]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
lf FSK demod tools/fixes
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18
19
20 /**
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
25 */
26 void DoAcquisition125k_internal(int trigger_threshold,bool silent)
27 {
28 uint8_t *dest = (uint8_t *)BigBuf;
29 int n = sizeof(BigBuf);
30 int i;
31
32 memset(dest, 0, n);
33 i = 0;
34 for(;;) {
35 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
36 AT91C_BASE_SSC->SSC_THR = 0x43;
37 LED_D_ON();
38 }
39 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
40 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
41 LED_D_OFF();
42 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
43 continue;
44 else
45 trigger_threshold = -1;
46 if (++i >= n) break;
47 }
48 }
49 if(!silent)
50 {
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
53
54 }
55 }
56 /**
57 * Perform sample aquisition.
58 */
59 void DoAcquisition125k(int trigger_threshold)
60 {
61 DoAcquisition125k_internal(trigger_threshold, false);
62 }
63
64 /**
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
68 * 0 or 95 ==> 125 KHz
69 *
70 **/
71 void LFSetupFPGAForADC(int divisor, bool lf_field)
72 {
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
74 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
76 else if (divisor == 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
78 else
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
80
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
82
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
85 // Give it a bit of time for the resonant antenna to settle.
86 SpinDelay(50);
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
88 FpgaSetupSsc();
89 }
90 /**
91 * Initializes the FPGA, and acquires the samples.
92 **/
93 void AcquireRawAdcSamples125k(int divisor)
94 {
95 LFSetupFPGAForADC(divisor, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
98 }
99 /**
100 * Initializes the FPGA for snoop-mode, and acquires the samples.
101 **/
102
103 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
104 {
105 LFSetupFPGAForADC(divisor, false);
106 DoAcquisition125k(trigger_threshold);
107 }
108
109 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
110 {
111
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
115 SpinDelay(2500);
116
117
118 int divisor_used = 95; // 125 KHz
119 // see if 'h' was specified
120
121 if (command[strlen((char *) command) - 1] == 'h')
122 divisor_used = 88; // 134.8 KHz
123
124
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
127 // Give it a bit of time for the resonant antenna to settle.
128 SpinDelay(50);
129
130 // And a little more time for the tag to fully power up
131 SpinDelay(2000);
132
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
134 FpgaSetupSsc();
135
136 // now modulate the reader field
137 while(*command != '\0' && *command != ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
139 LED_D_OFF();
140 SpinDelayUs(delay_off);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
142
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
144 LED_D_ON();
145 if(*(command++) == '0')
146 SpinDelayUs(period_0);
147 else
148 SpinDelayUs(period_1);
149 }
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
151 LED_D_OFF();
152 SpinDelayUs(delay_off);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
154
155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
156
157 // now do the read
158 DoAcquisition125k(-1);
159 }
160
161 /* blank r/w tag data stream
162 ...0000000000000000 01111111
163 1010101010101010101010101010101010101010101010101010101010101010
164 0011010010100001
165 01111111
166 101010101010101[0]000...
167
168 [5555fe852c5555555555555555fe0000]
169 */
170 void ReadTItag(void)
171 {
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
179
180 signed char *dest = (signed char *)BigBuf;
181 int n = sizeof(BigBuf);
182 // 128 bit shift register [shift3:shift2:shift1:shift0]
183 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
184
185 int i, cycles=0, samples=0;
186 // how many sample points fit in 16 cycles of each frequency
187 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
188 // when to tell if we're close enough to one freq or another
189 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
190
191 // TI tags charge at 134.2Khz
192 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
193 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
194
195 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
196 // connects to SSP_DIN and the SSP_DOUT logic level controls
197 // whether we're modulating the antenna (high)
198 // or listening to the antenna (low)
199 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
200
201 // get TI tag data into the buffer
202 AcquireTiType();
203
204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
205
206 for (i=0; i<n-1; i++) {
207 // count cycles by looking for lo to hi zero crossings
208 if ( (dest[i]<0) && (dest[i+1]>0) ) {
209 cycles++;
210 // after 16 cycles, measure the frequency
211 if (cycles>15) {
212 cycles=0;
213 samples=i-samples; // number of samples in these 16 cycles
214
215 // TI bits are coming to us lsb first so shift them
216 // right through our 128 bit right shift register
217 shift0 = (shift0>>1) | (shift1 << 31);
218 shift1 = (shift1>>1) | (shift2 << 31);
219 shift2 = (shift2>>1) | (shift3 << 31);
220 shift3 >>= 1;
221
222 // check if the cycles fall close to the number
223 // expected for either the low or high frequency
224 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
225 // low frequency represents a 1
226 shift3 |= (1<<31);
227 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
228 // high frequency represents a 0
229 } else {
230 // probably detected a gay waveform or noise
231 // use this as gaydar or discard shift register and start again
232 shift3 = shift2 = shift1 = shift0 = 0;
233 }
234 samples = i;
235
236 // for each bit we receive, test if we've detected a valid tag
237
238 // if we see 17 zeroes followed by 6 ones, we might have a tag
239 // remember the bits are backwards
240 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
241 // if start and end bytes match, we have a tag so break out of the loop
242 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
243 cycles = 0xF0B; //use this as a flag (ugly but whatever)
244 break;
245 }
246 }
247 }
248 }
249 }
250
251 // if flag is set we have a tag
252 if (cycles!=0xF0B) {
253 DbpString("Info: No valid tag detected.");
254 } else {
255 // put 64 bit data into shift1 and shift0
256 shift0 = (shift0>>24) | (shift1 << 8);
257 shift1 = (shift1>>24) | (shift2 << 8);
258
259 // align 16 bit crc into lower half of shift2
260 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
261
262 // if r/w tag, check ident match
263 if (shift3 & (1<<15) ) {
264 DbpString("Info: TI tag is rewriteable");
265 // only 15 bits compare, last bit of ident is not valid
266 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
267 DbpString("Error: Ident mismatch!");
268 } else {
269 DbpString("Info: TI tag ident is valid");
270 }
271 } else {
272 DbpString("Info: TI tag is readonly");
273 }
274
275 // WARNING the order of the bytes in which we calc crc below needs checking
276 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
277 // bytes in reverse or something
278 // calculate CRC
279 uint32_t crc=0;
280
281 crc = update_crc16(crc, (shift0)&0xff);
282 crc = update_crc16(crc, (shift0>>8)&0xff);
283 crc = update_crc16(crc, (shift0>>16)&0xff);
284 crc = update_crc16(crc, (shift0>>24)&0xff);
285 crc = update_crc16(crc, (shift1)&0xff);
286 crc = update_crc16(crc, (shift1>>8)&0xff);
287 crc = update_crc16(crc, (shift1>>16)&0xff);
288 crc = update_crc16(crc, (shift1>>24)&0xff);
289
290 Dbprintf("Info: Tag data: %x%08x, crc=%x",
291 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
292 if (crc != (shift2&0xffff)) {
293 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
294 } else {
295 DbpString("Info: CRC is good");
296 }
297 }
298 }
299
300 void WriteTIbyte(uint8_t b)
301 {
302 int i = 0;
303
304 // modulate 8 bits out to the antenna
305 for (i=0; i<8; i++)
306 {
307 if (b&(1<<i)) {
308 // stop modulating antenna
309 LOW(GPIO_SSC_DOUT);
310 SpinDelayUs(1000);
311 // modulate antenna
312 HIGH(GPIO_SSC_DOUT);
313 SpinDelayUs(1000);
314 } else {
315 // stop modulating antenna
316 LOW(GPIO_SSC_DOUT);
317 SpinDelayUs(300);
318 // modulate antenna
319 HIGH(GPIO_SSC_DOUT);
320 SpinDelayUs(1700);
321 }
322 }
323 }
324
325 void AcquireTiType(void)
326 {
327 int i, j, n;
328 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
329 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
330 #define TIBUFLEN 1250
331
332 // clear buffer
333 memset(BigBuf,0,sizeof(BigBuf));
334
335 // Set up the synchronous serial port
336 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
337 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
338
339 // steal this pin from the SSP and use it to control the modulation
340 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
341 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
342
343 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
344 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
345
346 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
347 // 48/2 = 24 MHz clock must be divided by 12
348 AT91C_BASE_SSC->SSC_CMR = 12;
349
350 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
351 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
352 AT91C_BASE_SSC->SSC_TCMR = 0;
353 AT91C_BASE_SSC->SSC_TFMR = 0;
354
355 LED_D_ON();
356
357 // modulate antenna
358 HIGH(GPIO_SSC_DOUT);
359
360 // Charge TI tag for 50ms.
361 SpinDelay(50);
362
363 // stop modulating antenna and listen
364 LOW(GPIO_SSC_DOUT);
365
366 LED_D_OFF();
367
368 i = 0;
369 for(;;) {
370 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
371 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
372 i++; if(i >= TIBUFLEN) break;
373 }
374 WDT_HIT();
375 }
376
377 // return stolen pin to SSP
378 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
379 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
380
381 char *dest = (char *)BigBuf;
382 n = TIBUFLEN*32;
383 // unpack buffer
384 for (i=TIBUFLEN-1; i>=0; i--) {
385 for (j=0; j<32; j++) {
386 if(BigBuf[i] & (1 << j)) {
387 dest[--n] = 1;
388 } else {
389 dest[--n] = -1;
390 }
391 }
392 }
393 }
394
395 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
396 // if crc provided, it will be written with the data verbatim (even if bogus)
397 // if not provided a valid crc will be computed from the data and written.
398 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
399 {
400 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
401 if(crc == 0) {
402 crc = update_crc16(crc, (idlo)&0xff);
403 crc = update_crc16(crc, (idlo>>8)&0xff);
404 crc = update_crc16(crc, (idlo>>16)&0xff);
405 crc = update_crc16(crc, (idlo>>24)&0xff);
406 crc = update_crc16(crc, (idhi)&0xff);
407 crc = update_crc16(crc, (idhi>>8)&0xff);
408 crc = update_crc16(crc, (idhi>>16)&0xff);
409 crc = update_crc16(crc, (idhi>>24)&0xff);
410 }
411 Dbprintf("Writing to tag: %x%08x, crc=%x",
412 (unsigned int) idhi, (unsigned int) idlo, crc);
413
414 // TI tags charge at 134.2Khz
415 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
416 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
417 // connects to SSP_DIN and the SSP_DOUT logic level controls
418 // whether we're modulating the antenna (high)
419 // or listening to the antenna (low)
420 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
421 LED_A_ON();
422
423 // steal this pin from the SSP and use it to control the modulation
424 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
425 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
426
427 // writing algorithm:
428 // a high bit consists of a field off for 1ms and field on for 1ms
429 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
430 // initiate a charge time of 50ms (field on) then immediately start writing bits
431 // start by writing 0xBB (keyword) and 0xEB (password)
432 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
433 // finally end with 0x0300 (write frame)
434 // all data is sent lsb firts
435 // finish with 15ms programming time
436
437 // modulate antenna
438 HIGH(GPIO_SSC_DOUT);
439 SpinDelay(50); // charge time
440
441 WriteTIbyte(0xbb); // keyword
442 WriteTIbyte(0xeb); // password
443 WriteTIbyte( (idlo )&0xff );
444 WriteTIbyte( (idlo>>8 )&0xff );
445 WriteTIbyte( (idlo>>16)&0xff );
446 WriteTIbyte( (idlo>>24)&0xff );
447 WriteTIbyte( (idhi )&0xff );
448 WriteTIbyte( (idhi>>8 )&0xff );
449 WriteTIbyte( (idhi>>16)&0xff );
450 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
451 WriteTIbyte( (crc )&0xff ); // crc lo
452 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
453 WriteTIbyte(0x00); // write frame lo
454 WriteTIbyte(0x03); // write frame hi
455 HIGH(GPIO_SSC_DOUT);
456 SpinDelay(50); // programming time
457
458 LED_A_OFF();
459
460 // get TI tag data into the buffer
461 AcquireTiType();
462
463 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
464 DbpString("Now use tiread to check");
465 }
466
467 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
468 {
469 int i;
470 uint8_t *tab = (uint8_t *)BigBuf;
471
472 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
473 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
474
475 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
476
477 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
478 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
479
480 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
481 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
482
483 i = 0;
484 for(;;) {
485 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
486 if(BUTTON_PRESS()) {
487 DbpString("Stopped");
488 return;
489 }
490 WDT_HIT();
491 }
492
493 if (ledcontrol)
494 LED_D_ON();
495
496 if(tab[i])
497 OPEN_COIL();
498 else
499 SHORT_COIL();
500
501 if (ledcontrol)
502 LED_D_OFF();
503
504 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
505 if(BUTTON_PRESS()) {
506 DbpString("Stopped");
507 return;
508 }
509 WDT_HIT();
510 }
511
512 i++;
513 if(i == period) {
514 i = 0;
515 if (gap) {
516 SHORT_COIL();
517 SpinDelayUs(gap);
518 }
519 }
520 }
521 }
522
523 #define DEBUG_FRAME_CONTENTS 1
524 void SimulateTagLowFrequencyBidir(int divisor, int t0)
525 {
526 }
527
528 // compose fc/8 fc/10 waveform
529 static void fc(int c, int *n) {
530 uint8_t *dest = (uint8_t *)BigBuf;
531 int idx;
532
533 // for when we want an fc8 pattern every 4 logical bits
534 if(c==0) {
535 dest[((*n)++)]=1;
536 dest[((*n)++)]=1;
537 dest[((*n)++)]=0;
538 dest[((*n)++)]=0;
539 dest[((*n)++)]=0;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 }
544 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
545 if(c==8) {
546 for (idx=0; idx<6; idx++) {
547 dest[((*n)++)]=1;
548 dest[((*n)++)]=1;
549 dest[((*n)++)]=0;
550 dest[((*n)++)]=0;
551 dest[((*n)++)]=0;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 }
556 }
557
558 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
559 if(c==10) {
560 for (idx=0; idx<5; idx++) {
561 dest[((*n)++)]=1;
562 dest[((*n)++)]=1;
563 dest[((*n)++)]=1;
564 dest[((*n)++)]=0;
565 dest[((*n)++)]=0;
566 dest[((*n)++)]=0;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 }
572 }
573 }
574
575 // prepare a waveform pattern in the buffer based on the ID given then
576 // simulate a HID tag until the button is pressed
577 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
578 {
579 int n=0, i=0;
580 /*
581 HID tag bitstream format
582 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
583 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
584 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
585 A fc8 is inserted before every 4 bits
586 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
587 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
588 */
589
590 if (hi>0xFFF) {
591 DbpString("Tags can only have 44 bits.");
592 return;
593 }
594 fc(0,&n);
595 // special start of frame marker containing invalid bit sequences
596 fc(8, &n); fc(8, &n); // invalid
597 fc(8, &n); fc(10, &n); // logical 0
598 fc(10, &n); fc(10, &n); // invalid
599 fc(8, &n); fc(10, &n); // logical 0
600
601 WDT_HIT();
602 // manchester encode bits 43 to 32
603 for (i=11; i>=0; i--) {
604 if ((i%4)==3) fc(0,&n);
605 if ((hi>>i)&1) {
606 fc(10, &n); fc(8, &n); // low-high transition
607 } else {
608 fc(8, &n); fc(10, &n); // high-low transition
609 }
610 }
611
612 WDT_HIT();
613 // manchester encode bits 31 to 0
614 for (i=31; i>=0; i--) {
615 if ((i%4)==3) fc(0,&n);
616 if ((lo>>i)&1) {
617 fc(10, &n); fc(8, &n); // low-high transition
618 } else {
619 fc(8, &n); fc(10, &n); // high-low transition
620 }
621 }
622
623 if (ledcontrol)
624 LED_A_ON();
625 SimulateTagLowFrequency(n, 0, ledcontrol);
626
627 if (ledcontrol)
628 LED_A_OFF();
629 }
630
631 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
632 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
633 {
634 uint8_t *dest = (uint8_t *)BigBuf;
635
636 size_t size=sizeof(BigBuf), idx=0; //, found=0;
637 uint32_t hi2=0, hi=0, lo=0;
638
639 // Configure to go in 125Khz listen mode
640 LFSetupFPGAForADC(95, true);
641
642 while(!BUTTON_PRESS()) {
643
644 WDT_HIT();
645 if (ledcontrol) LED_A_ON();
646
647 DoAcquisition125k_internal(-1,true);
648 // FSK demodulator
649 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
650
651 WDT_HIT();
652
653 if (idx>0 && lo>0){
654 // final loop, go over previously decoded manchester data and decode into usable tag ID
655 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
656 if (hi2 != 0){ //extra large HID tags
657 Dbprintf("TAG ID: %x%08x%08x (%d)",
658 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
659 }else { //standard HID tags <38 bits
660 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
661 uint8_t bitlen = 0;
662 uint32_t fc = 0;
663 uint32_t cardnum = 0;
664 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
665 uint32_t lo2=0;
666 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
667 uint8_t idx3 = 1;
668 while(lo2 > 1){ //find last bit set to 1 (format len bit)
669 lo2=lo2 >> 1;
670 idx3++;
671 }
672 bitlen = idx3+19;
673 fc =0;
674 cardnum=0;
675 if(bitlen == 26){
676 cardnum = (lo>>1)&0xFFFF;
677 fc = (lo>>17)&0xFF;
678 }
679 if(bitlen == 37){
680 cardnum = (lo>>1)&0x7FFFF;
681 fc = ((hi&0xF)<<12)|(lo>>20);
682 }
683 if(bitlen == 34){
684 cardnum = (lo>>1)&0xFFFF;
685 fc= ((hi&1)<<15)|(lo>>17);
686 }
687 if(bitlen == 35){
688 cardnum = (lo>>1)&0xFFFFF;
689 fc = ((hi&1)<<11)|(lo>>21);
690 }
691 }
692 else { //if bit 38 is not set then 37 bit format is used
693 bitlen= 37;
694 fc =0;
695 cardnum=0;
696 if(bitlen==37){
697 cardnum = (lo>>1)&0x7FFFF;
698 fc = ((hi&0xF)<<12)|(lo>>20);
699 }
700 }
701 //Dbprintf("TAG ID: %x%08x (%d)",
702 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
703 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
704 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
705 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
706 }
707 if (findone){
708 if (ledcontrol) LED_A_OFF();
709 return;
710 }
711 // reset
712 hi2 = hi = lo = 0;
713 }
714 WDT_HIT();
715 }
716 DbpString("Stopped");
717 if (ledcontrol) LED_A_OFF();
718 }
719
720 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
721 {
722 uint8_t *dest = (uint8_t *)BigBuf;
723
724 size_t size=0, idx=0;
725 int clk=0, invert=0, errCnt=0;
726 uint64_t lo=0;
727 // Configure to go in 125Khz listen mode
728 LFSetupFPGAForADC(95, true);
729
730 while(!BUTTON_PRESS()) {
731
732 WDT_HIT();
733 if (ledcontrol) LED_A_ON();
734
735 DoAcquisition125k_internal(-1,true);
736 size = sizeof(BigBuf);
737 //Dbprintf("DEBUG: Buffer got");
738 //askdemod and manchester decode
739 errCnt = askmandemod(dest, &size, &clk, &invert);
740 //Dbprintf("DEBUG: ASK Got");
741 WDT_HIT();
742
743 if (errCnt>=0){
744 lo = Em410xDecode(dest, &size, &idx);
745 //Dbprintf("DEBUG: EM GOT");
746 if (lo>0){
747 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
748 (uint32_t)(lo>>32),
749 (uint32_t)lo,
750 (uint32_t)(lo&0xFFFF),
751 (uint32_t)((lo>>16LL) & 0xFF),
752 (uint32_t)(lo & 0xFFFFFF));
753 }
754 if (findone){
755 if (ledcontrol) LED_A_OFF();
756 return;
757 }
758 } else{
759 //Dbprintf("DEBUG: No Tag");
760 }
761 WDT_HIT();
762 lo = 0;
763 clk=0;
764 invert=0;
765 errCnt=0;
766 size=0;
767 }
768 DbpString("Stopped");
769 if (ledcontrol) LED_A_OFF();
770 }
771
772 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
773 {
774 uint8_t *dest = (uint8_t *)BigBuf;
775 int idx=0;
776 uint32_t code=0, code2=0;
777 uint8_t version=0;
778 uint8_t facilitycode=0;
779 uint16_t number=0;
780 // Configure to go in 125Khz listen mode
781 LFSetupFPGAForADC(95, true);
782
783 while(!BUTTON_PRESS()) {
784 WDT_HIT();
785 if (ledcontrol) LED_A_ON();
786 DoAcquisition125k_internal(-1,true);
787 //fskdemod and get start index
788 WDT_HIT();
789 idx = IOdemodFSK(dest,sizeof(BigBuf));
790 if (idx>0){
791 //valid tag found
792
793 //Index map
794 //0 10 20 30 40 50 60
795 //| | | | | | |
796 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
797 //-----------------------------------------------------------------------------
798 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
799 //
800 //XSF(version)facility:codeone+codetwo
801 //Handle the data
802 if(findone){ //only print binary if we are doing one
803 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
804 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
805 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
806 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
807 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
808 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
809 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
810 }
811 code = bytebits_to_byte(dest+idx,32);
812 code2 = bytebits_to_byte(dest+idx+32,32);
813 version = bytebits_to_byte(dest+idx+27,8); //14,4
814 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
815 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
816
817 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
818 // if we're only looking for one tag
819 if (findone){
820 if (ledcontrol) LED_A_OFF();
821 //LED_A_OFF();
822 return;
823 }
824 code=code2=0;
825 version=facilitycode=0;
826 number=0;
827 idx=0;
828 }
829 WDT_HIT();
830 }
831 DbpString("Stopped");
832 if (ledcontrol) LED_A_OFF();
833 }
834
835 /*------------------------------
836 * T5555/T5557/T5567 routines
837 *------------------------------
838 */
839
840 /* T55x7 configuration register definitions */
841 #define T55x7_POR_DELAY 0x00000001
842 #define T55x7_ST_TERMINATOR 0x00000008
843 #define T55x7_PWD 0x00000010
844 #define T55x7_MAXBLOCK_SHIFT 5
845 #define T55x7_AOR 0x00000200
846 #define T55x7_PSKCF_RF_2 0
847 #define T55x7_PSKCF_RF_4 0x00000400
848 #define T55x7_PSKCF_RF_8 0x00000800
849 #define T55x7_MODULATION_DIRECT 0
850 #define T55x7_MODULATION_PSK1 0x00001000
851 #define T55x7_MODULATION_PSK2 0x00002000
852 #define T55x7_MODULATION_PSK3 0x00003000
853 #define T55x7_MODULATION_FSK1 0x00004000
854 #define T55x7_MODULATION_FSK2 0x00005000
855 #define T55x7_MODULATION_FSK1a 0x00006000
856 #define T55x7_MODULATION_FSK2a 0x00007000
857 #define T55x7_MODULATION_MANCHESTER 0x00008000
858 #define T55x7_MODULATION_BIPHASE 0x00010000
859 #define T55x7_BITRATE_RF_8 0
860 #define T55x7_BITRATE_RF_16 0x00040000
861 #define T55x7_BITRATE_RF_32 0x00080000
862 #define T55x7_BITRATE_RF_40 0x000C0000
863 #define T55x7_BITRATE_RF_50 0x00100000
864 #define T55x7_BITRATE_RF_64 0x00140000
865 #define T55x7_BITRATE_RF_100 0x00180000
866 #define T55x7_BITRATE_RF_128 0x001C0000
867
868 /* T5555 (Q5) configuration register definitions */
869 #define T5555_ST_TERMINATOR 0x00000001
870 #define T5555_MAXBLOCK_SHIFT 0x00000001
871 #define T5555_MODULATION_MANCHESTER 0
872 #define T5555_MODULATION_PSK1 0x00000010
873 #define T5555_MODULATION_PSK2 0x00000020
874 #define T5555_MODULATION_PSK3 0x00000030
875 #define T5555_MODULATION_FSK1 0x00000040
876 #define T5555_MODULATION_FSK2 0x00000050
877 #define T5555_MODULATION_BIPHASE 0x00000060
878 #define T5555_MODULATION_DIRECT 0x00000070
879 #define T5555_INVERT_OUTPUT 0x00000080
880 #define T5555_PSK_RF_2 0
881 #define T5555_PSK_RF_4 0x00000100
882 #define T5555_PSK_RF_8 0x00000200
883 #define T5555_USE_PWD 0x00000400
884 #define T5555_USE_AOR 0x00000800
885 #define T5555_BITRATE_SHIFT 12
886 #define T5555_FAST_WRITE 0x00004000
887 #define T5555_PAGE_SELECT 0x00008000
888
889 /*
890 * Relevant times in microsecond
891 * To compensate antenna falling times shorten the write times
892 * and enlarge the gap ones.
893 */
894 #define START_GAP 250
895 #define WRITE_GAP 160
896 #define WRITE_0 144 // 192
897 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
898
899 // Write one bit to card
900 void T55xxWriteBit(int bit)
901 {
902 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
903 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
904 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
905 if (bit == 0)
906 SpinDelayUs(WRITE_0);
907 else
908 SpinDelayUs(WRITE_1);
909 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
910 SpinDelayUs(WRITE_GAP);
911 }
912
913 // Write one card block in page 0, no lock
914 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
915 {
916 //unsigned int i; //enio adjustment 12/10/14
917 uint32_t i;
918
919 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
920 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
921 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
922
923 // Give it a bit of time for the resonant antenna to settle.
924 // And for the tag to fully power up
925 SpinDelay(150);
926
927 // Now start writting
928 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
929 SpinDelayUs(START_GAP);
930
931 // Opcode
932 T55xxWriteBit(1);
933 T55xxWriteBit(0); //Page 0
934 if (PwdMode == 1){
935 // Pwd
936 for (i = 0x80000000; i != 0; i >>= 1)
937 T55xxWriteBit(Pwd & i);
938 }
939 // Lock bit
940 T55xxWriteBit(0);
941
942 // Data
943 for (i = 0x80000000; i != 0; i >>= 1)
944 T55xxWriteBit(Data & i);
945
946 // Block
947 for (i = 0x04; i != 0; i >>= 1)
948 T55xxWriteBit(Block & i);
949
950 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
951 // so wait a little more)
952 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
953 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
954 SpinDelay(20);
955 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
956 }
957
958 // Read one card block in page 0
959 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
960 {
961 uint8_t *dest = (uint8_t *)BigBuf;
962 //int m=0, i=0; //enio adjustment 12/10/14
963 uint32_t m=0, i=0;
964 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
965 m = sizeof(BigBuf);
966 // Clear destination buffer before sending the command
967 memset(dest, 128, m);
968 // Connect the A/D to the peak-detected low-frequency path.
969 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
970 // Now set up the SSC to get the ADC samples that are now streaming at us.
971 FpgaSetupSsc();
972
973 LED_D_ON();
974 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
975 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
976
977 // Give it a bit of time for the resonant antenna to settle.
978 // And for the tag to fully power up
979 SpinDelay(150);
980
981 // Now start writting
982 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
983 SpinDelayUs(START_GAP);
984
985 // Opcode
986 T55xxWriteBit(1);
987 T55xxWriteBit(0); //Page 0
988 if (PwdMode == 1){
989 // Pwd
990 for (i = 0x80000000; i != 0; i >>= 1)
991 T55xxWriteBit(Pwd & i);
992 }
993 // Lock bit
994 T55xxWriteBit(0);
995 // Block
996 for (i = 0x04; i != 0; i >>= 1)
997 T55xxWriteBit(Block & i);
998
999 // Turn field on to read the response
1000 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1001 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1002
1003 // Now do the acquisition
1004 i = 0;
1005 for(;;) {
1006 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1007 AT91C_BASE_SSC->SSC_THR = 0x43;
1008 }
1009 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1010 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1011 // we don't care about actual value, only if it's more or less than a
1012 // threshold essentially we capture zero crossings for later analysis
1013 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1014 i++;
1015 if (i >= m) break;
1016 }
1017 }
1018
1019 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1020 LED_D_OFF();
1021 DbpString("DONE!");
1022 }
1023
1024 // Read card traceability data (page 1)
1025 void T55xxReadTrace(void){
1026 uint8_t *dest = (uint8_t *)BigBuf;
1027 int m=0, i=0;
1028
1029 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1030 m = sizeof(BigBuf);
1031 // Clear destination buffer before sending the command
1032 memset(dest, 128, m);
1033 // Connect the A/D to the peak-detected low-frequency path.
1034 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1035 // Now set up the SSC to get the ADC samples that are now streaming at us.
1036 FpgaSetupSsc();
1037
1038 LED_D_ON();
1039 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1040 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1041
1042 // Give it a bit of time for the resonant antenna to settle.
1043 // And for the tag to fully power up
1044 SpinDelay(150);
1045
1046 // Now start writting
1047 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1048 SpinDelayUs(START_GAP);
1049
1050 // Opcode
1051 T55xxWriteBit(1);
1052 T55xxWriteBit(1); //Page 1
1053
1054 // Turn field on to read the response
1055 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1056 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1057
1058 // Now do the acquisition
1059 i = 0;
1060 for(;;) {
1061 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1062 AT91C_BASE_SSC->SSC_THR = 0x43;
1063 }
1064 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1065 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1066 i++;
1067 if (i >= m) break;
1068 }
1069 }
1070
1071 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1072 LED_D_OFF();
1073 DbpString("DONE!");
1074 }
1075
1076 /*-------------- Cloning routines -----------*/
1077 // Copy HID id to card and setup block 0 config
1078 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1079 {
1080 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1081 int last_block = 0;
1082
1083 if (longFMT){
1084 // Ensure no more than 84 bits supplied
1085 if (hi2>0xFFFFF) {
1086 DbpString("Tags can only have 84 bits.");
1087 return;
1088 }
1089 // Build the 6 data blocks for supplied 84bit ID
1090 last_block = 6;
1091 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1092 for (int i=0;i<4;i++) {
1093 if (hi2 & (1<<(19-i)))
1094 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1095 else
1096 data1 |= (1<<((3-i)*2)); // 0 -> 01
1097 }
1098
1099 data2 = 0;
1100 for (int i=0;i<16;i++) {
1101 if (hi2 & (1<<(15-i)))
1102 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1103 else
1104 data2 |= (1<<((15-i)*2)); // 0 -> 01
1105 }
1106
1107 data3 = 0;
1108 for (int i=0;i<16;i++) {
1109 if (hi & (1<<(31-i)))
1110 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1111 else
1112 data3 |= (1<<((15-i)*2)); // 0 -> 01
1113 }
1114
1115 data4 = 0;
1116 for (int i=0;i<16;i++) {
1117 if (hi & (1<<(15-i)))
1118 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1119 else
1120 data4 |= (1<<((15-i)*2)); // 0 -> 01
1121 }
1122
1123 data5 = 0;
1124 for (int i=0;i<16;i++) {
1125 if (lo & (1<<(31-i)))
1126 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1127 else
1128 data5 |= (1<<((15-i)*2)); // 0 -> 01
1129 }
1130
1131 data6 = 0;
1132 for (int i=0;i<16;i++) {
1133 if (lo & (1<<(15-i)))
1134 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1135 else
1136 data6 |= (1<<((15-i)*2)); // 0 -> 01
1137 }
1138 }
1139 else {
1140 // Ensure no more than 44 bits supplied
1141 if (hi>0xFFF) {
1142 DbpString("Tags can only have 44 bits.");
1143 return;
1144 }
1145
1146 // Build the 3 data blocks for supplied 44bit ID
1147 last_block = 3;
1148
1149 data1 = 0x1D000000; // load preamble
1150
1151 for (int i=0;i<12;i++) {
1152 if (hi & (1<<(11-i)))
1153 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1154 else
1155 data1 |= (1<<((11-i)*2)); // 0 -> 01
1156 }
1157
1158 data2 = 0;
1159 for (int i=0;i<16;i++) {
1160 if (lo & (1<<(31-i)))
1161 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1162 else
1163 data2 |= (1<<((15-i)*2)); // 0 -> 01
1164 }
1165
1166 data3 = 0;
1167 for (int i=0;i<16;i++) {
1168 if (lo & (1<<(15-i)))
1169 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1170 else
1171 data3 |= (1<<((15-i)*2)); // 0 -> 01
1172 }
1173 }
1174
1175 LED_D_ON();
1176 // Program the data blocks for supplied ID
1177 // and the block 0 for HID format
1178 T55xxWriteBlock(data1,1,0,0);
1179 T55xxWriteBlock(data2,2,0,0);
1180 T55xxWriteBlock(data3,3,0,0);
1181
1182 if (longFMT) { // if long format there are 6 blocks
1183 T55xxWriteBlock(data4,4,0,0);
1184 T55xxWriteBlock(data5,5,0,0);
1185 T55xxWriteBlock(data6,6,0,0);
1186 }
1187
1188 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1189 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1190 T55x7_MODULATION_FSK2a |
1191 last_block << T55x7_MAXBLOCK_SHIFT,
1192 0,0,0);
1193
1194 LED_D_OFF();
1195
1196 DbpString("DONE!");
1197 }
1198
1199 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1200 {
1201 int data1=0, data2=0; //up to six blocks for long format
1202
1203 data1 = hi; // load preamble
1204 data2 = lo;
1205
1206 LED_D_ON();
1207 // Program the data blocks for supplied ID
1208 // and the block 0 for HID format
1209 T55xxWriteBlock(data1,1,0,0);
1210 T55xxWriteBlock(data2,2,0,0);
1211
1212 //Config Block
1213 T55xxWriteBlock(0x00147040,0,0,0);
1214 LED_D_OFF();
1215
1216 DbpString("DONE!");
1217 }
1218
1219 // Define 9bit header for EM410x tags
1220 #define EM410X_HEADER 0x1FF
1221 #define EM410X_ID_LENGTH 40
1222
1223 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1224 {
1225 int i, id_bit;
1226 uint64_t id = EM410X_HEADER;
1227 uint64_t rev_id = 0; // reversed ID
1228 int c_parity[4]; // column parity
1229 int r_parity = 0; // row parity
1230 uint32_t clock = 0;
1231
1232 // Reverse ID bits given as parameter (for simpler operations)
1233 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1234 if (i < 32) {
1235 rev_id = (rev_id << 1) | (id_lo & 1);
1236 id_lo >>= 1;
1237 } else {
1238 rev_id = (rev_id << 1) | (id_hi & 1);
1239 id_hi >>= 1;
1240 }
1241 }
1242
1243 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1244 id_bit = rev_id & 1;
1245
1246 if (i % 4 == 0) {
1247 // Don't write row parity bit at start of parsing
1248 if (i)
1249 id = (id << 1) | r_parity;
1250 // Start counting parity for new row
1251 r_parity = id_bit;
1252 } else {
1253 // Count row parity
1254 r_parity ^= id_bit;
1255 }
1256
1257 // First elements in column?
1258 if (i < 4)
1259 // Fill out first elements
1260 c_parity[i] = id_bit;
1261 else
1262 // Count column parity
1263 c_parity[i % 4] ^= id_bit;
1264
1265 // Insert ID bit
1266 id = (id << 1) | id_bit;
1267 rev_id >>= 1;
1268 }
1269
1270 // Insert parity bit of last row
1271 id = (id << 1) | r_parity;
1272
1273 // Fill out column parity at the end of tag
1274 for (i = 0; i < 4; ++i)
1275 id = (id << 1) | c_parity[i];
1276
1277 // Add stop bit
1278 id <<= 1;
1279
1280 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1281 LED_D_ON();
1282
1283 // Write EM410x ID
1284 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1285 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1286
1287 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1288 if (card) {
1289 // Clock rate is stored in bits 8-15 of the card value
1290 clock = (card & 0xFF00) >> 8;
1291 Dbprintf("Clock rate: %d", clock);
1292 switch (clock)
1293 {
1294 case 32:
1295 clock = T55x7_BITRATE_RF_32;
1296 break;
1297 case 16:
1298 clock = T55x7_BITRATE_RF_16;
1299 break;
1300 case 0:
1301 // A value of 0 is assumed to be 64 for backwards-compatibility
1302 // Fall through...
1303 case 64:
1304 clock = T55x7_BITRATE_RF_64;
1305 break;
1306 default:
1307 Dbprintf("Invalid clock rate: %d", clock);
1308 return;
1309 }
1310
1311 // Writing configuration for T55x7 tag
1312 T55xxWriteBlock(clock |
1313 T55x7_MODULATION_MANCHESTER |
1314 2 << T55x7_MAXBLOCK_SHIFT,
1315 0, 0, 0);
1316 }
1317 else
1318 // Writing configuration for T5555(Q5) tag
1319 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1320 T5555_MODULATION_MANCHESTER |
1321 2 << T5555_MAXBLOCK_SHIFT,
1322 0, 0, 0);
1323
1324 LED_D_OFF();
1325 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1326 (uint32_t)(id >> 32), (uint32_t)id);
1327 }
1328
1329 // Clone Indala 64-bit tag by UID to T55x7
1330 void CopyIndala64toT55x7(int hi, int lo)
1331 {
1332
1333 //Program the 2 data blocks for supplied 64bit UID
1334 // and the block 0 for Indala64 format
1335 T55xxWriteBlock(hi,1,0,0);
1336 T55xxWriteBlock(lo,2,0,0);
1337 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1338 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1339 T55x7_MODULATION_PSK1 |
1340 2 << T55x7_MAXBLOCK_SHIFT,
1341 0, 0, 0);
1342 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1343 // T5567WriteBlock(0x603E1042,0);
1344
1345 DbpString("DONE!");
1346
1347 }
1348
1349 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1350 {
1351
1352 //Program the 7 data blocks for supplied 224bit UID
1353 // and the block 0 for Indala224 format
1354 T55xxWriteBlock(uid1,1,0,0);
1355 T55xxWriteBlock(uid2,2,0,0);
1356 T55xxWriteBlock(uid3,3,0,0);
1357 T55xxWriteBlock(uid4,4,0,0);
1358 T55xxWriteBlock(uid5,5,0,0);
1359 T55xxWriteBlock(uid6,6,0,0);
1360 T55xxWriteBlock(uid7,7,0,0);
1361 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1362 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1363 T55x7_MODULATION_PSK1 |
1364 7 << T55x7_MAXBLOCK_SHIFT,
1365 0,0,0);
1366 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1367 // T5567WriteBlock(0x603E10E2,0);
1368
1369 DbpString("DONE!");
1370
1371 }
1372
1373
1374 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1375 #define max(x,y) ( x<y ? y:x)
1376
1377 int DemodPCF7931(uint8_t **outBlocks) {
1378 uint8_t BitStream[256];
1379 uint8_t Blocks[8][16];
1380 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1381 int GraphTraceLen = sizeof(BigBuf);
1382 int i, j, lastval, bitidx, half_switch;
1383 int clock = 64;
1384 int tolerance = clock / 8;
1385 int pmc, block_done;
1386 int lc, warnings = 0;
1387 int num_blocks = 0;
1388 int lmin=128, lmax=128;
1389 uint8_t dir;
1390
1391 AcquireRawAdcSamples125k(0);
1392
1393 lmin = 64;
1394 lmax = 192;
1395
1396 i = 2;
1397
1398 /* Find first local max/min */
1399 if(GraphBuffer[1] > GraphBuffer[0]) {
1400 while(i < GraphTraceLen) {
1401 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1402 break;
1403 i++;
1404 }
1405 dir = 0;
1406 }
1407 else {
1408 while(i < GraphTraceLen) {
1409 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1410 break;
1411 i++;
1412 }
1413 dir = 1;
1414 }
1415
1416 lastval = i++;
1417 half_switch = 0;
1418 pmc = 0;
1419 block_done = 0;
1420
1421 for (bitidx = 0; i < GraphTraceLen; i++)
1422 {
1423 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1424 {
1425 lc = i - lastval;
1426 lastval = i;
1427
1428 // Switch depending on lc length:
1429 // Tolerance is 1/8 of clock rate (arbitrary)
1430 if (abs(lc-clock/4) < tolerance) {
1431 // 16T0
1432 if((i - pmc) == lc) { /* 16T0 was previous one */
1433 /* It's a PMC ! */
1434 i += (128+127+16+32+33+16)-1;
1435 lastval = i;
1436 pmc = 0;
1437 block_done = 1;
1438 }
1439 else {
1440 pmc = i;
1441 }
1442 } else if (abs(lc-clock/2) < tolerance) {
1443 // 32TO
1444 if((i - pmc) == lc) { /* 16T0 was previous one */
1445 /* It's a PMC ! */
1446 i += (128+127+16+32+33)-1;
1447 lastval = i;
1448 pmc = 0;
1449 block_done = 1;
1450 }
1451 else if(half_switch == 1) {
1452 BitStream[bitidx++] = 0;
1453 half_switch = 0;
1454 }
1455 else
1456 half_switch++;
1457 } else if (abs(lc-clock) < tolerance) {
1458 // 64TO
1459 BitStream[bitidx++] = 1;
1460 } else {
1461 // Error
1462 warnings++;
1463 if (warnings > 10)
1464 {
1465 Dbprintf("Error: too many detection errors, aborting.");
1466 return 0;
1467 }
1468 }
1469
1470 if(block_done == 1) {
1471 if(bitidx == 128) {
1472 for(j=0; j<16; j++) {
1473 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1474 64*BitStream[j*8+6]+
1475 32*BitStream[j*8+5]+
1476 16*BitStream[j*8+4]+
1477 8*BitStream[j*8+3]+
1478 4*BitStream[j*8+2]+
1479 2*BitStream[j*8+1]+
1480 BitStream[j*8];
1481 }
1482 num_blocks++;
1483 }
1484 bitidx = 0;
1485 block_done = 0;
1486 half_switch = 0;
1487 }
1488 if(i < GraphTraceLen)
1489 {
1490 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1491 else dir = 1;
1492 }
1493 }
1494 if(bitidx==255)
1495 bitidx=0;
1496 warnings = 0;
1497 if(num_blocks == 4) break;
1498 }
1499 memcpy(outBlocks, Blocks, 16*num_blocks);
1500 return num_blocks;
1501 }
1502
1503 int IsBlock0PCF7931(uint8_t *Block) {
1504 // Assume RFU means 0 :)
1505 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1506 return 1;
1507 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1508 return 1;
1509 return 0;
1510 }
1511
1512 int IsBlock1PCF7931(uint8_t *Block) {
1513 // Assume RFU means 0 :)
1514 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1515 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1516 return 1;
1517
1518 return 0;
1519 }
1520
1521 #define ALLOC 16
1522
1523 void ReadPCF7931() {
1524 uint8_t Blocks[8][17];
1525 uint8_t tmpBlocks[4][16];
1526 int i, j, ind, ind2, n;
1527 int num_blocks = 0;
1528 int max_blocks = 8;
1529 int ident = 0;
1530 int error = 0;
1531 int tries = 0;
1532
1533 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1534
1535 do {
1536 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1537 n = DemodPCF7931((uint8_t**)tmpBlocks);
1538 if(!n)
1539 error++;
1540 if(error==10 && num_blocks == 0) {
1541 Dbprintf("Error, no tag or bad tag");
1542 return;
1543 }
1544 else if (tries==20 || error==10) {
1545 Dbprintf("Error reading the tag");
1546 Dbprintf("Here is the partial content");
1547 goto end;
1548 }
1549
1550 for(i=0; i<n; i++)
1551 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1552 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1553 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1554 if(!ident) {
1555 for(i=0; i<n; i++) {
1556 if(IsBlock0PCF7931(tmpBlocks[i])) {
1557 // Found block 0 ?
1558 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1559 // Found block 1!
1560 // \o/
1561 ident = 1;
1562 memcpy(Blocks[0], tmpBlocks[i], 16);
1563 Blocks[0][ALLOC] = 1;
1564 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1565 Blocks[1][ALLOC] = 1;
1566 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1567 // Debug print
1568 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1569 num_blocks = 2;
1570 // Handle following blocks
1571 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1572 if(j==n) j=0;
1573 if(j==i) break;
1574 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1575 Blocks[ind2][ALLOC] = 1;
1576 }
1577 break;
1578 }
1579 }
1580 }
1581 }
1582 else {
1583 for(i=0; i<n; i++) { // Look for identical block in known blocks
1584 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1585 for(j=0; j<max_blocks; j++) {
1586 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1587 // Found an identical block
1588 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1589 if(ind2 < 0)
1590 ind2 = max_blocks;
1591 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1592 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1593 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1594 Blocks[ind2][ALLOC] = 1;
1595 num_blocks++;
1596 if(num_blocks == max_blocks) goto end;
1597 }
1598 }
1599 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1600 if(ind2 > max_blocks)
1601 ind2 = 0;
1602 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1603 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1604 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1605 Blocks[ind2][ALLOC] = 1;
1606 num_blocks++;
1607 if(num_blocks == max_blocks) goto end;
1608 }
1609 }
1610 }
1611 }
1612 }
1613 }
1614 }
1615 tries++;
1616 if (BUTTON_PRESS()) return;
1617 } while (num_blocks != max_blocks);
1618 end:
1619 Dbprintf("-----------------------------------------");
1620 Dbprintf("Memory content:");
1621 Dbprintf("-----------------------------------------");
1622 for(i=0; i<max_blocks; i++) {
1623 if(Blocks[i][ALLOC]==1)
1624 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1625 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1626 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1627 else
1628 Dbprintf("<missing block %d>", i);
1629 }
1630 Dbprintf("-----------------------------------------");
1631
1632 return ;
1633 }
1634
1635
1636 //-----------------------------------
1637 // EM4469 / EM4305 routines
1638 //-----------------------------------
1639 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1640 #define FWD_CMD_WRITE 0xA
1641 #define FWD_CMD_READ 0x9
1642 #define FWD_CMD_DISABLE 0x5
1643
1644
1645 uint8_t forwardLink_data[64]; //array of forwarded bits
1646 uint8_t * forward_ptr; //ptr for forward message preparation
1647 uint8_t fwd_bit_sz; //forwardlink bit counter
1648 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1649
1650 //====================================================================
1651 // prepares command bits
1652 // see EM4469 spec
1653 //====================================================================
1654 //--------------------------------------------------------------------
1655 uint8_t Prepare_Cmd( uint8_t cmd ) {
1656 //--------------------------------------------------------------------
1657
1658 *forward_ptr++ = 0; //start bit
1659 *forward_ptr++ = 0; //second pause for 4050 code
1660
1661 *forward_ptr++ = cmd;
1662 cmd >>= 1;
1663 *forward_ptr++ = cmd;
1664 cmd >>= 1;
1665 *forward_ptr++ = cmd;
1666 cmd >>= 1;
1667 *forward_ptr++ = cmd;
1668
1669 return 6; //return number of emited bits
1670 }
1671
1672 //====================================================================
1673 // prepares address bits
1674 // see EM4469 spec
1675 //====================================================================
1676
1677 //--------------------------------------------------------------------
1678 uint8_t Prepare_Addr( uint8_t addr ) {
1679 //--------------------------------------------------------------------
1680
1681 register uint8_t line_parity;
1682
1683 uint8_t i;
1684 line_parity = 0;
1685 for(i=0;i<6;i++) {
1686 *forward_ptr++ = addr;
1687 line_parity ^= addr;
1688 addr >>= 1;
1689 }
1690
1691 *forward_ptr++ = (line_parity & 1);
1692
1693 return 7; //return number of emited bits
1694 }
1695
1696 //====================================================================
1697 // prepares data bits intreleaved with parity bits
1698 // see EM4469 spec
1699 //====================================================================
1700
1701 //--------------------------------------------------------------------
1702 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1703 //--------------------------------------------------------------------
1704
1705 register uint8_t line_parity;
1706 register uint8_t column_parity;
1707 register uint8_t i, j;
1708 register uint16_t data;
1709
1710 data = data_low;
1711 column_parity = 0;
1712
1713 for(i=0; i<4; i++) {
1714 line_parity = 0;
1715 for(j=0; j<8; j++) {
1716 line_parity ^= data;
1717 column_parity ^= (data & 1) << j;
1718 *forward_ptr++ = data;
1719 data >>= 1;
1720 }
1721 *forward_ptr++ = line_parity;
1722 if(i == 1)
1723 data = data_hi;
1724 }
1725
1726 for(j=0; j<8; j++) {
1727 *forward_ptr++ = column_parity;
1728 column_parity >>= 1;
1729 }
1730 *forward_ptr = 0;
1731
1732 return 45; //return number of emited bits
1733 }
1734
1735 //====================================================================
1736 // Forward Link send function
1737 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1738 // fwd_bit_count set with number of bits to be sent
1739 //====================================================================
1740 void SendForward(uint8_t fwd_bit_count) {
1741
1742 fwd_write_ptr = forwardLink_data;
1743 fwd_bit_sz = fwd_bit_count;
1744
1745 LED_D_ON();
1746
1747 //Field on
1748 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1749 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1750 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1751
1752 // Give it a bit of time for the resonant antenna to settle.
1753 // And for the tag to fully power up
1754 SpinDelay(150);
1755
1756 // force 1st mod pulse (start gap must be longer for 4305)
1757 fwd_bit_sz--; //prepare next bit modulation
1758 fwd_write_ptr++;
1759 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1760 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1761 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1762 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1763 SpinDelayUs(16*8); //16 cycles on (8us each)
1764
1765 // now start writting
1766 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1767 if(((*fwd_write_ptr++) & 1) == 1)
1768 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1769 else {
1770 //These timings work for 4469/4269/4305 (with the 55*8 above)
1771 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1772 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1773 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1774 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1775 SpinDelayUs(9*8); //16 cycles on (8us each)
1776 }
1777 }
1778 }
1779
1780 void EM4xLogin(uint32_t Password) {
1781
1782 uint8_t fwd_bit_count;
1783
1784 forward_ptr = forwardLink_data;
1785 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1786 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1787
1788 SendForward(fwd_bit_count);
1789
1790 //Wait for command to complete
1791 SpinDelay(20);
1792
1793 }
1794
1795 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1796
1797 uint8_t fwd_bit_count;
1798 uint8_t *dest = (uint8_t *)BigBuf;
1799 int m=0, i=0;
1800
1801 //If password mode do login
1802 if (PwdMode == 1) EM4xLogin(Pwd);
1803
1804 forward_ptr = forwardLink_data;
1805 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1806 fwd_bit_count += Prepare_Addr( Address );
1807
1808 m = sizeof(BigBuf);
1809 // Clear destination buffer before sending the command
1810 memset(dest, 128, m);
1811 // Connect the A/D to the peak-detected low-frequency path.
1812 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1813 // Now set up the SSC to get the ADC samples that are now streaming at us.
1814 FpgaSetupSsc();
1815
1816 SendForward(fwd_bit_count);
1817
1818 // Now do the acquisition
1819 i = 0;
1820 for(;;) {
1821 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1822 AT91C_BASE_SSC->SSC_THR = 0x43;
1823 }
1824 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1825 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1826 i++;
1827 if (i >= m) break;
1828 }
1829 }
1830 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1831 LED_D_OFF();
1832 }
1833
1834 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1835
1836 uint8_t fwd_bit_count;
1837
1838 //If password mode do login
1839 if (PwdMode == 1) EM4xLogin(Pwd);
1840
1841 forward_ptr = forwardLink_data;
1842 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1843 fwd_bit_count += Prepare_Addr( Address );
1844 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1845
1846 SendForward(fwd_bit_count);
1847
1848 //Wait for write to complete
1849 SpinDelay(20);
1850 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1851 LED_D_OFF();
1852 }
Impressum, Datenschutz