]> git.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
CHG: testing my travis-ci configuration
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <pthread.h>
15 #include "mifarehost.h"
16 #include "proxmark3.h"
17 //#include "radixsort.h"
18 #include <time.h>
19
20 // MIFARE
21 int compar_int(const void * a, const void * b) {
22 // didn't work: (the result is truncated to 32 bits)
23 //return (*(uint64_t*)b - *(uint64_t*)a);
24
25 // better:
26 if (*(uint64_t*)b > *(uint64_t*)a) return 1;
27 if (*(uint64_t*)b < *(uint64_t*)a) return -1;
28 return 0;
29
30 //return (*(uint64_t*)b > *(uint64_t*)a) - (*(uint64_t*)b < *(uint64_t*)a);
31 }
32
33 // Compare 16 Bits out of cryptostate
34 int Compare16Bits(const void * a, const void * b) {
35 if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
36 if ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000)) return -1;
37 return 0;
38
39 /* return
40 ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000))
41 -
42 ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000))
43 ;
44 */
45 }
46
47 typedef
48 struct {
49 union {
50 struct Crypto1State *slhead;
51 uint64_t *keyhead;
52 } head;
53 union {
54 struct Crypto1State *sltail;
55 uint64_t *keytail;
56 } tail;
57 uint32_t len;
58 uint32_t uid;
59 uint32_t blockNo;
60 uint32_t keyType;
61 uint32_t nt;
62 uint32_t ks1;
63 } StateList_t;
64
65
66 // wrapper function for multi-threaded lfsr_recovery32
67 void* nested_worker_thread(void *arg)
68 {
69 clock_t t1 = clock();
70 struct Crypto1State *p1;
71 StateList_t *statelist = arg;
72
73 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
74
75 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
76
77 statelist->len = p1 - statelist->head.slhead;
78 statelist->tail.sltail = --p1;
79 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
80
81
82 t1 = clock() - t1;
83 printf("lfsr_recovery32 takes %.0f ticks \n", (float)t1);
84 return statelist->head.slhead;
85 }
86
87 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
88 {
89 uint16_t i;
90 uint32_t uid;
91 UsbCommand resp;
92 StateList_t statelists[2];
93 struct Crypto1State *p1, *p2, *p3, *p4;
94
95 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
96 memcpy(c.d.asBytes, key, 6);
97 clearCommandBuffer();
98 SendCommand(&c);
99 if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1;
100
101 // error during nested
102 if (resp.arg[0]) return resp.arg[0];
103
104 memcpy(&uid, resp.d.asBytes, 4);
105
106 for (i = 0; i < 2; i++) {
107 statelists[i].blockNo = resp.arg[2] & 0xff;
108 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
109 statelists[i].uid = uid;
110 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
111 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
112 }
113
114 // calc keys
115 pthread_t thread_id[2];
116
117 // create and run worker threads
118 for (i = 0; i < 2; i++)
119 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
120
121 // wait for threads to terminate:
122 for (i = 0; i < 2; i++)
123 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
124
125 // the first 16 Bits of the cryptostate already contain part of our key.
126 // Create the intersection of the two lists based on these 16 Bits and
127 // roll back the cryptostate
128 p1 = p3 = statelists[0].head.slhead;
129 p2 = p4 = statelists[1].head.slhead;
130
131 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
132 if (Compare16Bits(p1, p2) == 0) {
133
134 struct Crypto1State savestate, *savep = &savestate;
135 savestate = *p1;
136 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
137 *p3 = *p1;
138 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
139 p3++;
140 p1++;
141 }
142 savestate = *p2;
143 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
144 *p4 = *p2;
145 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
146 p4++;
147 p2++;
148 }
149 }
150 else {
151 while (Compare16Bits(p1, p2) == -1) p1++;
152 while (Compare16Bits(p1, p2) == 1) p2++;
153 }
154 }
155
156 p3->even = 0; p3->odd = 0;
157 p4->even = 0; p4->odd = 0;
158 statelists[0].len = p3 - statelists[0].head.slhead;
159 statelists[1].len = p4 - statelists[1].head.slhead;
160 statelists[0].tail.sltail=--p3;
161 statelists[1].tail.sltail=--p4;
162
163 // the statelists now contain possible keys. The key we are searching for must be in the
164 // intersection of both lists. Create the intersection:
165 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
166 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
167
168 uint64_t *p5, *p6, *p7;
169 p5 = p7 = statelists[0].head.keyhead;
170 p6 = statelists[1].head.keyhead;
171
172 while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
173 if (compar_int(p5, p6) == 0) {
174 *p7++ = *p5++;
175 p6++;
176 }
177 else {
178 while (compar_int(p5, p6) == -1) p5++;
179 while (compar_int(p5, p6) == 1) p6++;
180 }
181 }
182 statelists[0].len = p7 - statelists[0].head.keyhead;
183 statelists[0].tail.keytail = --p7;
184
185 uint32_t numOfCandidates = statelists[0].len;
186 if ( numOfCandidates == 0 ) goto out;
187
188 memset(resultKey, 0, 6);
189 uint64_t key64 = 0;
190
191 // The list may still contain several key candidates. Test each of them with mfCheckKeys
192 // uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt;
193 uint8_t keyBlock[USB_CMD_DATA_SIZE] = {0x00};
194
195 clock_t t1 = clock();
196 for (i = 0; i < numOfCandidates; ++i){
197 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
198 num_to_bytes(key64, 6, keyBlock + i * 6);
199 }
200
201 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, numOfCandidates, keyBlock, &key64)) {
202 free(statelists[0].head.slhead);
203 free(statelists[1].head.slhead);
204 num_to_bytes(key64, 6, resultKey);
205
206 t1 = clock() - t1;
207 printf("Check candidates takes %.0f ticks \n", (float)t1);
208
209 PrintAndLog("UID: %08x target block:%3u key type: %c -- Found key [%012"llx"]",
210 uid,
211 (uint16_t)resp.arg[2] & 0xff,
212 (resp.arg[2] >> 8) ? 'B' : 'A',
213 key64
214 );
215 return -5;
216 }
217
218 out:
219 PrintAndLog("UID: %08x target block:%3u key type: %c",
220 uid,
221 (uint16_t)resp.arg[2] & 0xff,
222 (resp.arg[2] >> 8) ? 'B' : 'A'
223 );
224
225 free(statelists[0].head.slhead);
226 free(statelists[1].head.slhead);
227 return -4;
228 }
229
230 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
231
232 *key = 0;
233 UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType<<8)), clear_trace, keycnt}};
234 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
235 clearCommandBuffer();
236 SendCommand(&c);
237 UsbCommand resp;
238 if (!WaitForResponseTimeout(CMD_ACK,&resp, 3000)) return 1;
239 if ((resp.arg[0] & 0xff) != 0x01) return 2;
240 *key = bytes_to_num(resp.d.asBytes, 6);
241 return 0;
242 }
243
244 // EMULATOR
245
246 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
247 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
248 clearCommandBuffer();
249 SendCommand(&c);
250 UsbCommand resp;
251 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
252 memcpy(data, resp.d.asBytes, blocksCount * 16);
253 return 0;
254 }
255
256 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
257 return mfEmlSetMem_xt(data, blockNum, blocksCount, 16);
258 }
259
260 int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) {
261 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, blockBtWidth}};
262 memcpy(c.d.asBytes, data, blocksCount * blockBtWidth);
263
264 clearCommandBuffer();
265 SendCommand(&c);
266 return 0;
267 }
268
269 // "MAGIC" CARD
270
271 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) {
272
273 uint8_t params = MAGIC_SINGLE;
274 uint8_t block0[16];
275 memset(block0, 0x00, sizeof(block0));
276
277 int old = mfCGetBlock(0, block0, params);
278 if (old == 0)
279 PrintAndLog("old block 0: %s", sprint_hex(block0, sizeof(block0)));
280 else
281 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
282
283 // fill in the new values
284 // UID
285 memcpy(block0, uid, 4);
286 // Mifare UID BCC
287 block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
288 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
289 if ( sak != NULL )
290 block0[5]=sak[0];
291
292 if ( atqa != NULL ) {
293 block0[6]=atqa[1];
294 block0[7]=atqa[0];
295 }
296 PrintAndLog("new block 0: %s", sprint_hex(block0,16));
297
298 if ( wipecard ) params |= MAGIC_WIPE;
299 if ( oldUID == NULL) params |= MAGIC_UID;
300
301 return mfCSetBlock(0, block0, oldUID, params);
302 }
303
304 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
305
306 uint8_t isOK = 0;
307 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params, blockNo, 0}};
308 memcpy(c.d.asBytes, data, 16);
309 clearCommandBuffer();
310 SendCommand(&c);
311 UsbCommand resp;
312 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
313 isOK = resp.arg[0] & 0xff;
314 if (uid != NULL)
315 memcpy(uid, resp.d.asBytes, 4);
316 if (!isOK)
317 return 2;
318 } else {
319 PrintAndLog("Command execute timeout");
320 return 1;
321 }
322 return 0;
323 }
324
325 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
326 uint8_t isOK = 0;
327 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
328 clearCommandBuffer();
329 SendCommand(&c);
330 UsbCommand resp;
331 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
332 isOK = resp.arg[0] & 0xff;
333 memcpy(data, resp.d.asBytes, 16);
334 if (!isOK) return 2;
335 } else {
336 PrintAndLog("Command execute timeout");
337 return 1;
338 }
339 return 0;
340 }
341
342 // SNIFFER
343
344 // constants
345 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
346
347 // variables
348 char logHexFileName[FILE_PATH_SIZE] = {0x00};
349 static uint8_t traceCard[4096] = {0x00};
350 static char traceFileName[FILE_PATH_SIZE] = {0x00};
351 static int traceState = TRACE_IDLE;
352 static uint8_t traceCurBlock = 0;
353 static uint8_t traceCurKey = 0;
354
355 struct Crypto1State *traceCrypto1 = NULL;
356
357 struct Crypto1State *revstate = NULL;
358
359 uint64_t key = 0;
360 uint32_t ks2 = 0;
361 uint32_t ks3 = 0;
362
363 uint32_t uid = 0; // serial number
364 uint32_t nt =0; // tag challenge
365 uint32_t nr_enc =0; // encrypted reader challenge
366 uint32_t ar_enc =0; // encrypted reader response
367 uint32_t at_enc =0; // encrypted tag response
368
369 int isTraceCardEmpty(void) {
370 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
371 }
372
373 int isBlockEmpty(int blockN) {
374 for (int i = 0; i < 16; i++)
375 if (traceCard[blockN * 16 + i] != 0) return 0;
376
377 return 1;
378 }
379
380 int isBlockTrailer(int blockN) {
381 return ((blockN & 0x03) == 0x03);
382 }
383
384 int loadTraceCard(uint8_t *tuid) {
385 FILE * f;
386 char buf[64] = {0x00};
387 uint8_t buf8[64] = {0x00};
388 int i, blockNum;
389
390 if (!isTraceCardEmpty())
391 saveTraceCard();
392
393 memset(traceCard, 0x00, 4096);
394 memcpy(traceCard, tuid + 3, 4);
395
396 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
397
398 f = fopen(traceFileName, "r");
399 if (!f) return 1;
400
401 blockNum = 0;
402
403 while(!feof(f)){
404
405 memset(buf, 0, sizeof(buf));
406 if (fgets(buf, sizeof(buf), f) == NULL) {
407 PrintAndLog("File reading error.");
408 fclose(f);
409 return 2;
410 }
411
412 if (strlen(buf) < 32){
413 if (feof(f)) break;
414 PrintAndLog("File content error. Block data must include 32 HEX symbols");
415 fclose(f);
416 return 2;
417 }
418 for (i = 0; i < 32; i += 2)
419 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
420
421 memcpy(traceCard + blockNum * 16, buf8, 16);
422
423 blockNum++;
424 }
425 fclose(f);
426
427 return 0;
428 }
429
430 int saveTraceCard(void) {
431 FILE * f;
432
433 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
434
435 f = fopen(traceFileName, "w+");
436 if ( !f ) return 1;
437
438 for (int i = 0; i < 64; i++) { // blocks
439 for (int j = 0; j < 16; j++) // bytes
440 fprintf(f, "%02x", *(traceCard + i * 16 + j));
441 fprintf(f,"\n");
442 }
443 fclose(f);
444 return 0;
445 }
446
447 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
448
449 if (traceCrypto1)
450 crypto1_destroy(traceCrypto1);
451
452 traceCrypto1 = NULL;
453
454 if (wantSaveToEmlFile)
455 loadTraceCard(tuid);
456
457 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
458 traceCard[5] = sak;
459 memcpy(&traceCard[6], atqa, 2);
460 traceCurBlock = 0;
461 uid = bytes_to_num(tuid + 3, 4);
462
463 traceState = TRACE_IDLE;
464
465 return 0;
466 }
467
468 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
469 uint8_t bt = 0;
470 int i;
471
472 if (len != 1) {
473 for (i = 0; i < len; i++)
474 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
475 } else {
476 bt = 0;
477 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 0)) << 0;
478 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 1)) << 1;
479 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 2)) << 2;
480 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 3)) << 3;
481 data[0] = bt;
482 }
483 return;
484 }
485
486 int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
487
488 uint8_t data[64];
489
490 if (traceState == TRACE_ERROR) return 1;
491
492 if (len > 64) {
493 traceState = TRACE_ERROR;
494 return 1;
495 }
496
497 memcpy(data, data_src, len);
498 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
499 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
500 PrintAndLog("dec> %s", sprint_hex(data, len));
501 AddLogHex(logHexFileName, "dec> ", data, len);
502 }
503
504 switch (traceState) {
505 case TRACE_IDLE:
506 // check packet crc16!
507 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
508 PrintAndLog("dec> CRC ERROR!!!");
509 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
510 traceState = TRACE_ERROR; // do not decrypt the next commands
511 return 1;
512 }
513
514 // AUTHENTICATION
515 if ((len == 4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
516 traceState = TRACE_AUTH1;
517 traceCurBlock = data[1];
518 traceCurKey = data[0] == 60 ? 1:0;
519 return 0;
520 }
521
522 // READ
523 if ((len ==4) && ((data[0] == 0x30))) {
524 traceState = TRACE_READ_DATA;
525 traceCurBlock = data[1];
526 return 0;
527 }
528
529 // WRITE
530 if ((len ==4) && ((data[0] == 0xA0))) {
531 traceState = TRACE_WRITE_OK;
532 traceCurBlock = data[1];
533 return 0;
534 }
535
536 // HALT
537 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
538 traceState = TRACE_ERROR; // do not decrypt the next commands
539 return 0;
540 }
541
542 return 0;
543 break;
544
545 case TRACE_READ_DATA:
546 if (len == 18) {
547 traceState = TRACE_IDLE;
548
549 if (isBlockTrailer(traceCurBlock)) {
550 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
551 } else {
552 memcpy(traceCard + traceCurBlock * 16, data, 16);
553 }
554 if (wantSaveToEmlFile) saveTraceCard();
555 return 0;
556 } else {
557 traceState = TRACE_ERROR;
558 return 1;
559 }
560 break;
561
562 case TRACE_WRITE_OK:
563 if ((len == 1) && (data[0] == 0x0a)) {
564 traceState = TRACE_WRITE_DATA;
565
566 return 0;
567 } else {
568 traceState = TRACE_ERROR;
569 return 1;
570 }
571 break;
572
573 case TRACE_WRITE_DATA:
574 if (len == 18) {
575 traceState = TRACE_IDLE;
576
577 memcpy(traceCard + traceCurBlock * 16, data, 16);
578 if (wantSaveToEmlFile) saveTraceCard();
579 return 0;
580 } else {
581 traceState = TRACE_ERROR;
582 return 1;
583 }
584 break;
585
586 case TRACE_AUTH1:
587 if (len == 4) {
588 traceState = TRACE_AUTH2;
589 nt = bytes_to_num(data, 4);
590 return 0;
591 } else {
592 traceState = TRACE_ERROR;
593 return 1;
594 }
595 break;
596
597 case TRACE_AUTH2:
598 if (len == 8) {
599 traceState = TRACE_AUTH_OK;
600
601 nr_enc = bytes_to_num(data, 4);
602 ar_enc = bytes_to_num(data + 4, 4);
603 return 0;
604 } else {
605 traceState = TRACE_ERROR;
606 return 1;
607 }
608 break;
609
610 case TRACE_AUTH_OK:
611 if (len ==4) {
612 traceState = TRACE_IDLE;
613
614 at_enc = bytes_to_num(data, 4);
615
616 // decode key here)
617 ks2 = ar_enc ^ prng_successor(nt, 64);
618 ks3 = at_enc ^ prng_successor(nt, 96);
619 revstate = lfsr_recovery64(ks2, ks3);
620 lfsr_rollback_word(revstate, 0, 0);
621 lfsr_rollback_word(revstate, 0, 0);
622 lfsr_rollback_word(revstate, nr_enc, 1);
623 lfsr_rollback_word(revstate, uid ^ nt, 0);
624
625 crypto1_get_lfsr(revstate, &key);
626 printf("Key: %012"llx"\n",key);
627 AddLogUint64(logHexFileName, "key: ", key);
628
629 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
630 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
631
632 if (traceCurKey) {
633 num_to_bytes(key, 6, traceCard + blockShift + 10);
634 } else {
635 num_to_bytes(key, 6, traceCard + blockShift);
636 }
637 if (wantSaveToEmlFile) saveTraceCard();
638
639 if (traceCrypto1) {
640 crypto1_destroy(traceCrypto1);
641 }
642
643 // set cryptosystem state
644 traceCrypto1 = lfsr_recovery64(ks2, ks3);
645
646 // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
647
648 /* traceCrypto1 = crypto1_create(key); // key in lfsr
649 crypto1_word(traceCrypto1, nt ^ uid, 0);
650 crypto1_word(traceCrypto1, ar, 1);
651 crypto1_word(traceCrypto1, 0, 0);
652 crypto1_word(traceCrypto1, 0, 0);*/
653
654 return 0;
655 } else {
656 traceState = TRACE_ERROR;
657 return 1;
658 }
659 break;
660
661 default:
662 traceState = TRACE_ERROR;
663 return 1;
664 }
665
666 return 0;
667 }
668
669 int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
670 /*
671 uint32_t nt; // tag challenge
672 uint32_t nr_enc; // encrypted reader challenge
673 uint32_t ar_enc; // encrypted reader response
674 uint32_t at_enc; // encrypted tag response
675 */
676 struct Crypto1State *pcs = NULL;
677
678 ks2 = ar_enc ^ prng_successor(nt, 64);
679 ks3 = at_enc ^ prng_successor(nt, 96);
680
681 PrintAndLog("Decrypting data with:");
682 PrintAndLog(" nt: %08x",nt);
683 PrintAndLog(" ar_enc: %08x",ar_enc);
684 PrintAndLog(" at_enc: %08x",at_enc);
685 PrintAndLog("\nEncrypted data: [%s]", sprint_hex(data,len) );
686
687 pcs = lfsr_recovery64(ks2, ks3);
688 mf_crypto1_decrypt(pcs, data, len, FALSE);
689 PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
690 crypto1_destroy(pcs);
691 return 0;
692 }
Impressum, Datenschutz