1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
24 #include "lfsampling.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void ToSendReset(void)
51 void ToSendStuffBit(int b
)
55 ToSend
[ToSendMax
] = 0;
60 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
65 if(ToSendMax
>= sizeof(ToSend
)) {
67 DbpString("ToSendStuffBit overflowed!");
71 //=============================================================================
72 // Debug print functions, to go out over USB, to the usual PC-side client.
73 //=============================================================================
75 void DbpString(char *str
)
77 byte_t len
= strlen(str
);
78 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
82 void DbpIntegers(int x1
, int x2
, int x3
)
84 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
88 void Dbprintf(const char *fmt
, ...) {
89 // should probably limit size here; oh well, let's just use a big buffer
90 char output_string
[128];
94 kvsprintf(fmt
, output_string
, 10, ap
);
97 DbpString(output_string
);
100 // prints HEX & ASCII
101 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
114 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
117 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
119 Dbprintf("%*D",l
,d
," ");
127 //-----------------------------------------------------------------------------
128 // Read an ADC channel and block till it completes, then return the result
129 // in ADC units (0 to 1023). Also a routine to average 32 samples and
131 //-----------------------------------------------------------------------------
132 static int ReadAdc(int ch
)
136 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
137 AT91C_BASE_ADC
->ADC_MR
=
138 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
139 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
140 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
142 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
143 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
144 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
147 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
149 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
151 // Note: with the "historic" values in the comments above, the error was 34% !!!
153 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
155 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
157 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
159 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
164 int AvgAdc(int ch
) // was static - merlok
169 for(i
= 0; i
< 32; i
++) {
173 return (a
+ 15) >> 5;
176 void MeasureAntennaTuning(void)
178 uint8_t LF_Results
[256];
179 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
180 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
185 * Sweeps the useful LF range of the proxmark from
186 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
187 * read the voltage in the antenna, the result left
188 * in the buffer is a graph which should clearly show
189 * the resonating frequency of your LF antenna
190 * ( hopefully around 95 if it is tuned to 125kHz!)
193 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
194 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
195 for (i
=255; i
>=19; i
--) {
197 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
199 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
200 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
201 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
203 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
204 if(LF_Results
[i
] > peak
) {
206 peak
= LF_Results
[i
];
212 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
215 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
216 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
217 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
219 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
221 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
222 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
228 void MeasureAntennaTuningHf(void)
230 int vHf
= 0; // in mV
232 DbpString("Measuring HF antenna, press button to exit");
234 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
235 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
240 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
242 Dbprintf("%d mV",vHf
);
243 if (BUTTON_PRESS()) break;
245 DbpString("cancelled");
247 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
252 void SimulateTagHfListen(void)
254 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
255 // There might be a better size to be defined:
256 #define HF_14B_SNOOP_BUFFER_SIZE 2744
257 uint8_t *dest
= BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE
);
262 // We're using this mode just so that I can test it out; the simulated
263 // tag mode would work just as well and be simpler.
264 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
265 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
267 // We need to listen to the high-frequency, peak-detected path.
268 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
274 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
275 AT91C_BASE_SSC
->SSC_THR
= 0xff;
277 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
278 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
292 if(i
>= HF_14B_SNOOP_BUFFER_SIZE
) {
298 DbpString("simulate tag (now type bitsamples)");
301 void ReadMem(int addr
)
303 const uint8_t *data
= ((uint8_t *)addr
);
305 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
306 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
309 /* osimage version information is linked in */
310 extern struct version_information version_information
;
311 /* bootrom version information is pointed to from _bootphase1_version_pointer */
312 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
313 void SendVersion(void)
315 char temp
[512]; /* Limited data payload in USB packets */
316 DbpString("Prox/RFID mark3 RFID instrument");
318 /* Try to find the bootrom version information. Expect to find a pointer at
319 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
320 * pointer, then use it.
322 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
323 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
324 DbpString("bootrom version information appears invalid");
326 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
330 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
333 FpgaGatherVersion(temp
, sizeof(temp
));
336 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
340 // samy's sniff and repeat routine
343 DbpString("Stand-alone mode! No PC necessary.");
344 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
346 // 3 possible options? no just 2 for now
349 int high
[OPTS
], low
[OPTS
];
351 // Oooh pretty -- notify user we're in elite samy mode now
353 LED(LED_ORANGE
, 200);
355 LED(LED_ORANGE
, 200);
357 LED(LED_ORANGE
, 200);
359 LED(LED_ORANGE
, 200);
366 // Turn on selected LED
367 LED(selected
+ 1, 0);
374 // Was our button held down or pressed?
375 int button_pressed
= BUTTON_HELD(1000);
378 // Button was held for a second, begin recording
379 if (button_pressed
> 0 && cardRead
== 0)
382 LED(selected
+ 1, 0);
386 DbpString("Starting recording");
388 // wait for button to be released
389 while(BUTTON_PRESS())
392 /* need this delay to prevent catching some weird data */
395 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
396 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
399 LED(selected
+ 1, 0);
400 // Finished recording
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
410 else if (button_pressed
> 0 && cardRead
== 1)
413 LED(selected
+ 1, 0);
417 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
419 // wait for button to be released
420 while(BUTTON_PRESS())
423 /* need this delay to prevent catching some weird data */
426 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
427 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
430 LED(selected
+ 1, 0);
431 // Finished recording
433 // If we were previously playing, set playing off
434 // so next button push begins playing what we recorded
441 // Change where to record (or begin playing)
442 else if (button_pressed
)
444 // Next option if we were previously playing
446 selected
= (selected
+ 1) % OPTS
;
450 LED(selected
+ 1, 0);
452 // Begin transmitting
456 DbpString("Playing");
457 // wait for button to be released
458 while(BUTTON_PRESS())
460 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
461 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
462 DbpString("Done playing");
463 if (BUTTON_HELD(1000) > 0)
465 DbpString("Exiting");
470 /* We pressed a button so ignore it here with a delay */
473 // when done, we're done playing, move to next option
474 selected
= (selected
+ 1) % OPTS
;
477 LED(selected
+ 1, 0);
480 while(BUTTON_PRESS())
489 Listen and detect an external reader. Determine the best location
493 Inside the ListenReaderField() function, there is two mode.
494 By default, when you call the function, you will enter mode 1.
495 If you press the PM3 button one time, you will enter mode 2.
496 If you press the PM3 button a second time, you will exit the function.
498 DESCRIPTION OF MODE 1:
499 This mode just listens for an external reader field and lights up green
500 for HF and/or red for LF. This is the original mode of the detectreader
503 DESCRIPTION OF MODE 2:
504 This mode will visually represent, using the LEDs, the actual strength of the
505 current compared to the maximum current detected. Basically, once you know
506 what kind of external reader is present, it will help you spot the best location to place
507 your antenna. You will probably not get some good results if there is a LF and a HF reader
508 at the same place! :-)
512 static const char LIGHT_SCHEME
[] = {
513 0x0, /* ---- | No field detected */
514 0x1, /* X--- | 14% of maximum current detected */
515 0x2, /* -X-- | 29% of maximum current detected */
516 0x4, /* --X- | 43% of maximum current detected */
517 0x8, /* ---X | 57% of maximum current detected */
518 0xC, /* --XX | 71% of maximum current detected */
519 0xE, /* -XXX | 86% of maximum current detected */
520 0xF, /* XXXX | 100% of maximum current detected */
522 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
524 void ListenReaderField(int limit
)
526 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
527 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
528 int mode
=1, display_val
, display_max
, i
;
532 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
535 // switch off FPGA - we don't want to measure our own signal
536 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
537 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
541 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
543 if(limit
!= HF_ONLY
) {
544 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
548 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
550 if (limit
!= LF_ONLY
) {
551 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
556 if (BUTTON_PRESS()) {
561 DbpString("Signal Strength Mode");
565 DbpString("Stopped");
573 if (limit
!= HF_ONLY
) {
575 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
581 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
582 // see if there's a significant change
583 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
584 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
591 if (limit
!= LF_ONLY
) {
593 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
599 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
600 // see if there's a significant change
601 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
602 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
610 if (limit
== LF_ONLY
) {
612 display_max
= lf_max
;
613 } else if (limit
== HF_ONLY
) {
615 display_max
= hf_max
;
616 } else { /* Pick one at random */
617 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
619 display_max
= hf_max
;
622 display_max
= lf_max
;
625 for (i
=0; i
<LIGHT_LEN
; i
++) {
626 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
627 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
628 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
629 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
630 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
638 void UsbPacketReceived(uint8_t *packet
, int len
)
640 UsbCommand
*c
= (UsbCommand
*)packet
;
642 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
646 case CMD_SET_LF_SAMPLING_CONFIG
:
647 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
649 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
650 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
652 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
653 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
655 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
656 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
658 case CMD_HID_DEMOD_FSK
:
659 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
661 case CMD_HID_SIM_TAG
:
662 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
664 case CMD_FSK_SIM_TAG
:
665 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
667 case CMD_ASK_SIM_TAG
:
668 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
670 case CMD_PSK_SIM_TAG
:
671 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
673 case CMD_HID_CLONE_TAG
:
674 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
676 case CMD_IO_DEMOD_FSK
:
677 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
679 case CMD_IO_CLONE_TAG
:
680 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
682 case CMD_EM410X_DEMOD
:
683 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
685 case CMD_EM410X_WRITE_TAG
:
686 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
688 case CMD_READ_TI_TYPE
:
691 case CMD_WRITE_TI_TYPE
:
692 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
694 case CMD_SIMULATE_TAG_125K
:
696 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
699 case CMD_LF_SIMULATE_BIDIR
:
700 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
702 case CMD_INDALA_CLONE_TAG
:
703 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
705 case CMD_INDALA_CLONE_TAG_L
:
706 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
708 case CMD_T55XX_READ_BLOCK
:
709 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
711 case CMD_T55XX_WRITE_BLOCK
:
712 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
714 case CMD_T55XX_READ_TRACE
:
717 case CMD_PCF7931_READ
:
719 cmd_send(CMD_ACK
,0,0,0,0,0);
721 case CMD_EM4X_READ_WORD
:
722 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
724 case CMD_EM4X_WRITE_WORD
:
725 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
730 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
731 SnoopHitag(c
->arg
[0]);
733 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
734 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
736 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
737 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
742 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
743 AcquireRawAdcSamplesIso15693();
745 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
746 RecordRawAdcSamplesIso15693();
749 case CMD_ISO_15693_COMMAND
:
750 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
753 case CMD_ISO_15693_FIND_AFI
:
754 BruteforceIso15693Afi(c
->arg
[0]);
757 case CMD_ISO_15693_DEBUG
:
758 SetDebugIso15693(c
->arg
[0]);
761 case CMD_READER_ISO_15693
:
762 ReaderIso15693(c
->arg
[0]);
764 case CMD_SIMTAG_ISO_15693
:
765 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
770 case CMD_SIMULATE_TAG_LEGIC_RF
:
771 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
774 case CMD_WRITER_LEGIC_RF
:
775 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
778 case CMD_READER_LEGIC_RF
:
779 LegicRfReader(c
->arg
[0], c
->arg
[1]);
783 #ifdef WITH_ISO14443b
784 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
785 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
787 case CMD_READ_SRI512_TAG
:
788 ReadSTMemoryIso14443(0x0F);
790 case CMD_READ_SRIX4K_TAG
:
791 ReadSTMemoryIso14443(0x7F);
793 case CMD_SNOOP_ISO_14443
:
796 case CMD_SIMULATE_TAG_ISO_14443
:
797 SimulateIso14443Tag();
799 case CMD_ISO_14443B_COMMAND
:
800 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
804 #ifdef WITH_ISO14443a
805 case CMD_SNOOP_ISO_14443a
:
806 SniffIso14443a(c
->arg
[0]);
808 case CMD_READER_ISO_14443a
:
811 case CMD_SIMULATE_TAG_ISO_14443a
:
812 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
815 case CMD_EPA_PACE_COLLECT_NONCE
:
816 EPA_PACE_Collect_Nonce(c
);
823 case CMD_READER_MIFARE
:
824 ReaderMifare(c
->arg
[0]);
826 case CMD_MIFARE_READBL
:
827 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
829 case CMD_MIFAREU_READBL
:
830 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
832 case CMD_MIFAREUC_AUTH
:
833 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
835 case CMD_MIFAREU_READCARD
:
836 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
838 case CMD_MIFAREUC_SETPWD
:
839 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
841 case CMD_MIFARE_READSC
:
842 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
844 case CMD_MIFARE_WRITEBL
:
845 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
847 //case CMD_MIFAREU_WRITEBL_COMPAT:
848 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
850 case CMD_MIFAREU_WRITEBL
:
851 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
853 case CMD_MIFARE_NESTED
:
854 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
856 case CMD_MIFARE_CHKKEYS
:
857 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
859 case CMD_SIMULATE_MIFARE_CARD
:
860 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
864 case CMD_MIFARE_SET_DBGMODE
:
865 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
867 case CMD_MIFARE_EML_MEMCLR
:
868 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
870 case CMD_MIFARE_EML_MEMSET
:
871 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
873 case CMD_MIFARE_EML_MEMGET
:
874 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
876 case CMD_MIFARE_EML_CARDLOAD
:
877 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
880 // Work with "magic Chinese" card
881 case CMD_MIFARE_CSETBLOCK
:
882 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
884 case CMD_MIFARE_CGETBLOCK
:
885 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
887 case CMD_MIFARE_CIDENT
:
892 case CMD_MIFARE_SNIFFER
:
893 SniffMifare(c
->arg
[0]);
897 case CMD_MIFARE_DESFIRE_READBL
: break;
898 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
899 case CMD_MIFARE_DESFIRE_AUTH1
:
900 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
902 case CMD_MIFARE_DESFIRE_AUTH2
:
903 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
905 case CMD_MIFARE_DES_READER
:
906 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
908 case CMD_MIFARE_DESFIRE_INFO
:
909 MifareDesfireGetInformation();
911 case CMD_MIFARE_DESFIRE
:
912 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
915 case CMD_MIFARE_COLLECT_NONCES
:
916 MifareCollectNonces(c
->arg
[0], c
->arg
[1]);
921 // Makes use of ISO14443a FPGA Firmware
922 case CMD_SNOOP_ICLASS
:
925 case CMD_SIMULATE_TAG_ICLASS
:
926 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
928 case CMD_READER_ICLASS
:
929 ReaderIClass(c
->arg
[0]);
931 case CMD_READER_ICLASS_REPLAY
:
932 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
934 case CMD_ICLASS_EML_MEMSET
:
935 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
939 case CMD_SIMULATE_TAG_HF_LISTEN
:
940 SimulateTagHfListen();
947 case CMD_MEASURE_ANTENNA_TUNING
:
948 MeasureAntennaTuning();
951 case CMD_MEASURE_ANTENNA_TUNING_HF
:
952 MeasureAntennaTuningHf();
955 case CMD_LISTEN_READER_FIELD
:
956 ListenReaderField(c
->arg
[0]);
959 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
960 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
962 LED_D_OFF(); // LED D indicates field ON or OFF
965 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
968 uint8_t *BigBuf
= BigBuf_get_addr();
969 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
970 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
971 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
973 // Trigger a finish downloading signal with an ACK frame
974 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
978 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
979 uint8_t *b
= BigBuf_get_addr();
980 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
981 cmd_send(CMD_ACK
,0,0,0,0,0);
988 case CMD_SET_LF_DIVISOR
:
989 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
990 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
993 case CMD_SET_ADC_MUX
:
995 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
996 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
997 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
998 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1014 case CMD_SETUP_WRITE
:
1015 case CMD_FINISH_WRITE
:
1016 case CMD_HARDWARE_RESET
:
1020 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1022 // We're going to reset, and the bootrom will take control.
1026 case CMD_START_FLASH
:
1027 if(common_area
.flags
.bootrom_present
) {
1028 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1031 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1035 case CMD_DEVICE_INFO
: {
1036 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1037 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1038 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1042 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1047 void __attribute__((noreturn
)) AppMain(void)
1051 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1052 /* Initialize common area */
1053 memset(&common_area
, 0, sizeof(common_area
));
1054 common_area
.magic
= COMMON_AREA_MAGIC
;
1055 common_area
.version
= 1;
1057 common_area
.flags
.osimage_present
= 1;
1067 // The FPGA gets its clock from us from PCK0 output, so set that up.
1068 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1069 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1070 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1071 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1072 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1073 AT91C_PMC_PRES_CLK_4
;
1074 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1077 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1079 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1081 // Load the FPGA image, which we have stored in our flash.
1082 // (the HF version by default)
1083 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1091 byte_t rx
[sizeof(UsbCommand
)];
1096 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1098 UsbPacketReceived(rx
,rx_len
);
1104 if (BUTTON_HELD(1000) > 0)