits_to_byte(dest+startIdx+24,8) ^
738 bytebits_to_byte(dest+startIdx+32,8) ^
739 bytebits_to_byte(dest+startIdx+40,8) ^
740 bytebits_to_byte(dest+startIdx+48,8) ^
741 bytebits_to_byte(dest+startIdx+56,8);
742 if ( checkCalc != 0xA8 ) return -5;
743 if (*size != 64) return -6;
744 //return start position
745 return (int)startIdx;
746}
747
748// by iceman
749// find Visa2000 preamble in already demoded data
750int Visa2kDemod_AM(uint8_t *dest, size_t *size) {
751 if (*size < 96) return -1; //make sure buffer has data
752 size_t startIdx = 0;
753 uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0};
754 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
755 return -2; //preamble not found
756 if (*size != 96) return -3; //wrong demoded size
757 //return start position
758 return (int)startIdx;
759}
760// by iceman
761// find Noralsy preamble in already demoded data
762int NoralsyDemod_AM(uint8_t *dest, size_t *size) {
763 if (*size < 96) return -1; //make sure buffer has data
764 size_t startIdx = 0;
765 uint8_t preamble[] = {1,0,1,1,1,0,1,1,0,0,0,0};
766 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
767 return -2; //preamble not found
768 if (*size != 96) return -3; //wrong demoded size
769 //return start position
770 return (int)startIdx;
771}
772// find presco preamble 0x10D in already demoded data
773int PrescoDemod(uint8_t *dest, size_t *size) {
774 if (*size < 128*2) return -1; //make sure buffer has data
775 size_t startIdx = 0;
776 uint8_t preamble[] = {0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
777 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
778 return -2; //preamble not found
779 if (*size != 128) return -3; //wrong demoded size
780 //return start position
781 return (int)startIdx;
782}
783
784// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
785// BitStream must contain previously askrawdemod and biphasedemoded data
786int FDXBdemodBI(uint8_t *dest, size_t *size) {
787 if (*size < 128*2) return -1; //make sure buffer has enough data
788 size_t startIdx = 0;
789 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
790 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
791 return -2; //preamble not found
792 if (*size != 128) return -3; //wrong demoded size
793 //return start position
794 return (int)startIdx;
795}
796
797// ASK/Diphase fc/64 (inverted Biphase)
798// Note: this i s not a demod, this is only a detection
799// the parameter *dest needs to be demoded before call
800// 0xFFFF preamble, 64bits
801int JablotronDemod(uint8_t *dest, size_t *size){
802 if (*size < 64*2) return -1; //make sure buffer has enough data
803 size_t startIdx = 0;
804 uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
805 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
806 return -2; //preamble not found
807 if (*size != 64) return -3; // wrong demoded size
808
809 uint8_t checkchksum = 0;
810 for (int i=16; i < 56; i += 8) {
811 checkchksum += bytebits_to_byte(dest+startIdx+i,8);
812 }
813 checkchksum ^= 0x3A;
814 uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8);
815 if ( checkchksum != crc ) return -5;
816 return (int)startIdx;
817}
818
819// by marshmellow
820// FSK Demod then try to locate an AWID ID
821int AWIDdemodFSK(uint8_t *dest, size_t *size)
822{
823 //make sure buffer has enough data
824 if (*size < 96*50) return -1;
825
826 if (justNoise(dest, *size)) return -2;
827
828 // FSK demodulator
829 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
830 if (*size < 96) return -3; //did we get a good demod?
831
832 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
833 size_t startIdx = 0;
834 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
835 return -4; //preamble not found
836 if (*size != 96) return -5;
837 return (int)startIdx;
838}
839
840// by marshmellow
841// FSK Demod then try to locate a Farpointe Data (pyramid) ID
842int PyramiddemodFSK(uint8_t *dest, size_t *size)
843{
844 //make sure buffer has data
845 if (*size < 128*50) return -5;
846
847 //test samples are not just noise
848 if (justNoise(dest, *size)) return -1;
849
850 // FSK demodulator
851 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
852 if (*size < 128) return -2; //did we get a good demod?
853 size_t startIdx = 0;
854 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1};
855 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
856 return -4; //preamble not found
857 if (*size != 128) return -3;
858 return (int)startIdx;
859}
860
861// find nedap preamble in already demoded data
862int NedapDemod(uint8_t *dest, size_t *size) {
863 //make sure buffer has data
864 if (*size < 128) return -3;
865
866 size_t startIdx = 0;
867 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
868 uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0};
869 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
870 return -4; //preamble not found
871 return (int) startIdx;
872}
873
874// Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits
875// by iceman
876int IdteckDemodPSK(uint8_t *dest, size_t *size) {
877 //make sure buffer has data
878 if (*size < 64*2) return -1;
879 size_t startIdx = 0;
880 uint8_t preamble[] = {0,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,0,1,1};
881 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
882 return -2; //preamble not found
883 if (*size != 64) return -3; // wrong demoded size
884 return (int) startIdx;
885}
886
887// by marshmellow
888// to detect a wave that has heavily clipped (clean) samples
889uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
890{
891 bool allArePeaks = true;
892 uint16_t cntPeaks=0;
893 size_t loopEnd = 512+160;
894 if (loopEnd > size) loopEnd = size;
895 for (size_t i=160; i<loopEnd; i++){
896 if (dest[i]>low && dest[i]<high)
897 allArePeaks = false;
898 else
899 cntPeaks++;
900 }
901 if (!allArePeaks){
902 if (cntPeaks > 300) return true;
903 }
904 return allArePeaks;
905}
906// by marshmellow
907// to help detect clocks on heavily clipped samples
908// based on count of low to low
909int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
910{
911 uint8_t fndClk[] = {8,16,32,40,50,64,128};
912 size_t startwave;
913 size_t i = 100;
914 size_t minClk = 255;
915 // get to first full low to prime loop and skip incomplete first pulse
916 while ((dest[i] < high) && (i < size))
917 ++i;
918 while ((dest[i] > low) && (i < size))
919 ++i;
920
921 // loop through all samples
922 while (i < size) {
923 // measure from low to low
924 while ((dest[i] > low) && (i < size))
925 ++i;
926 startwave= i;
927 while ((dest[i] < high) && (i < size))
928 ++i;
929 while ((dest[i] > low) && (i < size))
930 ++i;
931 //get minimum measured distance
932 if (i-startwave < minClk && i < size)
933 minClk = i - startwave;
934 }
935 // set clock
936 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
937 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
938 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
939 return fndClk[clkCnt];
940 }
941 return 0;
942}
943void SetGraphClock( int clock, int startidx){
944 PlotClock = clock;
945 PlockClockStartIndex = startidx;
946}
947
948// by marshmellow
949// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
950// maybe somehow adjust peak trimming value based on samples to fix?
951// return start index of best starting position for that clock and return clock (by reference)
952int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
953{
954 size_t i = 1;
955 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
956 uint8_t clkEnd = 9;
957 uint8_t loopCnt = 255; //don't need to loop through entire array...
958 if (size <= loopCnt + 60) return -1; //not enough samples
959 size -= 60; //sometimes there is a strange end wave - filter out this....
960 //if we already have a valid clock
961 uint8_t clockFnd = 0;
962 for (; i < clkEnd; ++i)
963 if (clk[i] == *clock) clockFnd = i;
964 //clock found but continue to find best startpos
965
966 //get high and low peak
967 int peak, low;
968 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
969
970 //test for large clean peaks
971 if (!clockFnd){
972 if (DetectCleanAskWave(dest, size, peak, low)==1){
973 int ans = DetectStrongAskClock(dest, size, peak, low);
974 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
975 for (i=clkEnd-1; i>0; i--){
976 if (clk[i] == ans) {
977 *clock = ans;
978 //clockFnd = i;
979 return 0; // for strong waves i don't use the 'best start position' yet...
980 //break; //clock found but continue to find best startpos [not yet]
981 }
982 }
983 }
984 }
985 uint8_t ii;
986 uint8_t clkCnt, tol = 0;
987 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
988 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
989 size_t errCnt = 0;
990 size_t arrLoc, loopEnd;
991
992 if (clockFnd > 0) {
993 clkCnt = clockFnd;
994 clkEnd = clockFnd+1;
995 } else {
996 clkCnt = 1;
997 }
998
999 //test each valid clock from smallest to greatest to see which lines up
1000 for (; clkCnt < clkEnd; clkCnt++) {
1001 if (clk[clkCnt] <= 32) {
1002 tol=1;
1003 } else {
1004 tol=0;
1005 }
1006 //if no errors allowed - keep start within the first clock
1007 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128)
1008 loopCnt = clk[clkCnt] * 2;
1009
1010 bestErr[clkCnt] = 1000;
1011
1012 //try lining up the peaks by moving starting point (try first few clocks)
1013 for (ii=0; ii < loopCnt; ii++){
1014 if (dest[ii] < peak && dest[ii] > low) continue;
1015
1016 errCnt = 0;
1017 // now that we have the first one lined up test rest of wave array
1018 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
1019 for (i=0; i < loopEnd; ++i){
1020 arrLoc = ii + (i * clk[clkCnt]);
1021 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
1022 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
1023 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
1024 }else{ //error no peak detected
1025 errCnt++;
1026 }
1027 }
1028 //if we found no errors then we can stop here and a low clock (common clocks)
1029 // this is correct one - return this clock
1030 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d", clk[clkCnt], errCnt, ii, i);
1031 if (errCnt==0 && clkCnt<7) {
1032 if (!clockFnd) *clock = clk[clkCnt];
1033
1034 SetGraphClock(*clock, ii);
1035 return ii;
1036 }
1037 //if we found errors see if it is lowest so far and save it as best run
1038 if (errCnt < bestErr[clkCnt]) {
1039 bestErr[clkCnt] = errCnt;
1040 bestStart[clkCnt] = ii;
1041 }
1042 }
1043 }
1044 uint8_t k;
1045 uint8_t best = 0;
1046 for (k=1; k < clkEnd; ++k){
1047 if (bestErr[k] < bestErr[best]){
1048 if (bestErr[k] == 0) bestErr[k]=1;
1049 // current best bit to error ratio vs new bit to error ratio
1050 if ( (size/clk[best])/bestErr[best] < (size/clk[k])/bestErr[k] ){
1051 best = k;
1052 }
1053 }
1054 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d", clk[k], bestErr[k], clk[best], bestStart[best]);
1055 }
1056 if (!clockFnd) *clock = clk[best];
1057
1058 SetGraphClock(*clock, bestStart[best]);
1059 return bestStart[best];
1060}
1061
1062//by marshmellow
1063//detect psk clock by reading each phase shift
1064// a phase shift is determined by measuring the sample length of each wave
1065int DetectPSKClock(uint8_t dest[], size_t size, int clock)
1066{
1067 uint8_t clk[] = {255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
1068 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1069
1070 //if we already have a valid clock quit
1071 size_t i=1;
1072 for (; i < 8; ++i)
1073 if (clk[i] == clock) return clock;
1074
1075 if (size < 160+20) return 0;
1076
1077 // size must be larger than 20 here, and 160 later on.
1078 if (size < loopCnt) loopCnt = size-20;
1079
1080 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
1081 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
1082 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
1083 uint16_t bestErr[] = {1000,1000,1000,1000,1000,1000,1000,1000,1000};
1084 uint16_t peaksdet[] = {0,0,0,0,0,0,0,0,0};
1085 fc = countFC(dest, size, 0);
1086 if (fc!=2 && fc!=4 && fc!=8) return -1;
1087 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
1088
1089 //find first full wave
1090 for (i=160; i < loopCnt; i++){
1091 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1092 if (waveStart == 0) {
1093 waveStart = i+1;
1094 //prnt("DEBUG: waveStart: %d",waveStart);
1095 } else {
1096 waveEnd = i+1;
1097 //prnt("DEBUG: waveEnd: %d",waveEnd);
1098 waveLenCnt = waveEnd-waveStart;
1099 if (waveLenCnt > fc){
1100 firstFullWave = waveStart;
1101 fullWaveLen=waveLenCnt;
1102 break;
1103 }
1104 waveStart=0;
1105 }
1106 }
1107 }
1108 if (g_debugMode == 2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1109
1110 //test each valid clock from greatest to smallest to see which lines up
1111 for (clkCnt=7; clkCnt >= 1 ; clkCnt--){
1112 lastClkBit = firstFullWave; //set end of wave as clock align
1113 waveStart = 0;
1114 errCnt=0;
1115 peakcnt=0;
1116 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
1117
1118 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
1119 //top edge of wave = start of new wave
1120 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1121 if (waveStart == 0) {
1122 waveStart = i+1;
1123 waveLenCnt=0;
1124 } else { //waveEnd
1125 waveEnd = i+1;
1126 waveLenCnt = waveEnd-waveStart;
1127 if (waveLenCnt > fc){
1128 //if this wave is a phase shift
1129 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
1130 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
1131 peakcnt++;
1132 lastClkBit+=clk[clkCnt];
1133 } else if (i<lastClkBit+8){
1134 //noise after a phase shift - ignore
1135 } else { //phase shift before supposed to based on clock
1136 errCnt++;
1137 }
1138 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
1139 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
1140 }
1141 waveStart=i+1;
1142 }
1143 }
1144 }
1145 if (errCnt == 0) return clk[clkCnt];
1146 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt] = errCnt;
1147 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt] = peakcnt;
1148 }
1149 //all tested with errors
1150 //return the highest clk with the most peaks found
1151 uint8_t best = 7;
1152 for (i=7; i >= 1; i--){
1153 if (peaksdet[i] > peaksdet[best])
1154 best = i;
1155
1156 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
1157 }
1158 return clk[best];
1159}
1160
1161int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1162 //find shortest transition from high to low
1163 size_t i = 0;
1164 size_t transition1 = 0;
1165 int lowestTransition = 255;
1166 bool lastWasHigh = false;
1167
1168 //find first valid beginning of a high or low wave
1169 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1170 ++i;
1171 while ((dest[i] < peak && dest[i] > low) && (i < size))
1172 ++i;
1173 lastWasHigh = (dest[i] >= peak);
1174
1175 if (i==size) return 0;
1176 transition1 = i;
1177
1178 for (;i < size; i++) {
1179 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1180 lastWasHigh = (dest[i] >= peak);
1181 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1182 transition1 = i;
1183 }
1184 }
1185 if (lowestTransition == 255) lowestTransition = 0;
1186 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1187 return lowestTransition;
1188}
1189
1190//by marshmellow
1191//detect nrz clock by reading #peaks vs no peaks(or errors)
1192//iceman: shouldn't param clock be reference? like DetectASKClock
1193int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1194{
1195 size_t i = 0;
1196 uint8_t clk[] = {8,16,32,40,50,64,100,128,255};
1197 size_t loopCnt = 4096; //don't need to loop through entire array...
1198
1199 //if we already have a valid clock quit
1200 for (; i < 8; ++i)
1201 if (clk[i] == clock) return clock;
1202
1203 if (size < 20) return 0;
1204 // size must be larger than 20 here
1205 if (size < loopCnt) loopCnt = size-20;
1206
1207 //get high and low peak
1208 int peak, low;
1209 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1210
1211 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1212 size_t ii;
1213 uint8_t clkCnt;
1214 uint8_t tol = 0;
1215 uint16_t smplCnt = 0;
1216 int16_t peakcnt = 0;
1217 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1218 uint16_t maxPeak = 255;
1219 bool firstpeak = false;
1220 //test for large clipped waves
1221 for (i=0; i<loopCnt; i++){
1222 if (dest[i] >= peak || dest[i] <= low){
1223 if (!firstpeak) continue;
1224 smplCnt++;
1225 } else {
1226 firstpeak = true;
1227 if (smplCnt > 6 ){
1228 if (maxPeak > smplCnt){
1229 maxPeak = smplCnt;
1230 //prnt("maxPk: %d",maxPeak);
1231 }
1232 peakcnt++;
1233 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1234 smplCnt = 0;
1235 }
1236 }
1237 }
1238 bool errBitHigh = 0;
1239 bool bitHigh = 0;
1240 uint8_t ignoreCnt = 0;
1241 uint8_t ignoreWindow = 4;
1242 bool lastPeakHigh = 0;
1243 int lastBit = 0;
1244 peakcnt = 0;
1245 //test each valid clock from smallest to greatest to see which lines up
1246 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1247 //ignore clocks smaller than smallest peak
1248 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1249 //try lining up the peaks by moving starting point (try first 256)
1250 for (ii=20; ii < loopCnt; ++ii){
1251 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1252 peakcnt=0;
1253 bitHigh = false;
1254 ignoreCnt = 0;
1255 lastBit = ii-clk[clkCnt];
1256 //loop through to see if this start location works
1257 for (i = ii; i < size-20; ++i) {
1258 //if we are at a clock bit
1259 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1260 //test high/low
1261 if (dest[i] >= peak || dest[i] <= low) {
1262 //if same peak don't count it
1263 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1264 peakcnt++;
1265 }
1266 lastPeakHigh = (dest[i] >= peak);
1267 bitHigh = true;
1268 errBitHigh = false;
1269 ignoreCnt = ignoreWindow;
1270 lastBit += clk[clkCnt];
1271 } else if (i == lastBit + clk[clkCnt] + tol) {
1272 lastBit += clk[clkCnt];
1273 }
1274 //else if not a clock bit and no peaks
1275 } else if (dest[i] < peak && dest[i] > low){
1276 if (ignoreCnt == 0){
1277 bitHigh=false;
1278 if (errBitHigh==true)
1279 peakcnt--;
1280 errBitHigh=false;
1281 } else {
1282 ignoreCnt--;
1283 }
1284 // else if not a clock bit but we have a peak
1285 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1286 //error bar found no clock...
1287 errBitHigh=true;
1288 }
1289 }
1290 if (peakcnt > peaksdet[clkCnt]) {
1291 peaksdet[clkCnt] = peakcnt;
1292 }
1293 }
1294 }
1295 }
1296
1297 uint8_t best = 0;
1298 for (int m = 7; m > 0; m--){
1299 if ((peaksdet[m] >= (peaksdet[best]-1)) && (peaksdet[m] <= peaksdet[best]+1) && lowestTransition) {
1300 if (clk[m] > (lowestTransition - (clk[m]/8)) && clk[m] < (lowestTransition + (clk[m]/8))) {
1301 best = m;
1302 }
1303 } else if (peaksdet[m] > peaksdet[best]){
1304 best = m;
1305 }
1306 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d", clk[m], peaksdet[m], maxPeak, clk[best], lowestTransition);
1307 }
1308
1309 return clk[best];
1310}
1311
1312// by marshmellow
1313// convert psk1 demod to psk2 demod
1314// only transition waves are 1s
1315void psk1TOpsk2(uint8_t *bits, size_t size) {
1316 uint8_t lastBit = bits[0];
1317 for (size_t i = 1; i < size; i++){
1318 //ignore errors
1319 if (bits[i] == 7) continue;
1320
1321 if (lastBit != bits[i]){
1322 lastBit = bits[i];
1323 bits[i] = 1;
1324 } else {
1325 bits[i] = 0;
1326 }
1327 }
1328}
1329
1330// by marshmellow
1331// convert psk2 demod to psk1 demod
1332// from only transition waves are 1s to phase shifts change bit
1333void psk2TOpsk1(uint8_t *bits, size_t size) {
1334 uint8_t phase = 0;
1335 for (size_t i = 0; i < size; i++){
1336 if (bits[i] == 1){
1337 phase ^= 1;
1338 }
1339 bits[i] = phase;
1340 }
1341}
1342
1343// redesigned by marshmellow adjusted from existing decode functions
1344// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1345int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1346{
1347 //26 bit 40134 format (don't know other formats)
1348 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1349 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1350 size_t startidx = 0;
1351 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1352 // if didn't find preamble try again inverting
1353 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1354 *invert ^= 1;
1355 }
1356 if (*size != 64 && *size != 224) return -2;
1357 if (*invert==1)
1358 for (size_t i = startidx; i < *size; i++)
1359 bitStream[i] ^= 1;
1360
1361 return (int) startidx;
1362}
1363
1364// by marshmellow - demodulate NRZ wave - requires a read with strong signal
1365// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1366int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1367 if (justNoise(dest, *size)) return -1;
1368 *clk = DetectNRZClock(dest, *size, *clk);
1369 if (*clk==0) return -2;
1370 size_t i, gLen = 4096;
1371 if (gLen>*size) gLen = *size-20;
1372 int high, low;
1373 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1374
1375 uint8_t bit=0;
1376 //convert wave samples to 1's and 0's
1377 for(i=20; i < *size-20; i++){
1378 if (dest[i] >= high) bit = 1;
1379 if (dest[i] <= low) bit = 0;
1380 dest[i] = bit;
1381 }
1382 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1383 size_t lastBit = 0;
1384 size_t numBits = 0;
1385 for(i=21; i < *size-20; i++) {
1386 //if transition detected or large number of same bits - store the passed bits
1387 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1388 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1389 numBits += (i - lastBit + (*clk/4)) / *clk;
1390 lastBit = i-1;
1391 }
1392 }
1393 *size = numBits;
1394 return 0;
1395}
1396
1397//by marshmellow
1398//detects the bit clock for FSK given the high and low Field Clocks
1399uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1400{
1401 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1402 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1403 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1404 uint8_t rfLensFnd = 0;
1405 uint8_t lastFCcnt = 0;
1406 uint16_t fcCounter = 0;
1407 uint16_t rfCounter = 0;
1408 uint8_t firstBitFnd = 0;
1409 size_t i;
1410 if (size == 0) return 0;
1411
1412 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1413 rfLensFnd=0;
1414 fcCounter=0;
1415 rfCounter=0;
1416 firstBitFnd=0;
1417 //prnt("DEBUG: fcTol: %d",fcTol);
1418 // prime i to first peak / up transition
1419 for (i = 160; i < size-20; i++)
1420 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1421 break;
1422
1423 for (; i < size-20; i++){
1424 fcCounter++;
1425 rfCounter++;
1426
1427 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1428 continue;
1429 // else new peak
1430 // if we got less than the small fc + tolerance then set it to the small fc
1431 // if it is inbetween set it to the last counter
1432 if (fcCounter < fcHigh && fcCounter > fcLow)
1433 fcCounter = lastFCcnt;
1434 else if (fcCounter < fcLow+fcTol)
1435 fcCounter = fcLow;
1436 else //set it to the large fc
1437 fcCounter = fcHigh;
1438
1439 //look for bit clock (rf/xx)
1440 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1441 //not the same size as the last wave - start of new bit sequence
1442 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1443 for (int ii=0; ii<15; ii++){
1444 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1445 rfCnts[ii]++;
1446 rfCounter = 0;
1447 break;
1448 }
1449 }
1450 if (rfCounter > 0 && rfLensFnd < 15){
1451 //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1452 rfCnts[rfLensFnd]++;
1453 rfLens[rfLensFnd++] = rfCounter;
1454 }
1455 } else {
1456 firstBitFnd++;
1457 }
1458 rfCounter=0;
1459 lastFCcnt=fcCounter;
1460 }
1461 fcCounter=0;
1462 }
1463 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1464
1465 for (i=0; i<15; i++){
1466 //get highest 2 RF values (might need to get more values to compare or compare all?)
1467 if (rfCnts[i]>rfCnts[rfHighest]){
1468 rfHighest3=rfHighest2;
1469 rfHighest2=rfHighest;
1470 rfHighest=i;
1471 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1472 rfHighest3=rfHighest2;
1473 rfHighest2=i;
1474 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1475 rfHighest3=i;
1476 }
1477 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1478 }
1479 // set allowed clock remainder tolerance to be 1 large field clock length+1
1480 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1481 uint8_t tol1 = fcHigh+1;
1482
1483 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1484
1485 // loop to find the highest clock that has a remainder less than the tolerance
1486 // compare samples counted divided by
1487 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1488 int ii=7;
1489 for (; ii>=2; ii--){
1490 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1491 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1492 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1493 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1494 break;
1495 }
1496 }
1497 }
1498 }
1499
1500 if (ii<2) return 0; // oops we went too far
1501
1502 return clk[ii];
1503}
1504
1505//by marshmellow
1506//countFC is to detect the field clock lengths.
1507//counts and returns the 2 most common wave lengths
1508//mainly used for FSK field clock detection
1509uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1510{
1511 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1512 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1513 uint8_t fcLensFnd = 0;
1514 uint8_t lastFCcnt = 0;
1515 uint8_t fcCounter = 0;
1516 size_t i;
1517 if (size < 180) return 0;
1518
1519 // prime i to first up transition
1520 for (i = 160; i < size-20; i++)
1521 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1522 break;
1523
1524 for (; i < size-20; i++){
1525 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1526 // new up transition
1527 fcCounter++;
1528 if (fskAdj){
1529 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1530 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1531 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1532 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1533 // save last field clock count (fc/xx)
1534 lastFCcnt = fcCounter;
1535 }
1536 // find which fcLens to save it to:
1537 for (int ii=0; ii<15; ii++){
1538 if (fcLens[ii]==fcCounter){
1539 fcCnts[ii]++;
1540 fcCounter=0;
1541 break;
1542 }
1543 }
1544 if (fcCounter>0 && fcLensFnd<15){
1545 //add new fc length
1546 fcCnts[fcLensFnd]++;
1547 fcLens[fcLensFnd++]=fcCounter;
1548 }
1549 fcCounter=0;
1550 } else {
1551 // count sample
1552 fcCounter++;
1553 }
1554 }
1555
1556 uint8_t best1=14, best2=14, best3=14;
1557 uint16_t maxCnt1=0;
1558 // go through fclens and find which ones are bigest 2
1559 for (i=0; i<15; i++){
1560 // get the 3 best FC values
1561 if (fcCnts[i]>maxCnt1) {
1562 best3=best2;
1563 best2=best1;
1564 maxCnt1=fcCnts[i];
1565 best1=i;
1566 } else if(fcCnts[i]>fcCnts[best2]){
1567 best3=best2;
1568 best2=i;
1569 } else if(fcCnts[i]>fcCnts[best3]){
1570 best3=i;
1571 }
1572 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1573 }
1574 if (fcLens[best1]==0) return 0;
1575 uint8_t fcH=0, fcL=0;
1576 if (fcLens[best1]>fcLens[best2]){
1577 fcH=fcLens[best1];
1578 fcL=fcLens[best2];
1579 } else{
1580 fcH=fcLens[best2];
1581 fcL=fcLens[best1];
1582 }
1583 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1584 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1585 return 0; //lots of waves not psk or fsk
1586 }
1587 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1588
1589 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1590 if (fskAdj) return fcs;
1591 return fcLens[best1];
1592}
1593
1594//by marshmellow - demodulate PSK1 wave
1595//uses wave lengths (# Samples)
1596int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1597{
1598 if (size == 0) return -1;
1599 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1600 if (*size<loopCnt) loopCnt = *size;
1601
1602 size_t numBits=0;
1603 uint8_t curPhase = *invert;
1604 size_t i=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1605 uint16_t fc=0, fullWaveLen=0, tol=1;
1606 uint16_t errCnt=0, waveLenCnt=0, errCnt2=0;
1607 fc = countFC(dest, *size, 1);
1608 uint8_t fc2 = fc >> 8;
1609 if (fc2 == 10) return -1; //fsk found - quit
1610 fc = fc & 0xFF;
1611 if (fc!=2 && fc!=4 && fc!=8) return -1;
1612 //prnt("DEBUG: FC: %d",fc);
1613 *clock = DetectPSKClock(dest, *size, *clock);
1614 if (*clock == 0) return -1;
1615
1616 //find start of modulating data in trace
1617 uint8_t threshold_value = 123; //-5
1618 i = findModStart(dest, *size, threshold_value, fc);
1619
1620 //find first phase shift
1621 int avgWaveVal=0, lastAvgWaveVal=0;
1622 waveStart = i;
1623 for (; i<loopCnt; i++){
1624 // find peak
1625 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1626 waveEnd = i+1;
1627 if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd, waveStart);
1628 waveLenCnt = waveEnd-waveStart;
1629 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+3)){ //not first peak and is a large wave but not out of whack
1630 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1631 firstFullWave = waveStart;
1632 fullWaveLen=waveLenCnt;
1633 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1634 if (lastAvgWaveVal > threshold_value) curPhase ^= 1;
1635 break;
1636 }
1637 waveStart = i+1;
1638 avgWaveVal = 0;
1639 }
1640 avgWaveVal += dest[i+2];
1641 }
1642 if (firstFullWave == 0) {
1643 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1644 // so skip a little to ensure we are past any Start Signal
1645 firstFullWave = 160;
1646 memset(dest, curPhase, firstFullWave / *clock);
1647 } else {
1648 memset(dest, curPhase^1, firstFullWave / *clock);
1649 }
1650 //advance bits
1651 numBits += (firstFullWave / *clock);
1652 //set start of wave as clock align
1653 lastClkBit = firstFullWave;
1654 if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
1655 if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
1656 waveStart = 0;
1657 dest[numBits++] = curPhase; //set first read bit
1658 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1659 //top edge of wave = start of new wave
1660 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1661 if (waveStart == 0) {
1662 waveStart = i+1;
1663 waveLenCnt = 0;
1664 avgWaveVal = dest[i+1];
1665 } else { //waveEnd
1666 waveEnd = i+1;
1667 waveLenCnt = waveEnd-waveStart;
1668 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1669 if (waveLenCnt > fc){
1670 //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1671 //this wave is a phase shift
1672 //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1673 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1674 curPhase ^= 1;
1675 dest[numBits++] = curPhase;
1676 lastClkBit += *clock;
1677 } else if (i < lastClkBit+10+fc){
1678 //noise after a phase shift - ignore
1679 } else { //phase shift before supposed to based on clock
1680 errCnt++;
1681 dest[numBits++] = 7;
1682 }
1683 } else if (i+1 > lastClkBit + *clock + tol + fc){
1684 lastClkBit += *clock; //no phase shift but clock bit
1685 dest[numBits++] = curPhase;
1686 } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often)
1687 errCnt2++;
1688 if(errCnt2 > 101) return errCnt2;
1689 }
1690 avgWaveVal = 0;
1691 waveStart = i+1;
1692 }
1693 }
1694 avgWaveVal += dest[i+1];
1695 }
1696 *size = numBits;
1697 return errCnt;
1698}
1699
1700bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1701 size_t ststart = 0, stend = 0;
1702 return DetectST_ext(buffer, size, foundclock, &ststart, &stend);
1703}
1704
1705//by marshmellow
1706//attempt to identify a Sequence Terminator in ASK modulated raw wave
1707bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststart, size_t *stend) {
1708 size_t bufsize = *size;
1709 //need to loop through all samples and identify our clock, look for the ST pattern
1710 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1711 int clk = 0;
1712 int tol = 0;
1713 int i, j, skip, start, end, low, high, minClk, waveStart;
1714 bool complete = false;
1715 int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1716 int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed...
1717 size_t testsize = (bufsize < 512) ? bufsize : 512;
1718 int phaseoff = 0;
1719 high = low = 128;
1720 memset(tmpbuff, 0, sizeof(tmpbuff));
1721 memset(waveLen, 0, sizeof(waveLen));
1722
1723
1724 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1725 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1726 return false; //just noise
1727 }
1728 i = 0;
1729 j = 0;
1730 minClk = 255;
1731 // get to first full low to prime loop and skip incomplete first pulse
1732 while ((buffer[i] < high) && (i < bufsize))
1733 ++i;
1734 while ((buffer[i] > low) && (i < bufsize))
1735 ++i;
1736 skip = i;
1737
1738 // populate tmpbuff buffer with pulse lengths
1739 while (i < bufsize) {
1740 // measure from low to low
1741 while ((buffer[i] > low) && (i < bufsize))
1742 ++i;
1743 start= i;
1744 while ((buffer[i] < high) && (i < bufsize))
1745 ++i;
1746 //first high point for this wave
1747 waveStart = i;
1748 while ((buffer[i] > low) && (i < bufsize))
1749 ++i;
1750 if (j >= (bufsize/32)) {
1751 break;
1752 }
1753 waveLen[j] = i - waveStart; //first high to first low
1754 tmpbuff[j++] = i - start;
1755 if (i-start < minClk && i < bufsize) {
1756 minClk = i - start;
1757 }
1758 }
1759 // set clock - might be able to get this externally and remove this work...
1760 if (!clk) {
1761 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1762 tol = fndClk[clkCnt]/8;
1763 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1764 clk=fndClk[clkCnt];
1765 break;
1766 }
1767 }
1768 // clock not found - ERROR
1769 if (!clk) {
1770 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1771 return false;
1772 }
1773 } else tol = clk/8;
1774
1775 *foundclock = clk;
1776
1777 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1778 start = -1;
1779 for (i = 0; i < j - 4; ++i) {
1780 skip += tmpbuff[i];
1781 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1782 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1783 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1784 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1785 start = i + 3;
1786 break;
1787 }
1788 }
1789 }
1790 }
1791 }
1792 // first ST not found - ERROR
1793 if (start < 0) {
1794 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1795 return false;
1796 } else {
1797 if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j);
1798 }
1799 if (waveLen[i+2] > clk*1+tol)
1800 phaseoff = 0;
1801 else
1802 phaseoff = clk/2;
1803
1804 // skip over the remainder of ST
1805 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1806
1807 // now do it again to find the end
1808 end = skip;
1809 for (i += 3; i < j - 4; ++i) {
1810 end += tmpbuff[i];
1811 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1812 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1813 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1814 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1815 complete = true;
1816 break;
1817 }
1818 }
1819 }
1820 }
1821 }
1822 end -= phaseoff;
1823 //didn't find second ST - ERROR
1824 if (!complete) {
1825 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1826 return false;
1827 }
1828 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1829 //now begin to trim out ST so we can use normal demod cmds
1830 start = skip;
1831 size_t datalen = end - start;
1832 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1833 if ( clk - (datalen % clk) <= clk/8) {
1834 // padd the amount off - could be problematic... but shouldn't happen often
1835 datalen += clk - (datalen % clk);
1836 } else if ( (datalen % clk) <= clk/8 ) {
1837 // padd the amount off - could be problematic... but shouldn't happen often
1838 datalen -= datalen % clk;
1839 } else {
1840 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1841 return false;
1842 }
1843 // if datalen is less than one t55xx block - ERROR
1844 if (datalen/clk < 8*4) {
1845 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1846 return false;
1847 }
1848 size_t dataloc = start;
1849 if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) {
1850 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1851 for ( i=0; i <= (clk/8); ++i ) {
1852 if ( buffer[dataloc - (clk*4) - i] <= low ) {
1853 dataloc -= i;
1854 break;
1855 }
1856 }
1857 }
1858
1859 size_t newloc = 0;
1860 i=0;
1861 if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen);
1862 bool firstrun = true;
1863 // warning - overwriting buffer given with raw wave data with ST removed...
1864 while ( dataloc < bufsize-(clk/2) ) {
1865 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1866 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1867 for(i=0; i < clk/2-tol; ++i) {
1868 buffer[dataloc+i] = high+5;
1869 }
1870 } //test for single sample outlier (high between two lows) in the case of very strong waves
1871 if (buffer[dataloc] >= high && buffer[dataloc+2] <= low) {
1872 buffer[dataloc] = buffer[dataloc+2];
1873 buffer[dataloc+1] = buffer[dataloc+2];
1874 }
1875 if (firstrun) {
1876 *stend = dataloc;
1877 *ststart = dataloc-(clk*4);
1878 firstrun=false;
1879 }
1880 for (i=0; i<datalen; ++i) {
1881 if (i+newloc < bufsize) {
1882 if (i+newloc < dataloc)
1883 buffer[i+newloc] = buffer[dataloc];
1884
1885 dataloc++;
1886 }
1887 }
1888 newloc += i;
1889 //skip next ST - we just assume it will be there from now on...
1890 if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4));
1891 dataloc += clk*4;
1892 }
1893 *size = newloc;
1894 return true;
1895}
Impressum, Datenschutz