]>
Commit | Line | Data |
---|---|---|
eb191de6 | 1 | //----------------------------------------------------------------------------- |
ba1a299c | 2 | // Copyright (C) 2014 |
eb191de6 | 3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
1e090a61 | 8 | // Low frequency demod/decode commands |
eb191de6 | 9 | //----------------------------------------------------------------------------- |
eb191de6 | 10 | #include "lfdemod.h" |
6426f6ba | 11 | |
a126332a | 12 | //un_comment to allow debug print calls when used not on device |
6426f6ba | 13 | void dummy(char *fmt, ...){} |
14 | ||
e977fb0d | 15 | |
6426f6ba | 16 | #ifndef ON_DEVICE |
e977fb0d | 17 | # include "ui.h" |
18 | # include "cmdparser.h" | |
19 | # include "cmddata.h" | |
20 | # define prnt PrintAndLog | |
6426f6ba | 21 | #else |
a126332a | 22 | uint8_t g_debugMode=0; |
e977fb0d | 23 | # define prnt dummy |
6426f6ba | 24 | #endif |
6426f6ba | 25 | |
2dcf60f3 | 26 | //test samples are not just noise |
27 | uint8_t justNoise(uint8_t *bits, size_t size) { | |
28 | #define THRESHOLD 123 | |
29 | uint8_t val = 1; | |
30 | for(size_t idx=0; idx < size && val ;idx++) | |
31 | val = bits[idx] < THRESHOLD; | |
32 | return val; | |
a1d17964 | 33 | } |
34 | ||
1e090a61 | 35 | //by marshmellow |
872e3d4d | 36 | //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise |
1e090a61 | 37 | int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) |
38 | { | |
39 | *high=0; | |
40 | *low=255; | |
41 | // get high and low thresholds | |
2eec55c8 | 42 | for (size_t i=0; i < size; i++){ |
1e090a61 | 43 | if (BitStream[i] > *high) *high = BitStream[i]; |
44 | if (BitStream[i] < *low) *low = BitStream[i]; | |
45 | } | |
46 | if (*high < 123) return -1; // just noise | |
75cbbe9a | 47 | *high = ((*high-128)*fuzzHi + 12800)/100; |
48 | *low = ((*low-128)*fuzzLo + 12800)/100; | |
1e090a61 | 49 | return 1; |
50 | } | |
51 | ||
a1d17964 | 52 | // by marshmellow |
53 | // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType | |
54 | // returns 1 if passed | |
55 | uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) | |
56 | { | |
57 | uint8_t ans = 0; | |
58 | for (uint8_t i = 0; i < bitLen; i++){ | |
59 | ans ^= ((bits >> i) & 1); | |
60 | } | |
4ac9f078 | 61 | if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits); |
a1d17964 | 62 | return (ans == pType); |
63 | } | |
64 | ||
a126332a | 65 | //by marshmellow |
66 | // takes a array of binary values, start position, length of bits per parity (includes parity bit), | |
c728b2b4 | 67 | // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run) |
a126332a | 68 | size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) |
69 | { | |
70 | uint32_t parityWd = 0; | |
71 | size_t j = 0, bitCnt = 0; | |
c08c796e | 72 | for (int word = 0; word < (bLen); word += pLen){ |
a126332a | 73 | for (int bit=0; bit < pLen; bit++){ |
74 | parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; | |
75 | BitStream[j++] = (BitStream[startIdx+word+bit]); | |
76 | } | |
5215a874 | 77 | if (word+pLen > bLen) break; |
4ac9f078 | 78 | |
a126332a | 79 | j--; // overwrite parity with next data |
80 | // if parity fails then return 0 | |
c728b2b4 | 81 | switch (pType) { |
11dee3d5 | 82 | case 3: if (BitStream[j]==1) { return 0; } break; //should be 0 spacer bit |
83 | case 2: if (BitStream[j]==0) { return 0; } break; //should be 1 spacer bit | |
3c654208 | 84 | default: if (parityTest(parityWd, pLen, pType) == 0) { return 0; } break; //test parity |
a126332a | 85 | } |
c08c796e | 86 | bitCnt += (pLen-1); |
a126332a | 87 | parityWd = 0; |
88 | } | |
89 | // if we got here then all the parities passed | |
90 | //return ID start index and size | |
91 | return bitCnt; | |
92 | } | |
93 | ||
94 | // by marshmellow | |
95 | // takes a array of binary values, length of bits per parity (includes parity bit), | |
0d2c5909 | 96 | // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run) |
c728b2b4 | 97 | // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added |
a126332a | 98 | size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType) |
99 | { | |
100 | uint32_t parityWd = 0; | |
101 | size_t j = 0, bitCnt = 0; | |
102 | for (int word = 0; word < sourceLen; word+=pLen-1) { | |
103 | for (int bit=0; bit < pLen-1; bit++){ | |
104 | parityWd = (parityWd << 1) | BitSource[word+bit]; | |
105 | dest[j++] = (BitSource[word+bit]); | |
106 | } | |
0d2c5909 | 107 | |
a126332a | 108 | // if parity fails then return 0 |
0d2c5909 | 109 | switch (pType) { |
110 | case 3: dest[j++]=0; break; // marker bit which should be a 0 | |
111 | case 2: dest[j++]=1; break; // marker bit which should be a 1 | |
112 | default: | |
113 | dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1; | |
114 | break; | |
a126332a | 115 | } |
116 | bitCnt += pLen; | |
117 | parityWd = 0; | |
118 | } | |
119 | // if we got here then all the parities passed | |
120 | //return ID start index and size | |
121 | return bitCnt; | |
122 | } | |
123 | ||
124 | uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) | |
125 | { | |
126 | uint32_t num = 0; | |
0d2c5909 | 127 | for(int i = 0 ; i < numbits ; i++) { |
a126332a | 128 | num = (num << 1) | (*src); |
129 | src++; | |
130 | } | |
131 | return num; | |
132 | } | |
133 | ||
134 | //least significant bit first | |
135 | uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) | |
136 | { | |
137 | uint32_t num = 0; | |
6b6815bc | 138 | for(int i = 0 ; i < numbits ; i++) { |
a126332a | 139 | num = (num << 1) | *(src + (numbits-(i+1))); |
140 | } | |
141 | return num; | |
142 | } | |
143 | ||
8ad1e731 | 144 | //by marshmellow |
145 | // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) | |
146 | bool preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx){ | |
147 | return preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false); | |
148 | } | |
a1d17964 | 149 | //by marshmellow |
2147c307 | 150 | //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length |
8ad1e731 | 151 | // param @findone: look for a repeating preamble or only the first. |
152 | // em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits | |
153 | bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone) | |
a1d17964 | 154 | { |
5735cfa5 | 155 | // Sanity check. If preamble length is bigger than bitstream length. |
8ad1e731 | 156 | if ( *size <= pLen ) return false; |
5735cfa5 | 157 | |
56d0fb8e | 158 | uint8_t foundCnt = 0; |
159 | for (int idx = 0; idx < *size - pLen; idx++){ | |
e0165dcf | 160 | if (memcmp(BitStream+idx, preamble, pLen) == 0){ |
5215a874 | 161 | if (g_debugMode) prnt("DEBUG: preamble found at %i", idx); |
e0165dcf | 162 | //first index found |
163 | foundCnt++; | |
164 | if (foundCnt == 1){ | |
165 | *startIdx = idx; | |
8ad1e731 | 166 | if (findone) return true; |
e0165dcf | 167 | } |
168 | if (foundCnt == 2){ | |
169 | *size = idx - *startIdx; | |
8ad1e731 | 170 | return true; |
e0165dcf | 171 | } |
172 | } | |
173 | } | |
8ad1e731 | 174 | return false; |
175 | } | |
176 | ||
177 | // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup. | |
178 | size_t findModStart(uint8_t dest[], size_t size, uint8_t threshold_value, uint8_t expWaveSize) { | |
179 | size_t i = 0; | |
180 | size_t waveSizeCnt = 0; | |
181 | uint8_t thresholdCnt = 0; | |
182 | bool isAboveThreshold = dest[i++] >= threshold_value; | |
183 | for (; i < size-20; i++ ) { | |
184 | if(dest[i] < threshold_value && isAboveThreshold) { | |
185 | thresholdCnt++; | |
186 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
187 | isAboveThreshold = false; | |
188 | waveSizeCnt = 0; | |
189 | } else if (dest[i] >= threshold_value && !isAboveThreshold) { | |
190 | thresholdCnt++; | |
191 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
192 | isAboveThreshold = true; | |
193 | waveSizeCnt = 0; | |
194 | } else { | |
195 | waveSizeCnt++; | |
196 | } | |
197 | if (thresholdCnt > 10) break; | |
198 | } | |
199 | if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt); | |
200 | return i; | |
a1d17964 | 201 | } |
202 | ||
2147c307 | 203 | //by marshmellow |
204 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
8ad1e731 | 205 | // actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future |
a8fd088d | 206 | int Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) |
2147c307 | 207 | { |
5215a874 | 208 | // sanity check |
a9eeb576 | 209 | if (*size < 64) return -3; |
a8fd088d | 210 | if (BitStream[1] > 1) return -1; |
8ad1e731 | 211 | |
5215a874 | 212 | uint8_t fmtlen; |
e0165dcf | 213 | *startIdx = 0; |
8ad1e731 | 214 | |
215 | // preamble 0111111111 | |
216 | // include 0 in front to help get start pos | |
217 | uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; | |
a9eeb576 | 218 | if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx)) |
a8fd088d | 219 | return -2; |
a9eeb576 | 220 | |
221 | //XL and normal size. | |
222 | if (*size != 64 && *size != 128) return -3; | |
8ad1e731 | 223 | |
a9eeb576 | 224 | fmtlen = (*size == 128) ? 22 : 10; |
8ad1e731 | 225 | |
5215a874 | 226 | //skip last 4bit parity row for simplicity |
227 | *size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, fmtlen * 5); | |
228 | ||
229 | switch (*size) { | |
230 | case 40: { | |
231 | // std em410x format | |
232 | *hi = 0; | |
233 | *lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32)); | |
234 | break; | |
235 | } | |
236 | case 88: { | |
237 | // long em format | |
238 | *hi = (bytebits_to_byte(BitStream, 24)); | |
239 | *lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32)); | |
240 | break; | |
241 | } | |
a8fd088d | 242 | default: return -4; |
e0165dcf | 243 | } |
8ad1e731 | 244 | return 1; |
2147c307 | 245 | } |
246 | ||
fef74fdc | 247 | //by marshmellow |
248 | //demodulates strong heavily clipped samples | |
4eabb8ad | 249 | //RETURN: num of errors. if 0, is ok. |
23f0a7d8 | 250 | int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) |
251 | { | |
252 | size_t bitCnt=0, smplCnt=0, errCnt=0; | |
253 | uint8_t waveHigh = 0; | |
23f0a7d8 | 254 | for (size_t i=0; i < *size; i++){ |
255 | if (BinStream[i] >= high && waveHigh){ | |
256 | smplCnt++; | |
257 | } else if (BinStream[i] <= low && !waveHigh){ | |
258 | smplCnt++; | |
259 | } else { //transition | |
260 | if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ | |
81e82dfe | 261 | |
23f0a7d8 | 262 | if (smplCnt > clk-(clk/4)-1) { //full clock |
a38f5a07 | 263 | if (smplCnt > clk + (clk/4)+1) { //too many samples |
23f0a7d8 | 264 | errCnt++; |
05164399 | 265 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
81e82dfe | 266 | BinStream[bitCnt++] = 7; |
23f0a7d8 | 267 | } else if (waveHigh) { |
268 | BinStream[bitCnt++] = invert; | |
269 | BinStream[bitCnt++] = invert; | |
270 | } else if (!waveHigh) { | |
271 | BinStream[bitCnt++] = invert ^ 1; | |
272 | BinStream[bitCnt++] = invert ^ 1; | |
273 | } | |
274 | waveHigh ^= 1; | |
275 | smplCnt = 0; | |
276 | } else if (smplCnt > (clk/2) - (clk/4)-1) { | |
277 | if (waveHigh) { | |
278 | BinStream[bitCnt++] = invert; | |
279 | } else if (!waveHigh) { | |
280 | BinStream[bitCnt++] = invert ^ 1; | |
281 | } | |
282 | waveHigh ^= 1; | |
283 | smplCnt = 0; | |
284 | } else if (!bitCnt) { | |
285 | //first bit | |
286 | waveHigh = (BinStream[i] >= high); | |
287 | smplCnt = 1; | |
288 | } else { | |
289 | smplCnt++; | |
290 | //transition bit oops | |
291 | } | |
292 | } else { //haven't hit new high or new low yet | |
293 | smplCnt++; | |
294 | } | |
295 | } | |
296 | } | |
297 | *size = bitCnt; | |
298 | return errCnt; | |
299 | } | |
300 | ||
eb191de6 | 301 | //by marshmellow |
fef74fdc | 302 | void askAmp(uint8_t *BitStream, size_t size) |
303 | { | |
9686a8d4 | 304 | uint8_t last = 128; |
305 | for(size_t i = 1; i < size; ++i){ | |
306 | if (BitStream[i]-BitStream[i-1] >= 30) //large jump up | |
307 | last = 255; | |
308 | else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down | |
309 | last = 0; | |
310 | ||
311 | BitStream[i] = last; | |
fef74fdc | 312 | } |
fef74fdc | 313 | } |
314 | ||
315 | //by marshmellow | |
316 | //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester | |
317 | int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) | |
eb191de6 | 318 | { |
fef74fdc | 319 | if (*size==0) return -1; |
6e984446 | 320 | int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default |
bd09006a | 321 | |
2eec55c8 | 322 | if (*clk==0 || start < 0) return -3; |
fef74fdc | 323 | if (*invert != 1) *invert = 0; |
324 | if (amp==1) askAmp(BinStream, *size); | |
a38f5a07 | 325 | if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp); |
fef74fdc | 326 | |
2eec55c8 | 327 | uint8_t initLoopMax = 255; |
328 | if (initLoopMax > *size) initLoopMax = *size; | |
ba1a299c | 329 | // Detect high and lows |
fef74fdc | 330 | //25% clip in case highs and lows aren't clipped [marshmellow] |
2eec55c8 | 331 | int high, low; |
fef74fdc | 332 | if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) |
333 | return -2; //just noise | |
ba1a299c | 334 | |
fef74fdc | 335 | size_t errCnt = 0; |
23f0a7d8 | 336 | // if clean clipped waves detected run alternate demod |
337 | if (DetectCleanAskWave(BinStream, *size, high, low)) { | |
05164399 | 338 | if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod"); |
fef74fdc | 339 | errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); |
340 | if (askType) //askman | |
341 | return manrawdecode(BinStream, size, 0); | |
81e82dfe | 342 | //askraw |
343 | return errCnt; | |
23f0a7d8 | 344 | } |
05164399 | 345 | if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod"); |
23f0a7d8 | 346 | |
fef74fdc | 347 | int lastBit; //set first clock check - can go negative |
348 | size_t i, bitnum = 0; //output counter | |
349 | uint8_t midBit = 0; | |
2eec55c8 | 350 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave |
fef74fdc | 351 | if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely |
05164399 | 352 | size_t MaxBits = 3072; //max bits to collect |
6e984446 | 353 | lastBit = start - *clk; |
fef74fdc | 354 | |
6e984446 | 355 | for (i = start; i < *size; ++i) { |
fef74fdc | 356 | if (i-lastBit >= *clk-tol){ |
357 | if (BinStream[i] >= high) { | |
358 | BinStream[bitnum++] = *invert; | |
359 | } else if (BinStream[i] <= low) { | |
360 | BinStream[bitnum++] = *invert ^ 1; | |
361 | } else if (i-lastBit >= *clk+tol) { | |
362 | if (bitnum > 0) { | |
05164399 | 363 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
fef74fdc | 364 | BinStream[bitnum++]=7; |
365 | errCnt++; | |
366 | } | |
367 | } else { //in tolerance - looking for peak | |
368 | continue; | |
369 | } | |
370 | midBit = 0; | |
2eec55c8 | 371 | lastBit += *clk; |
fef74fdc | 372 | } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){ |
373 | if (BinStream[i] >= high) { | |
374 | BinStream[bitnum++] = *invert; | |
375 | } else if (BinStream[i] <= low) { | |
376 | BinStream[bitnum++] = *invert ^ 1; | |
377 | } else if (i-lastBit >= *clk/2+tol) { | |
378 | BinStream[bitnum] = BinStream[bitnum-1]; | |
379 | bitnum++; | |
380 | } else { //in tolerance - looking for peak | |
381 | continue; | |
382 | } | |
383 | midBit = 1; | |
2eec55c8 | 384 | } |
385 | if (bitnum >= MaxBits) break; | |
ba1a299c | 386 | } |
2eec55c8 | 387 | *size = bitnum; |
6e984446 | 388 | return errCnt; |
eb191de6 | 389 | } |
eb191de6 | 390 | //by marshmellow |
391 | //take 10 and 01 and manchester decode | |
392 | //run through 2 times and take least errCnt | |
4eabb8ad | 393 | int manrawdecode(uint8_t *BitStream, size_t *size, uint8_t invert){ |
394 | ||
395 | // sanity check | |
396 | if (*size < 16) return -1; | |
397 | ||
5f5b83b7 | 398 | int errCnt = 0, bestErr = 1000; |
399 | uint16_t bitnum = 0, MaxBits = 512, bestRun = 0; | |
81e82dfe | 400 | size_t i, k; |
4eabb8ad | 401 | |
2767fc02 | 402 | //find correct start position [alignment] |
4eabb8ad | 403 | for (k = 0; k < 2; ++k){ |
404 | for (i = k; i < *size-3; i += 2) { | |
81e82dfe | 405 | if (BitStream[i] == BitStream[i+1]) |
ba1a299c | 406 | errCnt++; |
4eabb8ad | 407 | } |
81e82dfe | 408 | if (bestErr > errCnt){ |
409 | bestErr = errCnt; | |
410 | bestRun = k; | |
ba1a299c | 411 | } |
4eabb8ad | 412 | errCnt = 0; |
ba1a299c | 413 | } |
4eabb8ad | 414 | |
2767fc02 | 415 | //decode |
4eabb8ad | 416 | for (i = bestRun; i < *size-3; i += 2){ |
81e82dfe | 417 | if (BitStream[i] == 1 && (BitStream[i+1] == 0)){ |
418 | BitStream[bitnum++] = invert; | |
419 | } else if ((BitStream[i] == 0) && BitStream[i+1] == 1){ | |
420 | BitStream[bitnum++] = invert^1; | |
23f0a7d8 | 421 | } else { |
81e82dfe | 422 | BitStream[bitnum++] = 7; |
ba1a299c | 423 | } |
4eabb8ad | 424 | if (bitnum > MaxBits) break; |
ba1a299c | 425 | } |
4eabb8ad | 426 | *size = bitnum; |
2eec55c8 | 427 | return bestErr; |
f822a063 | 428 | } |
429 | ||
1d0ccbe0 | 430 | uint32_t manchesterEncode2Bytes(uint16_t datain) { |
431 | uint32_t output = 0; | |
432 | uint8_t curBit = 0; | |
433 | for (uint8_t i=0; i<16; i++) { | |
434 | curBit = (datain >> (15-i) & 1); | |
435 | output |= (1<<(((15-i)*2)+curBit)); | |
436 | } | |
437 | return output; | |
438 | } | |
439 | ||
fef74fdc | 440 | //by marshmellow |
441 | //encode binary data into binary manchester | |
442 | int ManchesterEncode(uint8_t *BitStream, size_t size) | |
443 | { | |
444 | size_t modIdx=20000, i=0; | |
445 | if (size>modIdx) return -1; | |
446 | for (size_t idx=0; idx < size; idx++){ | |
447 | BitStream[idx+modIdx++] = BitStream[idx]; | |
448 | BitStream[idx+modIdx++] = BitStream[idx]^1; | |
449 | } | |
450 | for (; i<(size*2); i++){ | |
451 | BitStream[i] = BitStream[i+20000]; | |
452 | } | |
453 | return i; | |
454 | } | |
455 | ||
f822a063 | 456 | //by marshmellow |
2147c307 | 457 | //take 01 or 10 = 1 and 11 or 00 = 0 |
458 | //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 | |
13d77ef9 | 459 | //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding |
1e090a61 | 460 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) |
f822a063 | 461 | { |
2eec55c8 | 462 | uint16_t bitnum = 0; |
463 | uint16_t errCnt = 0; | |
464 | size_t i = offset; | |
2147c307 | 465 | uint16_t MaxBits=512; |
466 | //if not enough samples - error | |
467 | if (*size < 51) return -1; | |
468 | //check for phase change faults - skip one sample if faulty | |
469 | uint8_t offsetA = 1, offsetB = 1; | |
470 | for (; i<48; i+=2){ | |
471 | if (BitStream[i+1]==BitStream[i+2]) offsetA=0; | |
472 | if (BitStream[i+2]==BitStream[i+3]) offsetB=0; | |
473 | } | |
474 | if (!offsetA && offsetB) offset++; | |
475 | for (i=offset; i<*size-3; i+=2){ | |
476 | //check for phase error | |
13d77ef9 | 477 | if (BitStream[i+1]==BitStream[i+2]) { |
2767fc02 | 478 | BitStream[bitnum++]=7; |
2147c307 | 479 | errCnt++; |
480 | } | |
ba1a299c | 481 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ |
1e090a61 | 482 | BitStream[bitnum++]=1^invert; |
ba1a299c | 483 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ |
1e090a61 | 484 | BitStream[bitnum++]=invert; |
ba1a299c | 485 | } else { |
2767fc02 | 486 | BitStream[bitnum++]=7; |
ba1a299c | 487 | errCnt++; |
488 | } | |
6de43508 | 489 | if(bitnum>MaxBits) break; |
ba1a299c | 490 | } |
491 | *size=bitnum; | |
492 | return errCnt; | |
eb191de6 | 493 | } |
494 | ||
fef74fdc | 495 | // by marshmellow |
11081e04 | 496 | // demod gProxIIDemod |
497 | // error returns as -x | |
498 | // success returns start position in BitStream | |
499 | // BitStream must contain previously askrawdemod and biphasedemoded data | |
500 | int gProxII_Demod(uint8_t BitStream[], size_t *size) | |
501 | { | |
502 | size_t startIdx=0; | |
503 | uint8_t preamble[] = {1,1,1,1,1,0}; | |
504 | ||
8ad1e731 | 505 | if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx)) |
506 | return -3; //preamble not found | |
507 | ||
11081e04 | 508 | if (*size != 96) return -2; //should have found 96 bits |
8ad1e731 | 509 | |
11081e04 | 510 | //check first 6 spacer bits to verify format |
511 | if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ | |
512 | //confirmed proper separator bits found | |
513 | //return start position | |
514 | return (int) startIdx; | |
515 | } | |
7fa7e812 | 516 | return -5; //spacer bits not found - not a valid gproxII |
11081e04 | 517 | } |
518 | ||
7fa7e812 | 519 | //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq]) |
f822a063 | 520 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 521 | { |
2eec55c8 | 522 | size_t last_transition = 0; |
523 | size_t idx = 1; | |
ba1a299c | 524 | if (fchigh==0) fchigh=10; |
525 | if (fclow==0) fclow=8; | |
84871873 | 526 | //set the threshold close to 0 (graph) or 128 std to avoid static |
527 | uint8_t threshold_value = 123; | |
ac2df346 | 528 | size_t preLastSample = 0; |
529 | size_t LastSample = 0; | |
530 | size_t currSample = 0; | |
4ac9f078 | 531 | if ( size < 1024 ) return 0; // not enough samples |
532 | ||
8ad1e731 | 533 | //find start of modulating data in trace |
534 | idx = findModStart(dest, size, threshold_value, fchigh); | |
ba1a299c | 535 | |
536 | // Need to threshold first sample | |
4ac9f078 | 537 | if(dest[idx] < threshold_value) dest[0] = 0; |
ba1a299c | 538 | else dest[0] = 1; |
4ac9f078 | 539 | idx++; |
ba1a299c | 540 | |
541 | size_t numBits = 0; | |
542 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
cd0bed3c | 543 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere |
ba1a299c | 544 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 |
7fa7e812 | 545 | // (could also be fc/5 && fc/7 for fsk1 = 4-9) |
4ac9f078 | 546 | for(; idx < size-20; idx++) { |
ba1a299c | 547 | // threshold current value |
548 | ||
549 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
550 | else dest[idx] = 1; | |
551 | ||
552 | // Check for 0->1 transition | |
7fa7e812 | 553 | if (dest[idx-1] < dest[idx]) { |
ac2df346 | 554 | preLastSample = LastSample; |
555 | LastSample = currSample; | |
556 | currSample = idx-last_transition; | |
6426f6ba | 557 | if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3) |
ba1a299c | 558 | //do nothing with extra garbage |
7fa7e812 | 559 | } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5) |
560 | //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5) | |
4ac9f078 | 561 | if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){ |
7fa7e812 | 562 | dest[numBits-1]=1; |
ac2df346 | 563 | } |
2eec55c8 | 564 | dest[numBits++]=1; |
ac2df346 | 565 | |
4ac9f078 | 566 | } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage |
567 | //do nothing with beginning garbage and reset.. should be rare.. | |
568 | numBits = 0; | |
7fa7e812 | 569 | } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's) |
ac2df346 | 570 | dest[numBits++]=1; |
7fa7e812 | 571 | } else { //9+ = 10 sample waves (or 6+ = 7) |
2eec55c8 | 572 | dest[numBits++]=0; |
ba1a299c | 573 | } |
574 | last_transition = idx; | |
ba1a299c | 575 | } |
576 | } | |
577 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
eb191de6 | 578 | } |
579 | ||
ba1a299c | 580 | //translate 11111100000 to 10 |
7fa7e812 | 581 | //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock |
2eec55c8 | 582 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, |
e0165dcf | 583 | uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 584 | { |
ba1a299c | 585 | uint8_t lastval=dest[0]; |
2eec55c8 | 586 | size_t idx=0; |
ba1a299c | 587 | size_t numBits=0; |
588 | uint32_t n=1; | |
ba1a299c | 589 | for( idx=1; idx < size; idx++) { |
13d77ef9 | 590 | n++; |
a38f5a07 | 591 | if (dest[idx]==lastval) continue; //skip until we hit a transition |
2eec55c8 | 592 | |
7fa7e812 | 593 | //find out how many bits (n) we collected |
ba1a299c | 594 | //if lastval was 1, we have a 1->0 crossing |
13d77ef9 | 595 | if (dest[idx-1]==1) { |
75cbbe9a | 596 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 597 | } else {// 0->1 crossing |
75cbbe9a | 598 | n = (n * fchigh + rfLen/2) / rfLen; |
ba1a299c | 599 | } |
600 | if (n == 0) n = 1; | |
601 | ||
7fa7e812 | 602 | //add to our destination the bits we collected |
2eec55c8 | 603 | memset(dest+numBits, dest[idx-1]^invert , n); |
604 | numBits += n; | |
ba1a299c | 605 | n=0; |
606 | lastval=dest[idx]; | |
607 | }//end for | |
13d77ef9 | 608 | // if valid extra bits at the end were all the same frequency - add them in |
75cbbe9a | 609 | if (n > rfLen/fchigh) { |
13d77ef9 | 610 | if (dest[idx-2]==1) { |
75cbbe9a | 611 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 612 | } else { |
75cbbe9a | 613 | n = (n * fchigh + rfLen/2) / rfLen; |
13d77ef9 | 614 | } |
2eec55c8 | 615 | memset(dest+numBits, dest[idx-1]^invert , n); |
13d77ef9 | 616 | numBits += n; |
617 | } | |
ba1a299c | 618 | return numBits; |
eb191de6 | 619 | } |
6426f6ba | 620 | |
eb191de6 | 621 | //by marshmellow (from holiman's base) |
622 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
f822a063 | 623 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 624 | { |
ba1a299c | 625 | // FSK demodulator |
626 | size = fsk_wave_demod(dest, size, fchigh, fclow); | |
2eec55c8 | 627 | size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow); |
ba1a299c | 628 | return size; |
eb191de6 | 629 | } |
a1d17964 | 630 | |
eb191de6 | 631 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
ec75f5c1 | 632 | int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
eb191de6 | 633 | { |
e0165dcf | 634 | if (justNoise(dest, *size)) return -1; |
635 | ||
337f7036 | 636 | size_t numStart=0, size2 = *size, startIdx=0; |
e0165dcf | 637 | // FSK demodulator |
638 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a | |
2eec55c8 | 639 | if (*size < 96*2) return -2; |
e0165dcf | 640 | // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
641 | uint8_t preamble[] = {0,0,0,1,1,1,0,1}; | |
8ad1e731 | 642 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
643 | return -3; //preamble not found | |
e0165dcf | 644 | |
645 | numStart = startIdx + sizeof(preamble); | |
646 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
647 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
648 | if (dest[idx] == dest[idx+1]){ | |
649 | return -4; //not manchester data | |
650 | } | |
651 | *hi2 = (*hi2<<1)|(*hi>>31); | |
652 | *hi = (*hi<<1)|(*lo>>31); | |
653 | //Then, shift in a 0 or one into low | |
81b7e894 | 654 | *lo <<= 1; |
e0165dcf | 655 | if (dest[idx] && !dest[idx+1]) // 1 0 |
81b7e894 | 656 | *lo |= 1; |
e0165dcf | 657 | else // 0 1 |
81b7e894 | 658 | *lo |= 0; |
e0165dcf | 659 | } |
660 | return (int)startIdx; | |
eb191de6 | 661 | } |
662 | ||
ec75f5c1 | 663 | // loop to get raw paradox waveform then FSK demodulate the TAG ID from it |
a1d17964 | 664 | int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
ec75f5c1 | 665 | { |
a1d17964 | 666 | if (justNoise(dest, *size)) return -1; |
667 | ||
337f7036 | 668 | size_t numStart=0, size2 = *size, startIdx=0; |
ec75f5c1 | 669 | // FSK demodulator |
a1d17964 | 670 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a |
671 | if (*size < 96) return -2; | |
ec75f5c1 | 672 | |
a1d17964 | 673 | // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
674 | uint8_t preamble[] = {0,0,0,0,1,1,1,1}; | |
8ad1e731 | 675 | if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
676 | return -3; //preamble not found | |
a1d17964 | 677 | |
678 | numStart = startIdx + sizeof(preamble); | |
679 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
680 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
681 | if (dest[idx] == dest[idx+1]) | |
682 | return -4; //not manchester data | |
683 | *hi2 = (*hi2<<1)|(*hi>>31); | |
684 | *hi = (*hi<<1)|(*lo>>31); | |
685 | //Then, shift in a 0 or one into low | |
686 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
687 | *lo=(*lo<<1)|1; | |
688 | else // 0 1 | |
689 | *lo=(*lo<<1)|0; | |
ec75f5c1 | 690 | } |
a1d17964 | 691 | return (int)startIdx; |
ec75f5c1 | 692 | } |
693 | ||
eb191de6 | 694 | int IOdemodFSK(uint8_t *dest, size_t size) |
695 | { | |
a1d17964 | 696 | if (justNoise(dest, size)) return -1; |
ba1a299c | 697 | //make sure buffer has data |
a1d17964 | 698 | if (size < 66*64) return -2; |
ba1a299c | 699 | // FSK demodulator |
a1d17964 | 700 | size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 |
701 | if (size < 65) return -3; //did we get a good demod? | |
ba1a299c | 702 | //Index map |
703 | //0 10 20 30 40 50 60 | |
704 | //| | | | | | | | |
705 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
706 | //----------------------------------------------------------------------------- | |
707 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
708 | // | |
709 | //XSF(version)facility:codeone+codetwo | |
710 | //Handle the data | |
a1d17964 | 711 | size_t startIdx = 0; |
712 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; | |
8ad1e731 | 713 | if (! preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx)) |
714 | return -4; //preamble not found | |
eb191de6 | 715 | |
a1d17964 | 716 | if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ |
717 | //confirmed proper separator bits found | |
718 | //return start position | |
719 | return (int) startIdx; | |
1e090a61 | 720 | } |
a1d17964 | 721 | return -5; |
1e090a61 | 722 | } |
723 | ||
70459879 | 724 | // by marshmellow |
725 | // find viking preamble 0xF200 in already demoded data | |
726 | int VikingDemod_AM(uint8_t *dest, size_t *size) { | |
70459879 | 727 | //make sure buffer has data |
728 | if (*size < 64*2) return -2; | |
70459879 | 729 | size_t startIdx = 0; |
730 | uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
8ad1e731 | 731 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
732 | return -4; //preamble not found | |
733 | ||
c0afa86f | 734 | uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ |
735 | bytebits_to_byte(dest+startIdx+8,8) ^ | |
736 | bytebits_to_byte(dest+startIdx+16,8) ^ | |
737 | bytebits_to_byte(dest+startIdx+24,8) ^ | |
738 | bytebits_to_byte(dest+startIdx+32,8) ^ | |
739 | bytebits_to_byte(dest+startIdx+40,8) ^ | |
740 | bytebits_to_byte(dest+startIdx+48,8) ^ | |
741 | bytebits_to_byte(dest+startIdx+56,8); | |
742 | if ( checkCalc != 0xA8 ) return -5; | |
57c7b44b | 743 | if (*size != 64) return -6; |
70459879 | 744 | //return start position |
deba67ab | 745 | return (int)startIdx; |
70459879 | 746 | } |
747 | ||
5daad826 | 748 | // by iceman |
749 | // find Visa2000 preamble in already demoded data | |
750 | int Visa2kDemod_AM(uint8_t *dest, size_t *size) { | |
371a40bf | 751 | if (*size < 96) return -1; //make sure buffer has data |
5daad826 | 752 | size_t startIdx = 0; |
753 | uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0}; | |
8ad1e731 | 754 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
755 | return -2; //preamble not found | |
5daad826 | 756 | if (*size != 96) return -3; //wrong demoded size |
757 | //return start position | |
deba67ab | 758 | return (int)startIdx; |
5daad826 | 759 | } |
207fc33a | 760 | // by iceman |
761 | // find Noralsy preamble in already demoded data | |
762 | int NoralsyDemod_AM(uint8_t *dest, size_t *size) { | |
7d269265 | 763 | if (*size < 96) return -1; //make sure buffer has data |
207fc33a | 764 | size_t startIdx = 0; |
765 | uint8_t preamble[] = {1,0,1,1,1,0,1,1,0,0,0,0}; | |
8ad1e731 | 766 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
767 | return -2; //preamble not found | |
207fc33a | 768 | if (*size != 96) return -3; //wrong demoded size |
769 | //return start position | |
deba67ab | 770 | return (int)startIdx; |
207fc33a | 771 | } |
4469412e | 772 | // find presco preamble 0x10D in already demoded data |
773 | int PrescoDemod(uint8_t *dest, size_t *size) { | |
d48175d4 | 774 | if (*size < 128*2) return -1; //make sure buffer has data |
4469412e | 775 | size_t startIdx = 0; |
d48175d4 | 776 | uint8_t preamble[] = {0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0}; |
8ad1e731 | 777 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
778 | return -2; //preamble not found | |
d48175d4 | 779 | if (*size != 128) return -3; //wrong demoded size |
4469412e | 780 | //return start position |
deba67ab | 781 | return (int)startIdx; |
4469412e | 782 | } |
783 | ||
615f21dd | 784 | // Ask/Biphase Demod then try to locate an ISO 11784/85 ID |
0df669a2 | 785 | // BitStream must contain previously askrawdemod and biphasedemoded data |
deba67ab | 786 | int FDXBdemodBI(uint8_t *dest, size_t *size) { |
787 | if (*size < 128*2) return -1; //make sure buffer has enough data | |
615f21dd | 788 | size_t startIdx = 0; |
0df669a2 | 789 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; |
8ad1e731 | 790 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
791 | return -2; //preamble not found | |
deba67ab | 792 | if (*size != 128) return -3; //wrong demoded size |
793 | //return start position | |
615f21dd | 794 | return (int)startIdx; |
795 | } | |
1e090a61 | 796 | |
6c283951 | 797 | // ASK/Diphase fc/64 (inverted Biphase) |
798 | // Note: this i s not a demod, this is only a detection | |
799 | // the parameter *dest needs to be demoded before call | |
deba67ab | 800 | // 0xFFFF preamble, 64bits |
6c283951 | 801 | int JablotronDemod(uint8_t *dest, size_t *size){ |
deba67ab | 802 | if (*size < 64*2) return -1; //make sure buffer has enough data |
6c283951 | 803 | size_t startIdx = 0; |
deba67ab | 804 | uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; |
8ad1e731 | 805 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
806 | return -2; //preamble not found | |
deba67ab | 807 | if (*size != 64) return -3; // wrong demoded size |
6c283951 | 808 | |
29ce214c | 809 | uint8_t checkchksum = 0; |
6c283951 | 810 | for (int i=16; i < 56; i += 8) { |
29ce214c | 811 | checkchksum += bytebits_to_byte(dest+startIdx+i,8); |
6c283951 | 812 | } |
29ce214c | 813 | checkchksum ^= 0x3A; |
29ce214c | 814 | uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8); |
deba67ab | 815 | if ( checkchksum != crc ) return -5; |
6c283951 | 816 | return (int)startIdx; |
817 | } | |
818 | ||
1e090a61 | 819 | // by marshmellow |
820 | // FSK Demod then try to locate an AWID ID | |
a1d17964 | 821 | int AWIDdemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 822 | { |
a1d17964 | 823 | //make sure buffer has enough data |
824 | if (*size < 96*50) return -1; | |
825 | ||
826 | if (justNoise(dest, *size)) return -2; | |
1e090a61 | 827 | |
828 | // FSK demodulator | |
a1d17964 | 829 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 |
830 | if (*size < 96) return -3; //did we get a good demod? | |
831 | ||
832 | uint8_t preamble[] = {0,0,0,0,0,0,0,1}; | |
833 | size_t startIdx = 0; | |
8ad1e731 | 834 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
835 | return -4; //preamble not found | |
a1d17964 | 836 | if (*size != 96) return -5; |
837 | return (int)startIdx; | |
1e090a61 | 838 | } |
839 | ||
840 | // by marshmellow | |
6426f6ba | 841 | // FSK Demod then try to locate a Farpointe Data (pyramid) ID |
a1d17964 | 842 | int PyramiddemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 843 | { |
f3bf15e4 | 844 | //make sure buffer has data |
845 | if (*size < 128*50) return -5; | |
a1d17964 | 846 | |
f3bf15e4 | 847 | //test samples are not just noise |
848 | if (justNoise(dest, *size)) return -1; | |
1e090a61 | 849 | |
f3bf15e4 | 850 | // FSK demodulator |
851 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 | |
852 | if (*size < 128) return -2; //did we get a good demod? | |
a1d17964 | 853 | size_t startIdx = 0; |
8ad1e731 | 854 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}; |
855 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) | |
856 | return -4; //preamble not found | |
a1d17964 | 857 | if (*size != 128) return -3; |
858 | return (int)startIdx; | |
1e090a61 | 859 | } |
860 | ||
0cbe0cb8 | 861 | // find nedap preamble in already demoded data |
56bbb25a | 862 | int NedapDemod(uint8_t *dest, size_t *size) { |
863 | //make sure buffer has data | |
864 | if (*size < 128) return -3; | |
96faed21 | 865 | |
56bbb25a | 866 | size_t startIdx = 0; |
15d49e82 | 867 | //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1}; |
868 | uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0}; | |
8ad1e731 | 869 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
870 | return -4; //preamble not found | |
56bbb25a | 871 | return (int) startIdx; |
872 | } | |
873 | ||
3acac886 | 874 | // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits |
875 | // by iceman | |
876 | int IdteckDemodPSK(uint8_t *dest, size_t *size) { | |
877 | //make sure buffer has data | |
878 | if (*size < 64*2) return -1; | |
879 | size_t startIdx = 0; | |
880 | uint8_t preamble[] = {0,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,0,1,1}; | |
8ad1e731 | 881 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
882 | return -2; //preamble not found | |
3acac886 | 883 | if (*size != 64) return -3; // wrong demoded size |
884 | return (int) startIdx; | |
885 | } | |
886 | ||
fef74fdc | 887 | // by marshmellow |
888 | // to detect a wave that has heavily clipped (clean) samples | |
cc15a118 | 889 | uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) |
6de43508 | 890 | { |
6426f6ba | 891 | bool allArePeaks = true; |
6de43508 | 892 | uint16_t cntPeaks=0; |
6426f6ba | 893 | size_t loopEnd = 512+160; |
1fbf8956 | 894 | if (loopEnd > size) loopEnd = size; |
6426f6ba | 895 | for (size_t i=160; i<loopEnd; i++){ |
6de43508 | 896 | if (dest[i]>low && dest[i]<high) |
6426f6ba | 897 | allArePeaks = false; |
6de43508 | 898 | else |
899 | cntPeaks++; | |
900 | } | |
6426f6ba | 901 | if (!allArePeaks){ |
902 | if (cntPeaks > 300) return true; | |
6de43508 | 903 | } |
6426f6ba | 904 | return allArePeaks; |
6de43508 | 905 | } |
2eec55c8 | 906 | // by marshmellow |
907 | // to help detect clocks on heavily clipped samples | |
cc15a118 | 908 | // based on count of low to low |
909 | int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low) | |
13d77ef9 | 910 | { |
cc15a118 | 911 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; |
912 | size_t startwave; | |
6426f6ba | 913 | size_t i = 100; |
cc15a118 | 914 | size_t minClk = 255; |
915 | // get to first full low to prime loop and skip incomplete first pulse | |
916 | while ((dest[i] < high) && (i < size)) | |
917 | ++i; | |
918 | while ((dest[i] > low) && (i < size)) | |
919 | ++i; | |
920 | ||
921 | // loop through all samples | |
922 | while (i < size) { | |
923 | // measure from low to low | |
924 | while ((dest[i] > low) && (i < size)) | |
925 | ++i; | |
926 | startwave= i; | |
927 | while ((dest[i] < high) && (i < size)) | |
928 | ++i; | |
929 | while ((dest[i] > low) && (i < size)) | |
930 | ++i; | |
931 | //get minimum measured distance | |
932 | if (i-startwave < minClk && i < size) | |
933 | minClk = i - startwave; | |
13d77ef9 | 934 | } |
cc15a118 | 935 | // set clock |
a126332a | 936 | if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk); |
cc15a118 | 937 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { |
938 | if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1) | |
939 | return fndClk[clkCnt]; | |
13d77ef9 | 940 | } |
cc15a118 | 941 | return 0; |
13d77ef9 | 942 | } |
c6e5c7ea | 943 | void SetGraphClock( int clock, int startidx){ |
944 | PlotClock = clock; | |
945 | PlockClockStartIndex = startidx; | |
946 | } | |
13d77ef9 | 947 | |
eb191de6 | 948 | // by marshmellow |
949 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
950 | // maybe somehow adjust peak trimming value based on samples to fix? | |
6de43508 | 951 | // return start index of best starting position for that clock and return clock (by reference) |
952 | int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) | |
eb191de6 | 953 | { |
c6e5c7ea | 954 | size_t i = 1; |
cc15a118 | 955 | uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255}; |
956 | uint8_t clkEnd = 9; | |
2eec55c8 | 957 | uint8_t loopCnt = 255; //don't need to loop through entire array... |
c6e5c7ea | 958 | if (size <= loopCnt + 60) return -1; //not enough samples |
6426f6ba | 959 | size -= 60; //sometimes there is a strange end wave - filter out this.... |
6e984446 | 960 | //if we already have a valid clock |
c6e5c7ea | 961 | uint8_t clockFnd = 0; |
962 | for (; i < clkEnd; ++i) | |
cc15a118 | 963 | if (clk[i] == *clock) clockFnd = i; |
6e984446 | 964 | //clock found but continue to find best startpos |
e0165dcf | 965 | |
966 | //get high and low peak | |
967 | int peak, low; | |
2eec55c8 | 968 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1; |
e0165dcf | 969 | |
970 | //test for large clean peaks | |
cc15a118 | 971 | if (!clockFnd){ |
972 | if (DetectCleanAskWave(dest, size, peak, low)==1){ | |
973 | int ans = DetectStrongAskClock(dest, size, peak, low); | |
a126332a | 974 | if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans); |
cc15a118 | 975 | for (i=clkEnd-1; i>0; i--){ |
976 | if (clk[i] == ans) { | |
977 | *clock = ans; | |
978 | //clockFnd = i; | |
979 | return 0; // for strong waves i don't use the 'best start position' yet... | |
980 | //break; //clock found but continue to find best startpos [not yet] | |
981 | } | |
e0165dcf | 982 | } |
983 | } | |
984 | } | |
2eec55c8 | 985 | uint8_t ii; |
986 | uint8_t clkCnt, tol = 0; | |
987 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
988 | uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; | |
989 | size_t errCnt = 0; | |
990 | size_t arrLoc, loopEnd; | |
6e984446 | 991 | |
c6e5c7ea | 992 | if (clockFnd > 0) { |
cc15a118 | 993 | clkCnt = clockFnd; |
994 | clkEnd = clockFnd+1; | |
81e82dfe | 995 | } else { |
c6e5c7ea | 996 | clkCnt = 1; |
cc15a118 | 997 | } |
cc15a118 | 998 | |
999 | //test each valid clock from smallest to greatest to see which lines up | |
c6e5c7ea | 1000 | for (; clkCnt < clkEnd; clkCnt++) { |
81e82dfe | 1001 | if (clk[clkCnt] <= 32) { |
e0165dcf | 1002 | tol=1; |
81e82dfe | 1003 | } else { |
e0165dcf | 1004 | tol=0; |
1005 | } | |
2767fc02 | 1006 | //if no errors allowed - keep start within the first clock |
81e82dfe | 1007 | if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) |
1008 | loopCnt = clk[clkCnt] * 2; | |
1009 | ||
1010 | bestErr[clkCnt] = 1000; | |
1011 | ||
6e984446 | 1012 | //try lining up the peaks by moving starting point (try first few clocks) |
cc15a118 | 1013 | for (ii=0; ii < loopCnt; ii++){ |
2eec55c8 | 1014 | if (dest[ii] < peak && dest[ii] > low) continue; |
1015 | ||
81e82dfe | 1016 | errCnt = 0; |
2eec55c8 | 1017 | // now that we have the first one lined up test rest of wave array |
1018 | loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; | |
1019 | for (i=0; i < loopEnd; ++i){ | |
1020 | arrLoc = ii + (i * clk[clkCnt]); | |
1021 | if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ | |
1022 | }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ | |
1023 | }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ | |
1024 | }else{ //error no peak detected | |
1025 | errCnt++; | |
e0165dcf | 1026 | } |
1027 | } | |
cc15a118 | 1028 | //if we found no errors then we can stop here and a low clock (common clocks) |
2eec55c8 | 1029 | // this is correct one - return this clock |
81e82dfe | 1030 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d", clk[clkCnt], errCnt, ii, i); |
1031 | if (errCnt==0 && clkCnt<7) { | |
cc15a118 | 1032 | if (!clockFnd) *clock = clk[clkCnt]; |
c6e5c7ea | 1033 | |
1034 | SetGraphClock(*clock, ii); | |
2eec55c8 | 1035 | return ii; |
1036 | } | |
1037 | //if we found errors see if it is lowest so far and save it as best run | |
81e82dfe | 1038 | if (errCnt < bestErr[clkCnt]) { |
1039 | bestErr[clkCnt] = errCnt; | |
1040 | bestStart[clkCnt] = ii; | |
2eec55c8 | 1041 | } |
e0165dcf | 1042 | } |
1043 | } | |
81e82dfe | 1044 | uint8_t k; |
1045 | uint8_t best = 0; | |
1046 | for (k=1; k < clkEnd; ++k){ | |
1047 | if (bestErr[k] < bestErr[best]){ | |
1048 | if (bestErr[k] == 0) bestErr[k]=1; | |
e0165dcf | 1049 | // current best bit to error ratio vs new bit to error ratio |
81e82dfe | 1050 | if ( (size/clk[best])/bestErr[best] < (size/clk[k])/bestErr[k] ){ |
1051 | best = k; | |
e0165dcf | 1052 | } |
1053 | } | |
81e82dfe | 1054 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d", clk[k], bestErr[k], clk[best], bestStart[best]); |
e0165dcf | 1055 | } |
cc15a118 | 1056 | if (!clockFnd) *clock = clk[best]; |
c6e5c7ea | 1057 | |
1058 | SetGraphClock(*clock, bestStart[best]); | |
e0165dcf | 1059 | return bestStart[best]; |
eb191de6 | 1060 | } |
ba1a299c | 1061 | |
1062 | //by marshmellow | |
6de43508 | 1063 | //detect psk clock by reading each phase shift |
1064 | // a phase shift is determined by measuring the sample length of each wave | |
1065 | int DetectPSKClock(uint8_t dest[], size_t size, int clock) | |
ba1a299c | 1066 | { |
c6e5c7ea | 1067 | uint8_t clk[] = {255,16,32,40,50,64,100,128,255}; //255 is not a valid clock |
e0165dcf | 1068 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf | 1069 | |
1070 | //if we already have a valid clock quit | |
1071 | size_t i=1; | |
1072 | for (; i < 8; ++i) | |
1073 | if (clk[i] == clock) return clock; | |
c6e5c7ea | 1074 | |
1075 | if (size < 160+20) return 0; | |
1076 | ||
1077 | // size must be larger than 20 here, and 160 later on. | |
1078 | if (size < loopCnt) loopCnt = size-20; | |
e0165dcf | 1079 | |
1080 | size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
1081 | uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1; | |
1082 | uint16_t peakcnt=0, errCnt=0, waveLenCnt=0; | |
c6e5c7ea | 1083 | uint16_t bestErr[] = {1000,1000,1000,1000,1000,1000,1000,1000,1000}; |
1084 | uint16_t peaksdet[] = {0,0,0,0,0,0,0,0,0}; | |
2eec55c8 | 1085 | fc = countFC(dest, size, 0); |
1086 | if (fc!=2 && fc!=4 && fc!=8) return -1; | |
a126332a | 1087 | if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc); |
e0165dcf | 1088 | |
1089 | //find first full wave | |
c6e5c7ea | 1090 | for (i=160; i < loopCnt; i++){ |
e0165dcf | 1091 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1092 | if (waveStart == 0) { | |
1093 | waveStart = i+1; | |
6426f6ba | 1094 | //prnt("DEBUG: waveStart: %d",waveStart); |
e0165dcf | 1095 | } else { |
1096 | waveEnd = i+1; | |
6426f6ba | 1097 | //prnt("DEBUG: waveEnd: %d",waveEnd); |
e0165dcf | 1098 | waveLenCnt = waveEnd-waveStart; |
1099 | if (waveLenCnt > fc){ | |
1100 | firstFullWave = waveStart; | |
1101 | fullWaveLen=waveLenCnt; | |
1102 | break; | |
1103 | } | |
1104 | waveStart=0; | |
1105 | } | |
1106 | } | |
1107 | } | |
c6e5c7ea | 1108 | if (g_debugMode == 2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); |
e0165dcf | 1109 | |
1110 | //test each valid clock from greatest to smallest to see which lines up | |
c6e5c7ea | 1111 | for (clkCnt=7; clkCnt >= 1 ; clkCnt--){ |
e0165dcf | 1112 | lastClkBit = firstFullWave; //set end of wave as clock align |
1113 | waveStart = 0; | |
1114 | errCnt=0; | |
1115 | peakcnt=0; | |
a126332a | 1116 | if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); |
e0165dcf | 1117 | |
1118 | for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ | |
1119 | //top edge of wave = start of new wave | |
1120 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1121 | if (waveStart == 0) { | |
1122 | waveStart = i+1; | |
1123 | waveLenCnt=0; | |
1124 | } else { //waveEnd | |
1125 | waveEnd = i+1; | |
1126 | waveLenCnt = waveEnd-waveStart; | |
1127 | if (waveLenCnt > fc){ | |
1128 | //if this wave is a phase shift | |
a126332a | 1129 | if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc); |
e0165dcf | 1130 | if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit |
1131 | peakcnt++; | |
1132 | lastClkBit+=clk[clkCnt]; | |
1133 | } else if (i<lastClkBit+8){ | |
1134 | //noise after a phase shift - ignore | |
1135 | } else { //phase shift before supposed to based on clock | |
1136 | errCnt++; | |
1137 | } | |
1138 | } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){ | |
1139 | lastClkBit+=clk[clkCnt]; //no phase shift but clock bit | |
1140 | } | |
1141 | waveStart=i+1; | |
1142 | } | |
1143 | } | |
1144 | } | |
c6e5c7ea | 1145 | if (errCnt == 0) return clk[clkCnt]; |
1146 | if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt] = errCnt; | |
1147 | if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt] = peakcnt; | |
e0165dcf | 1148 | } |
1149 | //all tested with errors | |
1150 | //return the highest clk with the most peaks found | |
c6e5c7ea | 1151 | uint8_t best = 7; |
1152 | for (i=7; i >= 1; i--){ | |
1153 | if (peaksdet[i] > peaksdet[best]) | |
e0165dcf | 1154 | best = i; |
c6e5c7ea | 1155 | |
a126332a | 1156 | if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]); |
e0165dcf | 1157 | } |
1158 | return clk[best]; | |
ba1a299c | 1159 | } |
1160 | ||
6426f6ba | 1161 | int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){ |
1162 | //find shortest transition from high to low | |
1163 | size_t i = 0; | |
1164 | size_t transition1 = 0; | |
1165 | int lowestTransition = 255; | |
1166 | bool lastWasHigh = false; | |
1167 | ||
1168 | //find first valid beginning of a high or low wave | |
1169 | while ((dest[i] >= peak || dest[i] <= low) && (i < size)) | |
1170 | ++i; | |
1171 | while ((dest[i] < peak && dest[i] > low) && (i < size)) | |
1172 | ++i; | |
1173 | lastWasHigh = (dest[i] >= peak); | |
1174 | ||
1175 | if (i==size) return 0; | |
1176 | transition1 = i; | |
1177 | ||
1178 | for (;i < size; i++) { | |
1179 | if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) { | |
1180 | lastWasHigh = (dest[i] >= peak); | |
1181 | if (i-transition1 < lowestTransition) lowestTransition = i-transition1; | |
1182 | transition1 = i; | |
1183 | } | |
1184 | } | |
6426f6ba | 1185 | if (lowestTransition == 255) lowestTransition = 0; |
a126332a | 1186 | if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition); |
6426f6ba | 1187 | return lowestTransition; |
1188 | } | |
1189 | ||
6de43508 | 1190 | //by marshmellow |
1191 | //detect nrz clock by reading #peaks vs no peaks(or errors) | |
c6e5c7ea | 1192 | //iceman: shouldn't param clock be reference? like DetectASKClock |
6de43508 | 1193 | int DetectNRZClock(uint8_t dest[], size_t size, int clock) |
ba1a299c | 1194 | { |
c6e5c7ea | 1195 | size_t i = 0; |
1196 | uint8_t clk[] = {8,16,32,40,50,64,100,128,255}; | |
2eec55c8 | 1197 | size_t loopCnt = 4096; //don't need to loop through entire array... |
c6e5c7ea | 1198 | |
e0165dcf | 1199 | //if we already have a valid clock quit |
1200 | for (; i < 8; ++i) | |
1201 | if (clk[i] == clock) return clock; | |
c6e5c7ea | 1202 | |
1203 | if (size < 20) return 0; | |
1204 | // size must be larger than 20 here | |
1205 | if (size < loopCnt) loopCnt = size-20; | |
e0165dcf | 1206 | |
1207 | //get high and low peak | |
1208 | int peak, low; | |
2eec55c8 | 1209 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0; |
e0165dcf | 1210 | |
6426f6ba | 1211 | int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low); |
2eec55c8 | 1212 | size_t ii; |
e0165dcf | 1213 | uint8_t clkCnt; |
1214 | uint8_t tol = 0; | |
6426f6ba | 1215 | uint16_t smplCnt = 0; |
1216 | int16_t peakcnt = 0; | |
1217 | int16_t peaksdet[] = {0,0,0,0,0,0,0,0}; | |
1218 | uint16_t maxPeak = 255; | |
1219 | bool firstpeak = false; | |
e0165dcf | 1220 | //test for large clipped waves |
1221 | for (i=0; i<loopCnt; i++){ | |
1222 | if (dest[i] >= peak || dest[i] <= low){ | |
6426f6ba | 1223 | if (!firstpeak) continue; |
1224 | smplCnt++; | |
e0165dcf | 1225 | } else { |
c6e5c7ea | 1226 | firstpeak = true; |
6426f6ba | 1227 | if (smplCnt > 6 ){ |
1228 | if (maxPeak > smplCnt){ | |
1229 | maxPeak = smplCnt; | |
1230 | //prnt("maxPk: %d",maxPeak); | |
1231 | } | |
1232 | peakcnt++; | |
1233 | //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt); | |
c6e5c7ea | 1234 | smplCnt = 0; |
e0165dcf | 1235 | } |
e0165dcf | 1236 | } |
1237 | } | |
6426f6ba | 1238 | bool errBitHigh = 0; |
1239 | bool bitHigh = 0; | |
1240 | uint8_t ignoreCnt = 0; | |
1241 | uint8_t ignoreWindow = 4; | |
1242 | bool lastPeakHigh = 0; | |
1243 | int lastBit = 0; | |
c6e5c7ea | 1244 | peakcnt = 0; |
e0165dcf | 1245 | //test each valid clock from smallest to greatest to see which lines up |
1246 | for(clkCnt=0; clkCnt < 8; ++clkCnt){ | |
6426f6ba | 1247 | //ignore clocks smaller than smallest peak |
1248 | if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue; | |
e0165dcf | 1249 | //try lining up the peaks by moving starting point (try first 256) |
6426f6ba | 1250 | for (ii=20; ii < loopCnt; ++ii){ |
e0165dcf | 1251 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ |
1252 | peakcnt=0; | |
6426f6ba | 1253 | bitHigh = false; |
1254 | ignoreCnt = 0; | |
1255 | lastBit = ii-clk[clkCnt]; | |
1256 | //loop through to see if this start location works | |
1257 | for (i = ii; i < size-20; ++i) { | |
1258 | //if we are at a clock bit | |
1259 | if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) { | |
1260 | //test high/low | |
1261 | if (dest[i] >= peak || dest[i] <= low) { | |
1262 | //if same peak don't count it | |
1263 | if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) { | |
c6e5c7ea | 1264 | peakcnt++; |
6426f6ba | 1265 | } |
1266 | lastPeakHigh = (dest[i] >= peak); | |
1267 | bitHigh = true; | |
1268 | errBitHigh = false; | |
1269 | ignoreCnt = ignoreWindow; | |
1270 | lastBit += clk[clkCnt]; | |
1271 | } else if (i == lastBit + clk[clkCnt] + tol) { | |
1272 | lastBit += clk[clkCnt]; | |
1273 | } | |
1274 | //else if not a clock bit and no peaks | |
1275 | } else if (dest[i] < peak && dest[i] > low){ | |
c6e5c7ea | 1276 | if (ignoreCnt == 0){ |
6426f6ba | 1277 | bitHigh=false; |
c6e5c7ea | 1278 | if (errBitHigh==true) |
1279 | peakcnt--; | |
6426f6ba | 1280 | errBitHigh=false; |
1281 | } else { | |
1282 | ignoreCnt--; | |
1283 | } | |
1284 | // else if not a clock bit but we have a peak | |
1285 | } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) { | |
1286 | //error bar found no clock... | |
1287 | errBitHigh=true; | |
e0165dcf | 1288 | } |
1289 | } | |
c6e5c7ea | 1290 | if (peakcnt > peaksdet[clkCnt]) { |
1291 | peaksdet[clkCnt] = peakcnt; | |
e0165dcf | 1292 | } |
1293 | } | |
1294 | } | |
1295 | } | |
c6e5c7ea | 1296 | |
1297 | uint8_t best = 0; | |
1298 | for (int m = 7; m > 0; m--){ | |
1299 | if ((peaksdet[m] >= (peaksdet[best]-1)) && (peaksdet[m] <= peaksdet[best]+1) && lowestTransition) { | |
1300 | if (clk[m] > (lowestTransition - (clk[m]/8)) && clk[m] < (lowestTransition + (clk[m]/8))) { | |
1301 | best = m; | |
1302 | } | |
1303 | } else if (peaksdet[m] > peaksdet[best]){ | |
1304 | best = m; | |
e0165dcf | 1305 | } |
c6e5c7ea | 1306 | if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d", clk[m], peaksdet[m], maxPeak, clk[best], lowestTransition); |
e0165dcf | 1307 | } |
6426f6ba | 1308 | |
e0165dcf | 1309 | return clk[best]; |
ba1a299c | 1310 | } |
1311 | ||
04d2721b | 1312 | // by marshmellow |
1313 | // convert psk1 demod to psk2 demod | |
1314 | // only transition waves are 1s | |
4ac9f078 | 1315 | void psk1TOpsk2(uint8_t *bits, size_t size) { |
1316 | uint8_t lastBit = bits[0]; | |
1317 | for (size_t i = 1; i < size; i++){ | |
1318 | //ignore errors | |
1319 | if (bits[i] == 7) continue; | |
1320 | ||
1321 | if (lastBit != bits[i]){ | |
1322 | lastBit = bits[i]; | |
1323 | bits[i] = 1; | |
04d2721b | 1324 | } else { |
4ac9f078 | 1325 | bits[i] = 0; |
04d2721b | 1326 | } |
1327 | } | |
04d2721b | 1328 | } |
ba1a299c | 1329 | |
3bc66a96 | 1330 | // by marshmellow |
1331 | // convert psk2 demod to psk1 demod | |
1332 | // from only transition waves are 1s to phase shifts change bit | |
4ac9f078 | 1333 | void psk2TOpsk1(uint8_t *bits, size_t size) { |
1334 | uint8_t phase = 0; | |
1335 | for (size_t i = 0; i < size; i++){ | |
1336 | if (bits[i] == 1){ | |
1337 | phase ^= 1; | |
3bc66a96 | 1338 | } |
4ac9f078 | 1339 | bits[i] = phase; |
3bc66a96 | 1340 | } |
3bc66a96 | 1341 | } |
1342 | ||
04d2721b | 1343 | // redesigned by marshmellow adjusted from existing decode functions |
1344 | // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more | |
ba1a299c | 1345 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) |
1346 | { | |
1347 | //26 bit 40134 format (don't know other formats) | |
57c7b44b | 1348 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
1349 | uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; | |
1350 | size_t startidx = 0; | |
1351 | if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){ | |
1352 | // if didn't find preamble try again inverting | |
1353 | if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1; | |
1354 | *invert ^= 1; | |
1355 | } | |
1356 | if (*size != 64 && *size != 224) return -2; | |
1357 | if (*invert==1) | |
1358 | for (size_t i = startidx; i < *size; i++) | |
1359 | bitStream[i] ^= 1; | |
ba1a299c | 1360 | |
57c7b44b | 1361 | return (int) startidx; |
ba1a299c | 1362 | } |
1363 | ||
05164399 | 1364 | // by marshmellow - demodulate NRZ wave - requires a read with strong signal |
04d2721b | 1365 | // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak |
6426f6ba | 1366 | int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){ |
e0165dcf | 1367 | if (justNoise(dest, *size)) return -1; |
1368 | *clk = DetectNRZClock(dest, *size, *clk); | |
1369 | if (*clk==0) return -2; | |
2eec55c8 | 1370 | size_t i, gLen = 4096; |
6426f6ba | 1371 | if (gLen>*size) gLen = *size-20; |
e0165dcf | 1372 | int high, low; |
1373 | if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low | |
6426f6ba | 1374 | |
1375 | uint8_t bit=0; | |
1376 | //convert wave samples to 1's and 0's | |
1377 | for(i=20; i < *size-20; i++){ | |
1378 | if (dest[i] >= high) bit = 1; | |
1379 | if (dest[i] <= low) bit = 0; | |
1380 | dest[i] = bit; | |
e0165dcf | 1381 | } |
6426f6ba | 1382 | //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit) |
1383 | size_t lastBit = 0; | |
1384 | size_t numBits = 0; | |
1385 | for(i=21; i < *size-20; i++) { | |
1386 | //if transition detected or large number of same bits - store the passed bits | |
1387 | if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) { | |
1388 | memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk); | |
1389 | numBits += (i - lastBit + (*clk/4)) / *clk; | |
1390 | lastBit = i-1; | |
e0165dcf | 1391 | } |
e0165dcf | 1392 | } |
6426f6ba | 1393 | *size = numBits; |
1394 | return 0; | |
ba1a299c | 1395 | } |
1396 | ||
1e090a61 | 1397 | //by marshmellow |
03e6bb4a | 1398 | //detects the bit clock for FSK given the high and low Field Clocks |
1399 | uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) | |
1e090a61 | 1400 | { |
e0165dcf | 1401 | uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; |
1402 | uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1403 | uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1404 | uint8_t rfLensFnd = 0; | |
2eec55c8 | 1405 | uint8_t lastFCcnt = 0; |
1406 | uint16_t fcCounter = 0; | |
e0165dcf | 1407 | uint16_t rfCounter = 0; |
1408 | uint8_t firstBitFnd = 0; | |
1409 | size_t i; | |
1410 | if (size == 0) return 0; | |
1411 | ||
6426f6ba | 1412 | uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2); |
e0165dcf | 1413 | rfLensFnd=0; |
1414 | fcCounter=0; | |
1415 | rfCounter=0; | |
1416 | firstBitFnd=0; | |
a38f5a07 | 1417 | //prnt("DEBUG: fcTol: %d",fcTol); |
6426f6ba | 1418 | // prime i to first peak / up transition |
1419 | for (i = 160; i < size-20; i++) | |
e0165dcf | 1420 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) |
1421 | break; | |
1422 | ||
6426f6ba | 1423 | for (; i < size-20; i++){ |
2eec55c8 | 1424 | fcCounter++; |
1425 | rfCounter++; | |
1426 | ||
1427 | if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) | |
1428 | continue; | |
1429 | // else new peak | |
1430 | // if we got less than the small fc + tolerance then set it to the small fc | |
8ad1e731 | 1431 | // if it is inbetween set it to the last counter |
1432 | if (fcCounter < fcHigh && fcCounter > fcLow) | |
1433 | fcCounter = lastFCcnt; | |
1434 | else if (fcCounter < fcLow+fcTol) | |
2eec55c8 | 1435 | fcCounter = fcLow; |
1436 | else //set it to the large fc | |
1437 | fcCounter = fcHigh; | |
1438 | ||
1439 | //look for bit clock (rf/xx) | |
1440 | if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ | |
1441 | //not the same size as the last wave - start of new bit sequence | |
1442 | if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit | |
1443 | for (int ii=0; ii<15; ii++){ | |
6426f6ba | 1444 | if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){ |
2eec55c8 | 1445 | rfCnts[ii]++; |
1446 | rfCounter = 0; | |
1447 | break; | |
e0165dcf | 1448 | } |
e0165dcf | 1449 | } |
2eec55c8 | 1450 | if (rfCounter > 0 && rfLensFnd < 15){ |
a38f5a07 | 1451 | //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); |
2eec55c8 | 1452 | rfCnts[rfLensFnd]++; |
1453 | rfLens[rfLensFnd++] = rfCounter; | |
1454 | } | |
1455 | } else { | |
1456 | firstBitFnd++; | |
e0165dcf | 1457 | } |
2eec55c8 | 1458 | rfCounter=0; |
1459 | lastFCcnt=fcCounter; | |
e0165dcf | 1460 | } |
2eec55c8 | 1461 | fcCounter=0; |
e0165dcf | 1462 | } |
1463 | uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; | |
1464 | ||
1465 | for (i=0; i<15; i++){ | |
e0165dcf | 1466 | //get highest 2 RF values (might need to get more values to compare or compare all?) |
1467 | if (rfCnts[i]>rfCnts[rfHighest]){ | |
1468 | rfHighest3=rfHighest2; | |
1469 | rfHighest2=rfHighest; | |
1470 | rfHighest=i; | |
1471 | } else if(rfCnts[i]>rfCnts[rfHighest2]){ | |
1472 | rfHighest3=rfHighest2; | |
1473 | rfHighest2=i; | |
1474 | } else if(rfCnts[i]>rfCnts[rfHighest3]){ | |
1475 | rfHighest3=i; | |
1476 | } | |
a126332a | 1477 | if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]); |
e0165dcf | 1478 | } |
1479 | // set allowed clock remainder tolerance to be 1 large field clock length+1 | |
1480 | // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off | |
1481 | uint8_t tol1 = fcHigh+1; | |
1482 | ||
a126332a | 1483 | if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); |
e0165dcf | 1484 | |
1485 | // loop to find the highest clock that has a remainder less than the tolerance | |
1486 | // compare samples counted divided by | |
6426f6ba | 1487 | // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less) |
e0165dcf | 1488 | int ii=7; |
6426f6ba | 1489 | for (; ii>=2; ii--){ |
e0165dcf | 1490 | if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ |
1491 | if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ | |
1492 | if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ | |
a126332a | 1493 | if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]); |
e0165dcf | 1494 | break; |
1495 | } | |
1496 | } | |
1497 | } | |
1498 | } | |
1499 | ||
8ad1e731 | 1500 | if (ii<2) return 0; // oops we went too far |
e0165dcf | 1501 | |
1502 | return clk[ii]; | |
03e6bb4a | 1503 | } |
1e090a61 | 1504 | |
03e6bb4a | 1505 | //by marshmellow |
1506 | //countFC is to detect the field clock lengths. | |
1507 | //counts and returns the 2 most common wave lengths | |
6de43508 | 1508 | //mainly used for FSK field clock detection |
2eec55c8 | 1509 | uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) |
03e6bb4a | 1510 | { |
6426f6ba | 1511 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
1512 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
e0165dcf | 1513 | uint8_t fcLensFnd = 0; |
1a4b9073 | 1514 | uint8_t lastFCcnt = 0; |
2eec55c8 | 1515 | uint8_t fcCounter = 0; |
e0165dcf | 1516 | size_t i; |
1a4b9073 | 1517 | if (size < 180) return 0; |
e0165dcf | 1518 | |
1519 | // prime i to first up transition | |
6426f6ba | 1520 | for (i = 160; i < size-20; i++) |
e0165dcf | 1521 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) |
1522 | break; | |
1523 | ||
6426f6ba | 1524 | for (; i < size-20; i++){ |
e0165dcf | 1525 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ |
1526 | // new up transition | |
1527 | fcCounter++; | |
2eec55c8 | 1528 | if (fskAdj){ |
1529 | //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) | |
1530 | if (lastFCcnt==5 && fcCounter==9) fcCounter--; | |
1531 | //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) | |
1532 | if ((fcCounter==9) || fcCounter==4) fcCounter++; | |
e0165dcf | 1533 | // save last field clock count (fc/xx) |
2eec55c8 | 1534 | lastFCcnt = fcCounter; |
1535 | } | |
e0165dcf | 1536 | // find which fcLens to save it to: |
6426f6ba | 1537 | for (int ii=0; ii<15; ii++){ |
e0165dcf | 1538 | if (fcLens[ii]==fcCounter){ |
1539 | fcCnts[ii]++; | |
1540 | fcCounter=0; | |
1541 | break; | |
1542 | } | |
1543 | } | |
6426f6ba | 1544 | if (fcCounter>0 && fcLensFnd<15){ |
e0165dcf | 1545 | //add new fc length |
1546 | fcCnts[fcLensFnd]++; | |
1547 | fcLens[fcLensFnd++]=fcCounter; | |
1548 | } | |
1549 | fcCounter=0; | |
1550 | } else { | |
1551 | // count sample | |
1552 | fcCounter++; | |
1553 | } | |
1554 | } | |
1555 | ||
6426f6ba | 1556 | uint8_t best1=14, best2=14, best3=14; |
e0165dcf | 1557 | uint16_t maxCnt1=0; |
1558 | // go through fclens and find which ones are bigest 2 | |
6426f6ba | 1559 | for (i=0; i<15; i++){ |
e0165dcf | 1560 | // get the 3 best FC values |
1561 | if (fcCnts[i]>maxCnt1) { | |
1562 | best3=best2; | |
1563 | best2=best1; | |
1564 | maxCnt1=fcCnts[i]; | |
1565 | best1=i; | |
1566 | } else if(fcCnts[i]>fcCnts[best2]){ | |
1567 | best3=best2; | |
1568 | best2=i; | |
1569 | } else if(fcCnts[i]>fcCnts[best3]){ | |
1570 | best3=i; | |
1571 | } | |
a126332a | 1572 | if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]); |
e0165dcf | 1573 | } |
6426f6ba | 1574 | if (fcLens[best1]==0) return 0; |
e0165dcf | 1575 | uint8_t fcH=0, fcL=0; |
1576 | if (fcLens[best1]>fcLens[best2]){ | |
1577 | fcH=fcLens[best1]; | |
1578 | fcL=fcLens[best2]; | |
1579 | } else{ | |
1580 | fcH=fcLens[best2]; | |
1581 | fcL=fcLens[best1]; | |
1582 | } | |
a126332a | 1583 | if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) { |
1584 | if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]); | |
1585 | return 0; //lots of waves not psk or fsk | |
1586 | } | |
e0165dcf | 1587 | // TODO: take top 3 answers and compare to known Field clocks to get top 2 |
1588 | ||
1589 | uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; | |
2eec55c8 | 1590 | if (fskAdj) return fcs; |
1591 | return fcLens[best1]; | |
6de43508 | 1592 | } |
1593 | ||
1594 | //by marshmellow - demodulate PSK1 wave | |
1595 | //uses wave lengths (# Samples) | |
1596 | int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) | |
1597 | { | |
e0165dcf | 1598 | if (size == 0) return -1; |
2eec55c8 | 1599 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf | 1600 | if (*size<loopCnt) loopCnt = *size; |
1601 | ||
6426f6ba | 1602 | size_t numBits=0; |
e0165dcf | 1603 | uint8_t curPhase = *invert; |
4ac9f078 | 1604 | size_t i=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; |
8ad1e731 | 1605 | uint16_t fc=0, fullWaveLen=0, tol=1; |
1606 | uint16_t errCnt=0, waveLenCnt=0, errCnt2=0; | |
1607 | fc = countFC(dest, *size, 1); | |
1608 | uint8_t fc2 = fc >> 8; | |
1609 | if (fc2 == 10) return -1; //fsk found - quit | |
1610 | fc = fc & 0xFF; | |
e0165dcf | 1611 | if (fc!=2 && fc!=4 && fc!=8) return -1; |
a38f5a07 | 1612 | //prnt("DEBUG: FC: %d",fc); |
e0165dcf | 1613 | *clock = DetectPSKClock(dest, *size, *clock); |
2eec55c8 | 1614 | if (*clock == 0) return -1; |
4ac9f078 | 1615 | |
8ad1e731 | 1616 | //find start of modulating data in trace |
1617 | uint8_t threshold_value = 123; //-5 | |
1618 | i = findModStart(dest, *size, threshold_value, fc); | |
4ac9f078 | 1619 | |
e0165dcf | 1620 | //find first phase shift |
8ad1e731 | 1621 | int avgWaveVal=0, lastAvgWaveVal=0; |
1622 | waveStart = i; | |
4ac9f078 | 1623 | for (; i<loopCnt; i++){ |
8ad1e731 | 1624 | // find peak |
e0165dcf | 1625 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1626 | waveEnd = i+1; | |
4ac9f078 | 1627 | if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd, waveStart); |
e0165dcf | 1628 | waveLenCnt = waveEnd-waveStart; |
4ac9f078 | 1629 | if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+3)){ //not first peak and is a large wave but not out of whack |
e0165dcf | 1630 | lastAvgWaveVal = avgWaveVal/(waveLenCnt); |
1631 | firstFullWave = waveStart; | |
1632 | fullWaveLen=waveLenCnt; | |
8ad1e731 | 1633 | //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting) |
1634 | if (lastAvgWaveVal > threshold_value) curPhase ^= 1; | |
e0165dcf | 1635 | break; |
1636 | } | |
1637 | waveStart = i+1; | |
1638 | avgWaveVal = 0; | |
1639 | } | |
2eec55c8 | 1640 | avgWaveVal += dest[i+2]; |
e0165dcf | 1641 | } |
6426f6ba | 1642 | if (firstFullWave == 0) { |
1643 | // no phase shift detected - could be all 1's or 0's - doesn't matter where we start | |
1644 | // so skip a little to ensure we are past any Start Signal | |
1645 | firstFullWave = 160; | |
1646 | memset(dest, curPhase, firstFullWave / *clock); | |
1647 | } else { | |
1648 | memset(dest, curPhase^1, firstFullWave / *clock); | |
1649 | } | |
1650 | //advance bits | |
1651 | numBits += (firstFullWave / *clock); | |
1652 | //set start of wave as clock align | |
1653 | lastClkBit = firstFullWave; | |
7fa7e812 | 1654 | if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen); |
8ad1e731 | 1655 | if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc); |
e0165dcf | 1656 | waveStart = 0; |
e0165dcf | 1657 | dest[numBits++] = curPhase; //set first read bit |
2eec55c8 | 1658 | for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ |
e0165dcf | 1659 | //top edge of wave = start of new wave |
1660 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1661 | if (waveStart == 0) { | |
1662 | waveStart = i+1; | |
2eec55c8 | 1663 | waveLenCnt = 0; |
e0165dcf | 1664 | avgWaveVal = dest[i+1]; |
1665 | } else { //waveEnd | |
1666 | waveEnd = i+1; | |
1667 | waveLenCnt = waveEnd-waveStart; | |
1668 | lastAvgWaveVal = avgWaveVal/waveLenCnt; | |
1669 | if (waveLenCnt > fc){ | |
a38f5a07 | 1670 | //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); |
2eec55c8 | 1671 | //this wave is a phase shift |
a38f5a07 | 1672 | //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); |
e0165dcf | 1673 | if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit |
2eec55c8 | 1674 | curPhase ^= 1; |
e0165dcf | 1675 | dest[numBits++] = curPhase; |
1676 | lastClkBit += *clock; | |
2eec55c8 | 1677 | } else if (i < lastClkBit+10+fc){ |
e0165dcf | 1678 | //noise after a phase shift - ignore |
1679 | } else { //phase shift before supposed to based on clock | |
1680 | errCnt++; | |
2767fc02 | 1681 | dest[numBits++] = 7; |
e0165dcf | 1682 | } |
1683 | } else if (i+1 > lastClkBit + *clock + tol + fc){ | |
1684 | lastClkBit += *clock; //no phase shift but clock bit | |
1685 | dest[numBits++] = curPhase; | |
8ad1e731 | 1686 | } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often) |
1687 | errCnt2++; | |
1688 | if(errCnt2 > 101) return errCnt2; | |
e0165dcf | 1689 | } |
2eec55c8 | 1690 | avgWaveVal = 0; |
1691 | waveStart = i+1; | |
e0165dcf | 1692 | } |
1693 | } | |
2eec55c8 | 1694 | avgWaveVal += dest[i+1]; |
e0165dcf | 1695 | } |
1696 | *size = numBits; | |
1697 | return errCnt; | |
6de43508 | 1698 | } |
05164399 | 1699 | |
a9eeb576 | 1700 | bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) { |
1701 | size_t ststart = 0, stend = 0; | |
1702 | return DetectST_ext(buffer, size, foundclock, &ststart, &stend); | |
1703 | } | |
1704 | ||
05164399 | 1705 | //by marshmellow |
1706 | //attempt to identify a Sequence Terminator in ASK modulated raw wave | |
a9eeb576 | 1707 | bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststart, size_t *stend) { |
05164399 | 1708 | size_t bufsize = *size; |
1709 | //need to loop through all samples and identify our clock, look for the ST pattern | |
1710 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; | |
1711 | int clk = 0; | |
1712 | int tol = 0; | |
1713 | int i, j, skip, start, end, low, high, minClk, waveStart; | |
1714 | bool complete = false; | |
a38f5a07 | 1715 | int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured |
1716 | int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed... | |
05164399 | 1717 | size_t testsize = (bufsize < 512) ? bufsize : 512; |
1718 | int phaseoff = 0; | |
1719 | high = low = 128; | |
1720 | memset(tmpbuff, 0, sizeof(tmpbuff)); | |
a38f5a07 | 1721 | memset(waveLen, 0, sizeof(waveLen)); |
05164399 | 1722 | |
a38f5a07 | 1723 | |
05164399 | 1724 | if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) { |
1725 | if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting"); | |
1726 | return false; //just noise | |
1727 | } | |
1728 | i = 0; | |
1729 | j = 0; | |
1730 | minClk = 255; | |
1731 | // get to first full low to prime loop and skip incomplete first pulse | |
1732 | while ((buffer[i] < high) && (i < bufsize)) | |
1733 | ++i; | |
1734 | while ((buffer[i] > low) && (i < bufsize)) | |
1735 | ++i; | |
1736 | skip = i; | |
1737 | ||
1738 | // populate tmpbuff buffer with pulse lengths | |
1739 | while (i < bufsize) { | |
1740 | // measure from low to low | |
1741 | while ((buffer[i] > low) && (i < bufsize)) | |
1742 | ++i; | |
1743 | start= i; | |
1744 | while ((buffer[i] < high) && (i < bufsize)) | |
1745 | ++i; | |
1746 | //first high point for this wave | |
1747 | waveStart = i; | |
1748 | while ((buffer[i] > low) && (i < bufsize)) | |
1749 | ++i; | |
a38f5a07 | 1750 | if (j >= (bufsize/32)) { |
05164399 | 1751 | break; |
1752 | } | |
1753 | waveLen[j] = i - waveStart; //first high to first low | |
1754 | tmpbuff[j++] = i - start; | |
1755 | if (i-start < minClk && i < bufsize) { | |
1756 | minClk = i - start; | |
1757 | } | |
1758 | } | |
1759 | // set clock - might be able to get this externally and remove this work... | |
1760 | if (!clk) { | |
1761 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { | |
1762 | tol = fndClk[clkCnt]/8; | |
1763 | if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { | |
1764 | clk=fndClk[clkCnt]; | |
1765 | break; | |
1766 | } | |
1767 | } | |
1768 | // clock not found - ERROR | |
1769 | if (!clk) { | |
1770 | if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting"); | |
1771 | return false; | |
1772 | } | |
1773 | } else tol = clk/8; | |
1774 | ||
1775 | *foundclock = clk; | |
1776 | ||
1777 | // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2) | |
1778 | start = -1; | |
1779 | for (i = 0; i < j - 4; ++i) { | |
1780 | skip += tmpbuff[i]; | |
1781 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior | |
1782 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 | |
1783 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
1784 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
1785 | start = i + 3; | |
1786 | break; | |
1787 | } | |
1788 | } | |
1789 | } | |
1790 | } | |
1791 | } | |
1792 | // first ST not found - ERROR | |
1793 | if (start < 0) { | |
1794 | if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting"); | |
1795 | return false; | |
a38f5a07 | 1796 | } else { |
1797 | if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j); | |
05164399 | 1798 | } |
1799 | if (waveLen[i+2] > clk*1+tol) | |
1800 | phaseoff = 0; | |
1801 | else | |
1802 | phaseoff = clk/2; | |
1803 | ||
1804 | // skip over the remainder of ST | |
1805 | skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point | |
1806 | ||
1807 | // now do it again to find the end | |
1808 | end = skip; | |
1809 | for (i += 3; i < j - 4; ++i) { | |
1810 | end += tmpbuff[i]; | |
a38f5a07 | 1811 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior |
05164399 | 1812 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 |
1813 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
1814 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
1815 | complete = true; | |
1816 | break; | |
1817 | } | |
1818 | } | |
1819 | } | |
1820 | } | |
1821 | } | |
1822 | end -= phaseoff; | |
1823 | //didn't find second ST - ERROR | |
1824 | if (!complete) { | |
1825 | if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting"); | |
1826 | return false; | |
1827 | } | |
1828 | if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff); | |
1829 | //now begin to trim out ST so we can use normal demod cmds | |
1830 | start = skip; | |
1831 | size_t datalen = end - start; | |
1832 | // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock | |
a38f5a07 | 1833 | if ( clk - (datalen % clk) <= clk/8) { |
1834 | // padd the amount off - could be problematic... but shouldn't happen often | |
1835 | datalen += clk - (datalen % clk); | |
1836 | } else if ( (datalen % clk) <= clk/8 ) { | |
1837 | // padd the amount off - could be problematic... but shouldn't happen often | |
1838 | datalen -= datalen % clk; | |
1839 | } else { | |
05164399 | 1840 | if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk); |
1841 | return false; | |
05164399 | 1842 | } |
1843 | // if datalen is less than one t55xx block - ERROR | |
1844 | if (datalen/clk < 8*4) { | |
1845 | if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting"); | |
1846 | return false; | |
1847 | } | |
1848 | size_t dataloc = start; | |
a38f5a07 | 1849 | if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) { |
1850 | //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start | |
1851 | for ( i=0; i <= (clk/8); ++i ) { | |
1852 | if ( buffer[dataloc - (clk*4) - i] <= low ) { | |
1853 | dataloc -= i; | |
1854 | break; | |
1855 | } | |
1856 | } | |
1857 | } | |
1858 | ||
05164399 | 1859 | size_t newloc = 0; |
1860 | i=0; | |
a38f5a07 | 1861 | if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen); |
a9eeb576 | 1862 | bool firstrun = true; |
05164399 | 1863 | // warning - overwriting buffer given with raw wave data with ST removed... |
1864 | while ( dataloc < bufsize-(clk/2) ) { | |
7fa7e812 | 1865 | //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part) |
05164399 | 1866 | if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) { |
1867 | for(i=0; i < clk/2-tol; ++i) { | |
1868 | buffer[dataloc+i] = high+5; | |
1869 | } | |
c24364a8 | 1870 | } //test for single sample outlier (high between two lows) in the case of very strong waves |
1871 | if (buffer[dataloc] >= high && buffer[dataloc+2] <= low) { | |
1872 | buffer[dataloc] = buffer[dataloc+2]; | |
1873 | buffer[dataloc+1] = buffer[dataloc+2]; | |
05164399 | 1874 | } |
a9eeb576 | 1875 | if (firstrun) { |
1876 | *stend = dataloc; | |
1877 | *ststart = dataloc-(clk*4); | |
1878 | firstrun=false; | |
1879 | } | |
05164399 | 1880 | for (i=0; i<datalen; ++i) { |
1881 | if (i+newloc < bufsize) { | |
1882 | if (i+newloc < dataloc) | |
1883 | buffer[i+newloc] = buffer[dataloc]; | |
1884 | ||
1885 | dataloc++; | |
1886 | } | |
1887 | } | |
1888 | newloc += i; | |
7fa7e812 | 1889 | //skip next ST - we just assume it will be there from now on... |
a38f5a07 | 1890 | if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4)); |
05164399 | 1891 | dataloc += clk*4; |
1892 | } | |
1893 | *size = newloc; | |
1894 | return true; | |
1895 | } |