]> git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
ADD: num_to_bytebitsLSBF function.
[proxmark3-svn] / common / lfdemod.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdlib.h>
12 #include "lfdemod.h"
13 #include <string.h>
14
15 //un_comment to allow debug print calls when used not on device
16 void dummy(char *fmt, ...){}
17
18 #ifndef ON_DEVICE
19 #include "ui.h"
20 #include "cmdparser.h"
21 #include "cmddata.h"
22 #define prnt PrintAndLog
23 #else
24 uint8_t g_debugMode=0;
25 #define prnt dummy
26 #endif
27
28 uint8_t justNoise(uint8_t *BitStream, size_t size)
29 {
30 static const uint8_t THRESHOLD = 123;
31 //test samples are not just noise
32 uint8_t justNoise1 = 1;
33 for(size_t idx=0; idx < size && justNoise1 ;idx++){
34 justNoise1 = BitStream[idx] < THRESHOLD;
35 }
36 return justNoise1;
37 }
38
39 //by marshmellow
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
42 {
43 *high=0;
44 *low=255;
45 // get high and low thresholds
46 for (size_t i=0; i < size; i++){
47 if (BitStream[i] > *high) *high = BitStream[i];
48 if (BitStream[i] < *low) *low = BitStream[i];
49 }
50 if (*high < 123) return -1; // just noise
51 *high = ((*high-128)*fuzzHi + 12800)/100;
52 *low = ((*low-128)*fuzzLo + 12800)/100;
53 return 1;
54 }
55
56 // by marshmellow
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
60 {
61 uint8_t ans = 0;
62 for (uint8_t i = 0; i < bitLen; i++){
63 ans ^= ((bits >> i) & 1);
64 }
65 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
66 return (ans == pType);
67 }
68
69 //by marshmellow
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
72 size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
73 {
74 uint32_t parityWd = 0;
75 size_t j = 0, bitCnt = 0;
76 for (int word = 0; word < (bLen); word+=pLen){
77 for (int bit=0; bit < pLen; bit++){
78 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
79 BitStream[j++] = (BitStream[startIdx+word+bit]);
80 }
81 j--; // overwrite parity with next data
82 // if parity fails then return 0
83 if (pType == 2) { // then marker bit which should be a 1
84 if (!BitStream[j]) return 0;
85 } else {
86 if (parityTest(parityWd, pLen, pType) == 0) return 0;
87 }
88 bitCnt+=(pLen-1);
89 parityWd = 0;
90 }
91 // if we got here then all the parities passed
92 //return ID start index and size
93 return bitCnt;
94 }
95
96 // by marshmellow
97 // takes a array of binary values, length of bits per parity (includes parity bit),
98 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
99 size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
100 {
101 uint32_t parityWd = 0;
102 size_t j = 0, bitCnt = 0;
103 for (int word = 0; word < sourceLen; word+=pLen-1) {
104 for (int bit=0; bit < pLen-1; bit++){
105 parityWd = (parityWd << 1) | BitSource[word+bit];
106 dest[j++] = (BitSource[word+bit]);
107 }
108
109 // if parity fails then return 0
110 switch (pType) {
111 case 3: dest[j++]=0; break; // marker bit which should be a 0
112 case 2: dest[j++]=1; break; // marker bit which should be a 1
113 default:
114 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
115 break;
116 }
117
118 bitCnt += pLen;
119 parityWd = 0;
120 }
121 // if we got here then all the parities passed
122 //return ID start index and size
123 return bitCnt;
124 }
125
126 uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
127 {
128 uint32_t num = 0;
129 for(int i = 0 ; i < numbits ; i++) {
130 num = (num << 1) | (*src);
131 src++;
132 }
133 return num;
134 }
135
136 //least significant bit first
137 uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
138 {
139 uint32_t num = 0;
140 for(int i = 0 ; i < numbits ; i++) {
141 num = (num << 1) | *(src + (numbits-(i+1)));
142 }
143 return num;
144 }
145
146 //by marshmellow
147 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
148 uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
149 {
150 uint8_t foundCnt=0;
151 for (int idx=0; idx < *size - pLen; idx++){
152 if (memcmp(BitStream+idx, preamble, pLen) == 0){
153 //first index found
154 foundCnt++;
155 if (foundCnt == 1){
156 *startIdx = idx;
157 }
158 if (foundCnt == 2){
159 *size = idx - *startIdx;
160 return 1;
161 }
162 }
163 }
164 return 0;
165 }
166
167 //by marshmellow
168 //takes 1s and 0s and searches for EM410x format - output EM ID
169 uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
170 {
171 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
172 // otherwise could be a void with no arguments
173 //set defaults
174 uint32_t i = 0;
175 if (BitStream[1]>1) return 0; //allow only 1s and 0s
176
177 // 111111111 bit pattern represent start of frame
178 // include 0 in front to help get start pos
179 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
180 uint32_t idx = 0;
181 uint32_t parityBits = 0;
182 uint8_t errChk = 0;
183 uint8_t FmtLen = 10;
184 *startIdx = 0;
185 errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
186 if (errChk == 0 || *size < 64) return 0;
187 if (*size > 64) FmtLen = 22;
188 *startIdx += 1; //get rid of 0 from preamble
189 idx = *startIdx + 9;
190 for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
191 parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
192 //check even parity - quit if failed
193 if (parityTest(parityBits, 5, 0) == 0) return 0;
194 //set uint64 with ID from BitStream
195 for (uint8_t ii=0; ii<4; ii++){
196 *hi = (*hi << 1) | (*lo >> 63);
197 *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
198 }
199 }
200 if (errChk != 0) return 1;
201 //skip last 5 bit parity test for simplicity.
202 // *size = 64 | 128;
203 return 0;
204 }
205
206 //by marshmellow
207 //demodulates strong heavily clipped samples
208 int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
209 {
210 size_t bitCnt=0, smplCnt=0, errCnt=0;
211 uint8_t waveHigh = 0;
212 for (size_t i=0; i < *size; i++){
213 if (BinStream[i] >= high && waveHigh){
214 smplCnt++;
215 } else if (BinStream[i] <= low && !waveHigh){
216 smplCnt++;
217 } else { //transition
218 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
219 if (smplCnt > clk-(clk/4)-1) { //full clock
220 if (smplCnt > clk + (clk/4)+1) { //too many samples
221 errCnt++;
222 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
223 BinStream[bitCnt++]=7;
224 } else if (waveHigh) {
225 BinStream[bitCnt++] = invert;
226 BinStream[bitCnt++] = invert;
227 } else if (!waveHigh) {
228 BinStream[bitCnt++] = invert ^ 1;
229 BinStream[bitCnt++] = invert ^ 1;
230 }
231 waveHigh ^= 1;
232 smplCnt = 0;
233 } else if (smplCnt > (clk/2) - (clk/4)-1) {
234 if (waveHigh) {
235 BinStream[bitCnt++] = invert;
236 } else if (!waveHigh) {
237 BinStream[bitCnt++] = invert ^ 1;
238 }
239 waveHigh ^= 1;
240 smplCnt = 0;
241 } else if (!bitCnt) {
242 //first bit
243 waveHigh = (BinStream[i] >= high);
244 smplCnt = 1;
245 } else {
246 smplCnt++;
247 //transition bit oops
248 }
249 } else { //haven't hit new high or new low yet
250 smplCnt++;
251 }
252 }
253 }
254 *size = bitCnt;
255 return errCnt;
256 }
257
258 //by marshmellow
259 void askAmp(uint8_t *BitStream, size_t size)
260 {
261 for(size_t i = 1; i<size; i++){
262 if (BitStream[i]-BitStream[i-1]>=30) //large jump up
263 BitStream[i]=127;
264 else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
265 BitStream[i]=-127;
266 }
267 return;
268 }
269
270 //by marshmellow
271 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
272 int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
273 {
274 if (*size==0) return -1;
275 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
276 if (*clk==0 || start < 0) return -3;
277 if (*invert != 1) *invert = 0;
278 if (amp==1) askAmp(BinStream, *size);
279 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d", *clk, start);
280
281 uint8_t initLoopMax = 255;
282 if (initLoopMax > *size) initLoopMax = *size;
283 // Detect high and lows
284 //25% clip in case highs and lows aren't clipped [marshmellow]
285 int high, low;
286 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
287 return -2; //just noise
288
289 size_t errCnt = 0;
290 // if clean clipped waves detected run alternate demod
291 if (DetectCleanAskWave(BinStream, *size, high, low)) {
292 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
293 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
294 if (askType) //askman
295 return manrawdecode(BinStream, size, 0);
296 else //askraw
297 return errCnt;
298 }
299 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
300
301 int lastBit; //set first clock check - can go negative
302 size_t i, bitnum = 0; //output counter
303 uint8_t midBit = 0;
304 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
305 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
306 size_t MaxBits = 3072; //max bits to collect
307 lastBit = start - *clk;
308
309 for (i = start; i < *size; ++i) {
310 if (i-lastBit >= *clk-tol){
311 if (BinStream[i] >= high) {
312 BinStream[bitnum++] = *invert;
313 } else if (BinStream[i] <= low) {
314 BinStream[bitnum++] = *invert ^ 1;
315 } else if (i-lastBit >= *clk+tol) {
316 if (bitnum > 0) {
317 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
318 BinStream[bitnum++]=7;
319 errCnt++;
320 }
321 } else { //in tolerance - looking for peak
322 continue;
323 }
324 midBit = 0;
325 lastBit += *clk;
326 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
327 if (BinStream[i] >= high) {
328 BinStream[bitnum++] = *invert;
329 } else if (BinStream[i] <= low) {
330 BinStream[bitnum++] = *invert ^ 1;
331 } else if (i-lastBit >= *clk/2+tol) {
332 BinStream[bitnum] = BinStream[bitnum-1];
333 bitnum++;
334 } else { //in tolerance - looking for peak
335 continue;
336 }
337 midBit = 1;
338 }
339 if (bitnum >= MaxBits) break;
340 }
341 *size = bitnum;
342 return errCnt;
343 }
344
345 //by marshmellow
346 //take 10 and 01 and manchester decode
347 //run through 2 times and take least errCnt
348 int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
349 {
350 uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
351 size_t i, ii;
352 uint16_t bestErr = 1000, bestRun = 0;
353 if (*size < 16) return -1;
354 //find correct start position [alignment]
355 for (ii=0;ii<2;++ii){
356 for (i=ii; i<*size-3; i+=2)
357 if (BitStream[i]==BitStream[i+1])
358 errCnt++;
359
360 if (bestErr>errCnt){
361 bestErr=errCnt;
362 bestRun=ii;
363 }
364 errCnt=0;
365 }
366 //decode
367 for (i=bestRun; i < *size-3; i+=2){
368 if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
369 BitStream[bitnum++]=invert;
370 } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
371 BitStream[bitnum++]=invert^1;
372 } else {
373 BitStream[bitnum++]=7;
374 }
375 if(bitnum>MaxBits) break;
376 }
377 *size=bitnum;
378 return bestErr;
379 }
380
381 uint32_t manchesterEncode2Bytes(uint16_t datain) {
382 uint32_t output = 0;
383 uint8_t curBit = 0;
384 for (uint8_t i=0; i<16; i++) {
385 curBit = (datain >> (15-i) & 1);
386 output |= (1<<(((15-i)*2)+curBit));
387 }
388 return output;
389 }
390
391 //by marshmellow
392 //encode binary data into binary manchester
393 int ManchesterEncode(uint8_t *BitStream, size_t size)
394 {
395 size_t modIdx=20000, i=0;
396 if (size>modIdx) return -1;
397 for (size_t idx=0; idx < size; idx++){
398 BitStream[idx+modIdx++] = BitStream[idx];
399 BitStream[idx+modIdx++] = BitStream[idx]^1;
400 }
401 for (; i<(size*2); i++){
402 BitStream[i] = BitStream[i+20000];
403 }
404 return i;
405 }
406
407 //by marshmellow
408 //take 01 or 10 = 1 and 11 or 00 = 0
409 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
410 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
411 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
412 {
413 uint16_t bitnum = 0;
414 uint16_t errCnt = 0;
415 size_t i = offset;
416 uint16_t MaxBits=512;
417 //if not enough samples - error
418 if (*size < 51) return -1;
419 //check for phase change faults - skip one sample if faulty
420 uint8_t offsetA = 1, offsetB = 1;
421 for (; i<48; i+=2){
422 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
423 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
424 }
425 if (!offsetA && offsetB) offset++;
426 for (i=offset; i<*size-3; i+=2){
427 //check for phase error
428 if (BitStream[i+1]==BitStream[i+2]) {
429 BitStream[bitnum++]=7;
430 errCnt++;
431 }
432 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
433 BitStream[bitnum++]=1^invert;
434 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
435 BitStream[bitnum++]=invert;
436 } else {
437 BitStream[bitnum++]=7;
438 errCnt++;
439 }
440 if(bitnum>MaxBits) break;
441 }
442 *size=bitnum;
443 return errCnt;
444 }
445
446 // by marshmellow
447 // demod gProxIIDemod
448 // error returns as -x
449 // success returns start position in BitStream
450 // BitStream must contain previously askrawdemod and biphasedemoded data
451 int gProxII_Demod(uint8_t BitStream[], size_t *size)
452 {
453 size_t startIdx=0;
454 uint8_t preamble[] = {1,1,1,1,1,0};
455
456 uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
457 if (errChk == 0) return -3; //preamble not found
458 if (*size != 96) return -2; //should have found 96 bits
459 //check first 6 spacer bits to verify format
460 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
461 //confirmed proper separator bits found
462 //return start position
463 return (int) startIdx;
464 }
465 return -5;
466 }
467
468 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
469 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
470 {
471 size_t last_transition = 0;
472 size_t idx = 1;
473 //uint32_t maxVal=0;
474 if (fchigh==0) fchigh=10;
475 if (fclow==0) fclow=8;
476 //set the threshold close to 0 (graph) or 128 std to avoid static
477 uint8_t threshold_value = 123;
478 size_t preLastSample = 0;
479 size_t LastSample = 0;
480 size_t currSample = 0;
481 // sync to first lo-hi transition, and threshold
482
483 // Need to threshold first sample
484 // skip 160 samples to allow antenna/samples to settle
485 if(dest[160] < threshold_value) dest[0] = 0;
486 else dest[0] = 1;
487
488 size_t numBits = 0;
489 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
490 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
491 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
492 for(idx = 161; idx < size-20; idx++) {
493 // threshold current value
494
495 if (dest[idx] < threshold_value) dest[idx] = 0;
496 else dest[idx] = 1;
497
498 // Check for 0->1 transition
499 if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
500 preLastSample = LastSample;
501 LastSample = currSample;
502 currSample = idx-last_transition;
503 if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
504 //do nothing with extra garbage
505 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves or 3-6 = 5
506 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
507 dest[numBits-1]=1; //correct previous 9 wave surrounded by 8 waves
508 }
509 dest[numBits++]=1;
510
511 } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = garbage
512 //do nothing with beginning garbage
513 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's
514 dest[numBits++]=1;
515 } else { //9+ = 10 sample waves
516 dest[numBits++]=0;
517 }
518 last_transition = idx;
519 }
520 }
521 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
522 }
523
524 //translate 11111100000 to 10
525 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
526 uint8_t invert, uint8_t fchigh, uint8_t fclow)
527 {
528 uint8_t lastval=dest[0];
529 size_t idx=0;
530 size_t numBits=0;
531 uint32_t n=1;
532 for( idx=1; idx < size; idx++) {
533 n++;
534 if (dest[idx]==lastval) continue;
535
536 //if lastval was 1, we have a 1->0 crossing
537 if (dest[idx-1]==1) {
538 n = (n * fclow + rfLen/2) / rfLen;
539 } else {// 0->1 crossing
540 n = (n * fchigh + rfLen/2) / rfLen;
541 }
542 if (n == 0) n = 1;
543
544 memset(dest+numBits, dest[idx-1]^invert , n);
545 numBits += n;
546 n=0;
547 lastval=dest[idx];
548 }//end for
549 // if valid extra bits at the end were all the same frequency - add them in
550 if (n > rfLen/fchigh) {
551 if (dest[idx-2]==1) {
552 n = (n * fclow + rfLen/2) / rfLen;
553 } else {
554 n = (n * fchigh + rfLen/2) / rfLen;
555 }
556 memset(dest+numBits, dest[idx-1]^invert , n);
557 numBits += n;
558 }
559 return numBits;
560 }
561
562 //by marshmellow (from holiman's base)
563 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
564 int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
565 {
566 // FSK demodulator
567 size = fsk_wave_demod(dest, size, fchigh, fclow);
568 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
569 return size;
570 }
571
572 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
573 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
574 {
575 if (justNoise(dest, *size)) return -1;
576
577 size_t numStart=0, size2=*size, startIdx=0;
578 // FSK demodulator
579 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
580 if (*size < 96*2) return -2;
581 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
582 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
583 // find bitstring in array
584 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
585 if (errChk == 0) return -3; //preamble not found
586
587 numStart = startIdx + sizeof(preamble);
588 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
589 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
590 if (dest[idx] == dest[idx+1]){
591 return -4; //not manchester data
592 }
593 *hi2 = (*hi2<<1)|(*hi>>31);
594 *hi = (*hi<<1)|(*lo>>31);
595 //Then, shift in a 0 or one into low
596 if (dest[idx] && !dest[idx+1]) // 1 0
597 *lo=(*lo<<1)|1;
598 else // 0 1
599 *lo=(*lo<<1)|0;
600 }
601 return (int)startIdx;
602 }
603
604 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
605 int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
606 {
607 if (justNoise(dest, *size)) return -1;
608
609 size_t numStart=0, size2=*size, startIdx=0;
610 // FSK demodulator
611 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
612 if (*size < 96) return -2;
613
614 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
615 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
616
617 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
618 if (errChk == 0) return -3; //preamble not found
619
620 numStart = startIdx + sizeof(preamble);
621 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
622 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
623 if (dest[idx] == dest[idx+1])
624 return -4; //not manchester data
625 *hi2 = (*hi2<<1)|(*hi>>31);
626 *hi = (*hi<<1)|(*lo>>31);
627 //Then, shift in a 0 or one into low
628 if (dest[idx] && !dest[idx+1]) // 1 0
629 *lo=(*lo<<1)|1;
630 else // 0 1
631 *lo=(*lo<<1)|0;
632 }
633 return (int)startIdx;
634 }
635
636 int IOdemodFSK(uint8_t *dest, size_t size)
637 {
638 if (justNoise(dest, size)) return -1;
639 //make sure buffer has data
640 if (size < 66*64) return -2;
641 // FSK demodulator
642 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
643 if (size < 65) return -3; //did we get a good demod?
644 //Index map
645 //0 10 20 30 40 50 60
646 //| | | | | | |
647 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
648 //-----------------------------------------------------------------------------
649 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
650 //
651 //XSF(version)facility:codeone+codetwo
652 //Handle the data
653 size_t startIdx = 0;
654 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
655 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
656 if (errChk == 0) return -4; //preamble not found
657
658 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
659 //confirmed proper separator bits found
660 //return start position
661 return (int) startIdx;
662 }
663 return -5;
664 }
665
666 // by marshmellow
667 // find viking preamble 0xF200 in already demoded data
668 int VikingDemod_AM(uint8_t *dest, size_t *size) {
669 //make sure buffer has data
670 if (*size < 64*2) return -2;
671
672 size_t startIdx = 0;
673 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
674 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
675 if (errChk == 0) return -4; //preamble not found
676 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8)
677 ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8)
678 ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8);
679 if ( checkCalc != 0xA8 ) return -5;
680 if (*size != 64) return -6;
681 //return start position
682 return (int) startIdx;
683 }
684
685 // find presco preamble 0x10D in already demoded data
686 int PrescoDemod(uint8_t *dest, size_t *size) {
687 //make sure buffer has data
688 if (*size < 64*2) return -2;
689
690 size_t startIdx = 0;
691 uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
692 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
693 if (errChk == 0) return -4; //preamble not found
694 //return start position
695 return (int) startIdx;
696 }
697
698
699 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
700 // BitStream must contain previously askrawdemod and biphasedemoded data
701 int FDXBdemodBI(uint8_t *dest, size_t *size)
702 {
703 //make sure buffer has enough data
704 if (*size < 128) return -1;
705
706 size_t startIdx = 0;
707 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
708
709 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
710 if (errChk == 0) return -2; //preamble not found
711 return (int)startIdx;
712 }
713
714 // by marshmellow
715 // FSK Demod then try to locate an AWID ID
716 int AWIDdemodFSK(uint8_t *dest, size_t *size)
717 {
718 //make sure buffer has enough data
719 if (*size < 96*50) return -1;
720
721 if (justNoise(dest, *size)) return -2;
722
723 // FSK demodulator
724 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
725 if (*size < 96) return -3; //did we get a good demod?
726
727 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
728 size_t startIdx = 0;
729 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
730 if (errChk == 0) return -4; //preamble not found
731 if (*size != 96) return -5;
732 return (int)startIdx;
733 }
734
735 // by marshmellow
736 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
737 int PyramiddemodFSK(uint8_t *dest, size_t *size)
738 {
739 //make sure buffer has data
740 if (*size < 128*50) return -5;
741
742 //test samples are not just noise
743 if (justNoise(dest, *size)) return -1;
744
745 // FSK demodulator
746 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
747 if (*size < 128) return -2; //did we get a good demod?
748
749 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
750 size_t startIdx = 0;
751 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
752 if (errChk == 0) return -4; //preamble not found
753 if (*size != 128) return -3;
754 return (int)startIdx;
755 }
756
757 // by marshmellow
758 // to detect a wave that has heavily clipped (clean) samples
759 uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
760 {
761 bool allArePeaks = true;
762 uint16_t cntPeaks=0;
763 size_t loopEnd = 512+160;
764 if (loopEnd > size) loopEnd = size;
765 for (size_t i=160; i<loopEnd; i++){
766 if (dest[i]>low && dest[i]<high)
767 allArePeaks = false;
768 else
769 cntPeaks++;
770 }
771 if (!allArePeaks){
772 if (cntPeaks > 300) return true;
773 }
774 return allArePeaks;
775 }
776 // by marshmellow
777 // to help detect clocks on heavily clipped samples
778 // based on count of low to low
779 int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
780 {
781 uint8_t fndClk[] = {8,16,32,40,50,64,128};
782 size_t startwave;
783 size_t i = 100;
784 size_t minClk = 255;
785 // get to first full low to prime loop and skip incomplete first pulse
786 while ((dest[i] < high) && (i < size))
787 ++i;
788 while ((dest[i] > low) && (i < size))
789 ++i;
790
791 // loop through all samples
792 while (i < size) {
793 // measure from low to low
794 while ((dest[i] > low) && (i < size))
795 ++i;
796 startwave= i;
797 while ((dest[i] < high) && (i < size))
798 ++i;
799 while ((dest[i] > low) && (i < size))
800 ++i;
801 //get minimum measured distance
802 if (i-startwave < minClk && i < size)
803 minClk = i - startwave;
804 }
805 // set clock
806 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
807 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
808 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
809 return fndClk[clkCnt];
810 }
811 return 0;
812 }
813
814 // by marshmellow
815 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
816 // maybe somehow adjust peak trimming value based on samples to fix?
817 // return start index of best starting position for that clock and return clock (by reference)
818 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
819 {
820 size_t i=1;
821 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
822 uint8_t clkEnd = 9;
823 uint8_t loopCnt = 255; //don't need to loop through entire array...
824 if (size <= loopCnt+60) return -1; //not enough samples
825 size -= 60; //sometimes there is a strange end wave - filter out this....
826 //if we already have a valid clock
827 uint8_t clockFnd=0;
828 for (;i<clkEnd;++i)
829 if (clk[i] == *clock) clockFnd = i;
830 //clock found but continue to find best startpos
831
832 //get high and low peak
833 int peak, low;
834 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
835
836 //test for large clean peaks
837 if (!clockFnd){
838 if (DetectCleanAskWave(dest, size, peak, low)==1){
839 int ans = DetectStrongAskClock(dest, size, peak, low);
840 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
841 for (i=clkEnd-1; i>0; i--){
842 if (clk[i] == ans) {
843 *clock = ans;
844 //clockFnd = i;
845 return 0; // for strong waves i don't use the 'best start position' yet...
846 //break; //clock found but continue to find best startpos [not yet]
847 }
848 }
849 }
850 }
851 uint8_t ii;
852 uint8_t clkCnt, tol = 0;
853 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
854 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
855 size_t errCnt = 0;
856 size_t arrLoc, loopEnd;
857
858 if (clockFnd>0) {
859 clkCnt = clockFnd;
860 clkEnd = clockFnd+1;
861 }
862 else clkCnt=1;
863
864 //test each valid clock from smallest to greatest to see which lines up
865 for(; clkCnt < clkEnd; clkCnt++){
866 if (clk[clkCnt] <= 32){
867 tol=1;
868 }else{
869 tol=0;
870 }
871 //if no errors allowed - keep start within the first clock
872 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
873 bestErr[clkCnt]=1000;
874 //try lining up the peaks by moving starting point (try first few clocks)
875 for (ii=0; ii < loopCnt; ii++){
876 if (dest[ii] < peak && dest[ii] > low) continue;
877
878 errCnt=0;
879 // now that we have the first one lined up test rest of wave array
880 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
881 for (i=0; i < loopEnd; ++i){
882 arrLoc = ii + (i * clk[clkCnt]);
883 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
884 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
885 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
886 }else{ //error no peak detected
887 errCnt++;
888 }
889 }
890 //if we found no errors then we can stop here and a low clock (common clocks)
891 // this is correct one - return this clock
892 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
893 if(errCnt==0 && clkCnt<7) {
894 if (!clockFnd) *clock = clk[clkCnt];
895 return ii;
896 }
897 //if we found errors see if it is lowest so far and save it as best run
898 if(errCnt<bestErr[clkCnt]){
899 bestErr[clkCnt]=errCnt;
900 bestStart[clkCnt]=ii;
901 }
902 }
903 }
904 uint8_t iii;
905 uint8_t best=0;
906 for (iii=1; iii<clkEnd; ++iii){
907 if (bestErr[iii] < bestErr[best]){
908 if (bestErr[iii] == 0) bestErr[iii]=1;
909 // current best bit to error ratio vs new bit to error ratio
910 if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
911 best = iii;
912 }
913 }
914 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
915 }
916 if (!clockFnd) *clock = clk[best];
917 return bestStart[best];
918 }
919
920 //by marshmellow
921 //detect psk clock by reading each phase shift
922 // a phase shift is determined by measuring the sample length of each wave
923 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
924 {
925 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
926 uint16_t loopCnt = 4096; //don't need to loop through entire array...
927 if (size == 0) return 0;
928 if (size<loopCnt) loopCnt = size-20;
929
930 //if we already have a valid clock quit
931 size_t i=1;
932 for (; i < 8; ++i)
933 if (clk[i] == clock) return clock;
934
935 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
936 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
937 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
938 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
939 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
940 fc = countFC(dest, size, 0);
941 if (fc!=2 && fc!=4 && fc!=8) return -1;
942 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
943
944 //find first full wave
945 for (i=160; i<loopCnt; i++){
946 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
947 if (waveStart == 0) {
948 waveStart = i+1;
949 //prnt("DEBUG: waveStart: %d",waveStart);
950 } else {
951 waveEnd = i+1;
952 //prnt("DEBUG: waveEnd: %d",waveEnd);
953 waveLenCnt = waveEnd-waveStart;
954 if (waveLenCnt > fc){
955 firstFullWave = waveStart;
956 fullWaveLen=waveLenCnt;
957 break;
958 }
959 waveStart=0;
960 }
961 }
962 }
963 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
964
965 //test each valid clock from greatest to smallest to see which lines up
966 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
967 lastClkBit = firstFullWave; //set end of wave as clock align
968 waveStart = 0;
969 errCnt=0;
970 peakcnt=0;
971 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
972
973 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
974 //top edge of wave = start of new wave
975 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
976 if (waveStart == 0) {
977 waveStart = i+1;
978 waveLenCnt=0;
979 } else { //waveEnd
980 waveEnd = i+1;
981 waveLenCnt = waveEnd-waveStart;
982 if (waveLenCnt > fc){
983 //if this wave is a phase shift
984 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
985 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
986 peakcnt++;
987 lastClkBit+=clk[clkCnt];
988 } else if (i<lastClkBit+8){
989 //noise after a phase shift - ignore
990 } else { //phase shift before supposed to based on clock
991 errCnt++;
992 }
993 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
994 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
995 }
996 waveStart=i+1;
997 }
998 }
999 }
1000 if (errCnt == 0){
1001 return clk[clkCnt];
1002 }
1003 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
1004 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
1005 }
1006 //all tested with errors
1007 //return the highest clk with the most peaks found
1008 uint8_t best=7;
1009 for (i=7; i>=1; i--){
1010 if (peaksdet[i] > peaksdet[best]) {
1011 best = i;
1012 }
1013 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
1014 }
1015 return clk[best];
1016 }
1017
1018 int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1019 //find shortest transition from high to low
1020 size_t i = 0;
1021 size_t transition1 = 0;
1022 int lowestTransition = 255;
1023 bool lastWasHigh = false;
1024
1025 //find first valid beginning of a high or low wave
1026 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1027 ++i;
1028 while ((dest[i] < peak && dest[i] > low) && (i < size))
1029 ++i;
1030 lastWasHigh = (dest[i] >= peak);
1031
1032 if (i==size) return 0;
1033 transition1 = i;
1034
1035 for (;i < size; i++) {
1036 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1037 lastWasHigh = (dest[i] >= peak);
1038 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1039 transition1 = i;
1040 }
1041 }
1042 if (lowestTransition == 255) lowestTransition = 0;
1043 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1044 return lowestTransition;
1045 }
1046
1047 //by marshmellow
1048 //detect nrz clock by reading #peaks vs no peaks(or errors)
1049 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1050 {
1051 size_t i=0;
1052 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1053 size_t loopCnt = 4096; //don't need to loop through entire array...
1054 if (size == 0) return 0;
1055 if (size<loopCnt) loopCnt = size-20;
1056 //if we already have a valid clock quit
1057 for (; i < 8; ++i)
1058 if (clk[i] == clock) return clock;
1059
1060 //get high and low peak
1061 int peak, low;
1062 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1063
1064 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1065 size_t ii;
1066 uint8_t clkCnt;
1067 uint8_t tol = 0;
1068 uint16_t smplCnt = 0;
1069 int16_t peakcnt = 0;
1070 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1071 uint16_t maxPeak = 255;
1072 bool firstpeak = false;
1073 //test for large clipped waves
1074 for (i=0; i<loopCnt; i++){
1075 if (dest[i] >= peak || dest[i] <= low){
1076 if (!firstpeak) continue;
1077 smplCnt++;
1078 } else {
1079 firstpeak=true;
1080 if (smplCnt > 6 ){
1081 if (maxPeak > smplCnt){
1082 maxPeak = smplCnt;
1083 //prnt("maxPk: %d",maxPeak);
1084 }
1085 peakcnt++;
1086 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1087 smplCnt=0;
1088 }
1089 }
1090 }
1091 bool errBitHigh = 0;
1092 bool bitHigh = 0;
1093 uint8_t ignoreCnt = 0;
1094 uint8_t ignoreWindow = 4;
1095 bool lastPeakHigh = 0;
1096 int lastBit = 0;
1097 peakcnt=0;
1098 //test each valid clock from smallest to greatest to see which lines up
1099 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1100 //ignore clocks smaller than smallest peak
1101 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1102 //try lining up the peaks by moving starting point (try first 256)
1103 for (ii=20; ii < loopCnt; ++ii){
1104 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1105 peakcnt=0;
1106 bitHigh = false;
1107 ignoreCnt = 0;
1108 lastBit = ii-clk[clkCnt];
1109 //loop through to see if this start location works
1110 for (i = ii; i < size-20; ++i) {
1111 //if we are at a clock bit
1112 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1113 //test high/low
1114 if (dest[i] >= peak || dest[i] <= low) {
1115 //if same peak don't count it
1116 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1117 peakcnt++;
1118 }
1119 lastPeakHigh = (dest[i] >= peak);
1120 bitHigh = true;
1121 errBitHigh = false;
1122 ignoreCnt = ignoreWindow;
1123 lastBit += clk[clkCnt];
1124 } else if (i == lastBit + clk[clkCnt] + tol) {
1125 lastBit += clk[clkCnt];
1126 }
1127 //else if not a clock bit and no peaks
1128 } else if (dest[i] < peak && dest[i] > low){
1129 if (ignoreCnt==0){
1130 bitHigh=false;
1131 if (errBitHigh==true) peakcnt--;
1132 errBitHigh=false;
1133 } else {
1134 ignoreCnt--;
1135 }
1136 // else if not a clock bit but we have a peak
1137 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1138 //error bar found no clock...
1139 errBitHigh=true;
1140 }
1141 }
1142 if(peakcnt>peaksdet[clkCnt]) {
1143 peaksdet[clkCnt]=peakcnt;
1144 }
1145 }
1146 }
1147 }
1148 int iii=7;
1149 uint8_t best=0;
1150 for (iii=7; iii > 0; iii--){
1151 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1152 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
1153 best = iii;
1154 }
1155 } else if (peaksdet[iii] > peaksdet[best]){
1156 best = iii;
1157 }
1158 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
1159 }
1160
1161 return clk[best];
1162 }
1163
1164 // by marshmellow
1165 // convert psk1 demod to psk2 demod
1166 // only transition waves are 1s
1167 void psk1TOpsk2(uint8_t *BitStream, size_t size)
1168 {
1169 size_t i=1;
1170 uint8_t lastBit=BitStream[0];
1171 for (; i<size; i++){
1172 if (BitStream[i]==7){
1173 //ignore errors
1174 } else if (lastBit!=BitStream[i]){
1175 lastBit=BitStream[i];
1176 BitStream[i]=1;
1177 } else {
1178 BitStream[i]=0;
1179 }
1180 }
1181 return;
1182 }
1183
1184 // by marshmellow
1185 // convert psk2 demod to psk1 demod
1186 // from only transition waves are 1s to phase shifts change bit
1187 void psk2TOpsk1(uint8_t *BitStream, size_t size)
1188 {
1189 uint8_t phase=0;
1190 for (size_t i=0; i<size; i++){
1191 if (BitStream[i]==1){
1192 phase ^=1;
1193 }
1194 BitStream[i]=phase;
1195 }
1196 return;
1197 }
1198
1199 // redesigned by marshmellow adjusted from existing decode functions
1200 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1201 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1202 {
1203 //26 bit 40134 format (don't know other formats)
1204 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1205 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1206 size_t startidx = 0;
1207 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1208 // if didn't find preamble try again inverting
1209 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1210 *invert ^= 1;
1211 }
1212 if (*size != 64 && *size != 224) return -2;
1213 if (*invert==1)
1214 for (size_t i = startidx; i < *size; i++)
1215 bitStream[i] ^= 1;
1216
1217 return (int) startidx;
1218 }
1219
1220 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1221 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1222 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1223 if (justNoise(dest, *size)) return -1;
1224 *clk = DetectNRZClock(dest, *size, *clk);
1225 if (*clk==0) return -2;
1226 size_t i, gLen = 4096;
1227 if (gLen>*size) gLen = *size-20;
1228 int high, low;
1229 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1230
1231 uint8_t bit=0;
1232 //convert wave samples to 1's and 0's
1233 for(i=20; i < *size-20; i++){
1234 if (dest[i] >= high) bit = 1;
1235 if (dest[i] <= low) bit = 0;
1236 dest[i] = bit;
1237 }
1238 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1239 size_t lastBit = 0;
1240 size_t numBits = 0;
1241 for(i=21; i < *size-20; i++) {
1242 //if transition detected or large number of same bits - store the passed bits
1243 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1244 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1245 numBits += (i - lastBit + (*clk/4)) / *clk;
1246 lastBit = i-1;
1247 }
1248 }
1249 *size = numBits;
1250 return 0;
1251 }
1252
1253 //by marshmellow
1254 //detects the bit clock for FSK given the high and low Field Clocks
1255 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1256 {
1257 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1258 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1259 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1260 uint8_t rfLensFnd = 0;
1261 uint8_t lastFCcnt = 0;
1262 uint16_t fcCounter = 0;
1263 uint16_t rfCounter = 0;
1264 uint8_t firstBitFnd = 0;
1265 size_t i;
1266 if (size == 0) return 0;
1267
1268 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1269 rfLensFnd=0;
1270 fcCounter=0;
1271 rfCounter=0;
1272 firstBitFnd=0;
1273 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1274 // prime i to first peak / up transition
1275 for (i = 160; i < size-20; i++)
1276 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1277 break;
1278
1279 for (; i < size-20; i++){
1280 fcCounter++;
1281 rfCounter++;
1282
1283 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1284 continue;
1285 // else new peak
1286 // if we got less than the small fc + tolerance then set it to the small fc
1287 if (fcCounter < fcLow+fcTol)
1288 fcCounter = fcLow;
1289 else //set it to the large fc
1290 fcCounter = fcHigh;
1291
1292 //look for bit clock (rf/xx)
1293 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1294 //not the same size as the last wave - start of new bit sequence
1295 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1296 for (int ii=0; ii<15; ii++){
1297 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1298 rfCnts[ii]++;
1299 rfCounter = 0;
1300 break;
1301 }
1302 }
1303 if (rfCounter > 0 && rfLensFnd < 15){
1304 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1305 rfCnts[rfLensFnd]++;
1306 rfLens[rfLensFnd++] = rfCounter;
1307 }
1308 } else {
1309 firstBitFnd++;
1310 }
1311 rfCounter=0;
1312 lastFCcnt=fcCounter;
1313 }
1314 fcCounter=0;
1315 }
1316 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1317
1318 for (i=0; i<15; i++){
1319 //get highest 2 RF values (might need to get more values to compare or compare all?)
1320 if (rfCnts[i]>rfCnts[rfHighest]){
1321 rfHighest3=rfHighest2;
1322 rfHighest2=rfHighest;
1323 rfHighest=i;
1324 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1325 rfHighest3=rfHighest2;
1326 rfHighest2=i;
1327 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1328 rfHighest3=i;
1329 }
1330 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1331 }
1332 // set allowed clock remainder tolerance to be 1 large field clock length+1
1333 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1334 uint8_t tol1 = fcHigh+1;
1335
1336 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1337
1338 // loop to find the highest clock that has a remainder less than the tolerance
1339 // compare samples counted divided by
1340 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1341 int ii=7;
1342 for (; ii>=2; ii--){
1343 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1344 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1345 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1346 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1347 break;
1348 }
1349 }
1350 }
1351 }
1352
1353 if (ii<0) return 0; // oops we went too far
1354
1355 return clk[ii];
1356 }
1357
1358 //by marshmellow
1359 //countFC is to detect the field clock lengths.
1360 //counts and returns the 2 most common wave lengths
1361 //mainly used for FSK field clock detection
1362 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1363 {
1364 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1365 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1366 uint8_t fcLensFnd = 0;
1367 uint8_t lastFCcnt=0;
1368 uint8_t fcCounter = 0;
1369 size_t i;
1370 if (size == 0) return 0;
1371
1372 // prime i to first up transition
1373 for (i = 160; i < size-20; i++)
1374 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1375 break;
1376
1377 for (; i < size-20; i++){
1378 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1379 // new up transition
1380 fcCounter++;
1381 if (fskAdj){
1382 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1383 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1384 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1385 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1386 // save last field clock count (fc/xx)
1387 lastFCcnt = fcCounter;
1388 }
1389 // find which fcLens to save it to:
1390 for (int ii=0; ii<15; ii++){
1391 if (fcLens[ii]==fcCounter){
1392 fcCnts[ii]++;
1393 fcCounter=0;
1394 break;
1395 }
1396 }
1397 if (fcCounter>0 && fcLensFnd<15){
1398 //add new fc length
1399 fcCnts[fcLensFnd]++;
1400 fcLens[fcLensFnd++]=fcCounter;
1401 }
1402 fcCounter=0;
1403 } else {
1404 // count sample
1405 fcCounter++;
1406 }
1407 }
1408
1409 uint8_t best1=14, best2=14, best3=14;
1410 uint16_t maxCnt1=0;
1411 // go through fclens and find which ones are bigest 2
1412 for (i=0; i<15; i++){
1413 // get the 3 best FC values
1414 if (fcCnts[i]>maxCnt1) {
1415 best3=best2;
1416 best2=best1;
1417 maxCnt1=fcCnts[i];
1418 best1=i;
1419 } else if(fcCnts[i]>fcCnts[best2]){
1420 best3=best2;
1421 best2=i;
1422 } else if(fcCnts[i]>fcCnts[best3]){
1423 best3=i;
1424 }
1425 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1426 }
1427 if (fcLens[best1]==0) return 0;
1428 uint8_t fcH=0, fcL=0;
1429 if (fcLens[best1]>fcLens[best2]){
1430 fcH=fcLens[best1];
1431 fcL=fcLens[best2];
1432 } else{
1433 fcH=fcLens[best2];
1434 fcL=fcLens[best1];
1435 }
1436 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1437 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1438 return 0; //lots of waves not psk or fsk
1439 }
1440 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1441
1442 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1443 if (fskAdj) return fcs;
1444 return fcLens[best1];
1445 }
1446
1447 //by marshmellow - demodulate PSK1 wave
1448 //uses wave lengths (# Samples)
1449 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1450 {
1451 if (size == 0) return -1;
1452 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1453 if (*size<loopCnt) loopCnt = *size;
1454
1455 size_t numBits=0;
1456 uint8_t curPhase = *invert;
1457 size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1458 uint8_t fc=0, fullWaveLen=0, tol=1;
1459 uint16_t errCnt=0, waveLenCnt=0;
1460 fc = countFC(dest, *size, 0);
1461 if (fc!=2 && fc!=4 && fc!=8) return -1;
1462 //PrintAndLog("DEBUG: FC: %d",fc);
1463 *clock = DetectPSKClock(dest, *size, *clock);
1464 if (*clock == 0) return -1;
1465 int avgWaveVal=0, lastAvgWaveVal=0;
1466 //find first phase shift
1467 for (i=0; i<loopCnt; i++){
1468 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1469 waveEnd = i+1;
1470 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1471 waveLenCnt = waveEnd-waveStart;
1472 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
1473 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1474 firstFullWave = waveStart;
1475 fullWaveLen=waveLenCnt;
1476 //if average wave value is > graph 0 then it is an up wave or a 1
1477 if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
1478 break;
1479 }
1480 waveStart = i+1;
1481 avgWaveVal = 0;
1482 }
1483 avgWaveVal += dest[i+2];
1484 }
1485 if (firstFullWave == 0) {
1486 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1487 // so skip a little to ensure we are past any Start Signal
1488 firstFullWave = 160;
1489 memset(dest, curPhase, firstFullWave / *clock);
1490 } else {
1491 memset(dest, curPhase^1, firstFullWave / *clock);
1492 }
1493 //advance bits
1494 numBits += (firstFullWave / *clock);
1495 //set start of wave as clock align
1496 lastClkBit = firstFullWave;
1497 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1498 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1499 waveStart = 0;
1500 dest[numBits++] = curPhase; //set first read bit
1501 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1502 //top edge of wave = start of new wave
1503 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1504 if (waveStart == 0) {
1505 waveStart = i+1;
1506 waveLenCnt = 0;
1507 avgWaveVal = dest[i+1];
1508 } else { //waveEnd
1509 waveEnd = i+1;
1510 waveLenCnt = waveEnd-waveStart;
1511 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1512 if (waveLenCnt > fc){
1513 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1514 //this wave is a phase shift
1515 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1516 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1517 curPhase ^= 1;
1518 dest[numBits++] = curPhase;
1519 lastClkBit += *clock;
1520 } else if (i < lastClkBit+10+fc){
1521 //noise after a phase shift - ignore
1522 } else { //phase shift before supposed to based on clock
1523 errCnt++;
1524 dest[numBits++] = 7;
1525 }
1526 } else if (i+1 > lastClkBit + *clock + tol + fc){
1527 lastClkBit += *clock; //no phase shift but clock bit
1528 dest[numBits++] = curPhase;
1529 }
1530 avgWaveVal = 0;
1531 waveStart = i+1;
1532 }
1533 }
1534 avgWaveVal += dest[i+1];
1535 }
1536 *size = numBits;
1537 return errCnt;
1538 }
1539
1540 //by marshmellow
1541 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1542 bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1543 size_t bufsize = *size;
1544 //need to loop through all samples and identify our clock, look for the ST pattern
1545 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1546 int clk = 0;
1547 int tol = 0;
1548 int i, j, skip, start, end, low, high, minClk, waveStart;
1549 bool complete = false;
1550 int tmpbuff[bufsize / 64];
1551 int waveLen[bufsize / 64];
1552 size_t testsize = (bufsize < 512) ? bufsize : 512;
1553 int phaseoff = 0;
1554 high = low = 128;
1555 memset(tmpbuff, 0, sizeof(tmpbuff));
1556
1557 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1558 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1559 return false; //just noise
1560 }
1561 i = 0;
1562 j = 0;
1563 minClk = 255;
1564 // get to first full low to prime loop and skip incomplete first pulse
1565 while ((buffer[i] < high) && (i < bufsize))
1566 ++i;
1567 while ((buffer[i] > low) && (i < bufsize))
1568 ++i;
1569 skip = i;
1570
1571 // populate tmpbuff buffer with pulse lengths
1572 while (i < bufsize) {
1573 // measure from low to low
1574 while ((buffer[i] > low) && (i < bufsize))
1575 ++i;
1576 start= i;
1577 while ((buffer[i] < high) && (i < bufsize))
1578 ++i;
1579 //first high point for this wave
1580 waveStart = i;
1581 while ((buffer[i] > low) && (i < bufsize))
1582 ++i;
1583 if (j >= (bufsize/64)) {
1584 break;
1585 }
1586 waveLen[j] = i - waveStart; //first high to first low
1587 tmpbuff[j++] = i - start;
1588 if (i-start < minClk && i < bufsize) {
1589 minClk = i - start;
1590 }
1591 }
1592 // set clock - might be able to get this externally and remove this work...
1593 if (!clk) {
1594 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1595 tol = fndClk[clkCnt]/8;
1596 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1597 clk=fndClk[clkCnt];
1598 break;
1599 }
1600 }
1601 // clock not found - ERROR
1602 if (!clk) {
1603 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1604 return false;
1605 }
1606 } else tol = clk/8;
1607
1608 *foundclock = clk;
1609
1610 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1611 start = -1;
1612 for (i = 0; i < j - 4; ++i) {
1613 skip += tmpbuff[i];
1614 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1615 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1616 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1617 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1618 start = i + 3;
1619 break;
1620 }
1621 }
1622 }
1623 }
1624 }
1625 // first ST not found - ERROR
1626 if (start < 0) {
1627 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1628 return false;
1629 }
1630 if (waveLen[i+2] > clk*1+tol)
1631 phaseoff = 0;
1632 else
1633 phaseoff = clk/2;
1634
1635 // skip over the remainder of ST
1636 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1637
1638 // now do it again to find the end
1639 end = skip;
1640 for (i += 3; i < j - 4; ++i) {
1641 end += tmpbuff[i];
1642 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol) { //1 to 2 clocks depending on 2 bits prior
1643 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1644 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1645 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1646 complete = true;
1647 break;
1648 }
1649 }
1650 }
1651 }
1652 }
1653 end -= phaseoff;
1654 //didn't find second ST - ERROR
1655 if (!complete) {
1656 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1657 return false;
1658 }
1659 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1660 //now begin to trim out ST so we can use normal demod cmds
1661 start = skip;
1662 size_t datalen = end - start;
1663 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1664 if (datalen % clk > clk/8) {
1665 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1666 return false;
1667 } else {
1668 // padd the amount off - could be problematic... but shouldn't happen often
1669 datalen += datalen % clk;
1670 }
1671 // if datalen is less than one t55xx block - ERROR
1672 if (datalen/clk < 8*4) {
1673 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1674 return false;
1675 }
1676 size_t dataloc = start;
1677 size_t newloc = 0;
1678 i=0;
1679 // warning - overwriting buffer given with raw wave data with ST removed...
1680 while ( dataloc < bufsize-(clk/2) ) {
1681 //compensate for long high at end of ST not being high... (we cut out the high part)
1682 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1683 for(i=0; i < clk/2-tol; ++i) {
1684 buffer[dataloc+i] = high+5;
1685 }
1686 }
1687 for (i=0; i<datalen; ++i) {
1688 if (i+newloc < bufsize) {
1689 if (i+newloc < dataloc)
1690 buffer[i+newloc] = buffer[dataloc];
1691
1692 dataloc++;
1693 }
1694 }
1695 newloc += i;
1696 //skip next ST
1697 dataloc += clk*4;
1698 }
1699 *size = newloc;
1700 return true;
1701 }
Impressum, Datenschutz