]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
ADD: added a lot of ic ids to cmdhf15.c Thanks to Asper for the list.
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
15
16 #include "../include/proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21 #include <stdarg.h>
22
23 #include "legicrf.h"
24 #include "../include/hitag2.h"
25
26
27 #ifdef WITH_LCD
28 #include "LCD.h"
29 #endif
30
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend[TOSEND_BUFFER_SIZE];
41 int ToSendMax;
42 static int ToSendBit;
43 struct common_area common_area __attribute__((section(".commonarea")));
44
45 void BufferClear(void)
46 {
47 memset(BigBuf,0,sizeof(BigBuf));
48 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
49 }
50
51 void ToSendReset(void)
52 {
53 ToSendMax = -1;
54 ToSendBit = 8;
55 }
56
57 void ToSendStuffBit(int b)
58 {
59 if(ToSendBit >= 8) {
60 ToSendMax++;
61 ToSend[ToSendMax] = 0;
62 ToSendBit = 0;
63 }
64
65 if(b) {
66 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
67 }
68
69 ToSendBit++;
70
71 if(ToSendMax >= sizeof(ToSend)) {
72 ToSendBit = 0;
73 DbpString("ToSendStuffBit overflowed!");
74 }
75 }
76
77 //=============================================================================
78 // Debug print functions, to go out over USB, to the usual PC-side client.
79 //=============================================================================
80
81 void DbpString(char *str)
82 {
83 byte_t len = strlen(str);
84 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
85 }
86
87 #if 0
88 void DbpIntegers(int x1, int x2, int x3)
89 {
90 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
91 }
92 #endif
93
94 void Dbprintf(const char *fmt, ...) {
95 // should probably limit size here; oh well, let's just use a big buffer
96 char output_string[128];
97 va_list ap;
98
99 va_start(ap, fmt);
100 kvsprintf(fmt, output_string, 10, ap);
101 va_end(ap);
102
103 DbpString(output_string);
104 }
105
106 // prints HEX & ASCII
107 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
108 int l=0,i;
109 char ascii[9];
110
111 while (len>0) {
112 if (len>8) l=8;
113 else l=len;
114
115 memcpy(ascii,d,l);
116 ascii[l]=0;
117
118 // filter safe ascii
119 for (i=0;i<l;i++)
120 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
121
122 if (bAsci) {
123 Dbprintf("%-8s %*D",ascii,l,d," ");
124 } else {
125 Dbprintf("%*D",l,d," ");
126 }
127
128 len-=8;
129 d+=8;
130 }
131 }
132
133 //-----------------------------------------------------------------------------
134 // Read an ADC channel and block till it completes, then return the result
135 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 // return that.
137 //-----------------------------------------------------------------------------
138 static int ReadAdc(int ch)
139 {
140 uint32_t d;
141
142 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
143 AT91C_BASE_ADC->ADC_MR =
144 ADC_MODE_PRESCALE(32) |
145 ADC_MODE_STARTUP_TIME(16) |
146 ADC_MODE_SAMPLE_HOLD_TIME(8);
147 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
148
149 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
150 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
151 ;
152 d = AT91C_BASE_ADC->ADC_CDR[ch];
153
154 return d;
155 }
156
157 int AvgAdc(int ch) // was static - merlok
158 {
159 int i;
160 int a = 0;
161
162 for(i = 0; i < 32; i++) {
163 a += ReadAdc(ch);
164 }
165
166 return (a + 15) >> 5;
167 }
168
169 void MeasureAntennaTuning(void)
170 {
171 uint8_t LF_Results[256];
172 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
173 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
174
175 LED_B_ON();
176
177 /*
178 * Sweeps the useful LF range of the proxmark from
179 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
180 * read the voltage in the antenna, the result left
181 * in the buffer is a graph which should clearly show
182 * the resonating frequency of your LF antenna
183 * ( hopefully around 95 if it is tuned to 125kHz!)
184 */
185
186 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
187 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
188 for (i=255; i>=19; i--) {
189 WDT_HIT();
190 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
191 SpinDelay(20);
192 // Vref = 3.3V, and a 10000:240 voltage divider on the input
193 // can measure voltages up to 137500 mV
194 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
195 if (i==95) vLf125 = adcval; // voltage at 125Khz
196 if (i==89) vLf134 = adcval; // voltage at 134Khz
197
198 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
199 if(LF_Results[i] > peak) {
200 peakv = adcval;
201 peak = LF_Results[i];
202 peakf = i;
203 //ptr = i;
204 }
205 }
206
207 for (i=18; i >= 0; i--) LF_Results[i] = 0;
208
209 LED_A_ON();
210 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
211 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
213 SpinDelay(20);
214 // Vref = 3300mV, and an 10:1 voltage divider on the input
215 // can measure voltages up to 33000 mV
216 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
217
218 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),LF_Results,256);
219 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
220 LED_A_OFF();
221 LED_B_OFF();
222 return;
223 }
224
225 void MeasureAntennaTuningHf(void)
226 {
227 int vHf = 0; // in mV
228
229 DbpString("Measuring HF antenna, press button to exit");
230
231 for (;;) {
232 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
233 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
234 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
235 SpinDelay(20);
236 // Vref = 3300mV, and an 10:1 voltage divider on the input
237 // can measure voltages up to 33000 mV
238 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
239
240 Dbprintf("%d mV",vHf);
241 if (BUTTON_PRESS()) break;
242 }
243 DbpString("cancelled");
244 }
245
246
247 void SimulateTagHfListen(void)
248 {
249 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
250 uint8_t v = 0;
251 int i;
252 int p = 0;
253
254 // We're using this mode just so that I can test it out; the simulated
255 // tag mode would work just as well and be simpler.
256 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
257 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
258
259 // We need to listen to the high-frequency, peak-detected path.
260 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
261
262 FpgaSetupSsc();
263
264 i = 0;
265 for(;;) {
266 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
267 AT91C_BASE_SSC->SSC_THR = 0xff;
268 }
269 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
270 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
271
272 v <<= 1;
273 if(r & 1) {
274 v |= 1;
275 }
276 p++;
277
278 if(p >= 8) {
279 dest[i] = v;
280 v = 0;
281 p = 0;
282 i++;
283
284 if(i >= FREE_BUFFER_SIZE) {
285 break;
286 }
287 }
288 }
289 }
290 DbpString("simulate tag (now type bitsamples)");
291 }
292
293 void ReadMem(int addr)
294 {
295 const uint8_t *data = ((uint8_t *)addr);
296
297 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
298 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
299 }
300
301 /* osimage version information is linked in */
302 extern struct version_information version_information;
303 /* bootrom version information is pointed to from _bootphase1_version_pointer */
304 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
305 void SendVersion(void)
306 {
307 char temp[512]; /* Limited data payload in USB packets */
308 DbpString("Prox/RFID mark3 RFID instrument");
309
310 /* Try to find the bootrom version information. Expect to find a pointer at
311 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
312 * pointer, then use it.
313 */
314 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
315 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
316 DbpString("bootrom version information appears invalid");
317 } else {
318 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
319 DbpString(temp);
320 }
321
322 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
323 DbpString(temp);
324
325 FpgaGatherVersion(temp, sizeof(temp));
326 DbpString(temp);
327 // Send Chip ID
328 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
329 }
330
331 #ifdef WITH_LF
332 // samy's sniff and repeat routine
333 void SamyRun()
334 {
335 DbpString("Stand-alone mode! No PC necessary.");
336 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
337
338 // 3 possible options? no just 2 for now
339 #define OPTS 2
340
341 int high[OPTS], low[OPTS];
342
343 // Oooh pretty -- notify user we're in elite samy mode now
344 LED(LED_RED, 200);
345 LED(LED_ORANGE, 200);
346 LED(LED_GREEN, 200);
347 LED(LED_ORANGE, 200);
348 LED(LED_RED, 200);
349 LED(LED_ORANGE, 200);
350 LED(LED_GREEN, 200);
351 LED(LED_ORANGE, 200);
352 LED(LED_RED, 200);
353
354 int selected = 0;
355 int playing = 0;
356 int cardRead = 0;
357
358 // Turn on selected LED
359 LED(selected + 1, 0);
360
361 for (;;)
362 {
363 usb_poll();
364 WDT_HIT();
365
366 // Was our button held down or pressed?
367 int button_pressed = BUTTON_HELD(1000);
368 SpinDelay(300);
369
370 // Button was held for a second, begin recording
371 if (button_pressed > 0 && cardRead == 0)
372 {
373 LEDsoff();
374 LED(selected + 1, 0);
375 LED(LED_RED2, 0);
376
377 // record
378 DbpString("Starting recording");
379
380 // wait for button to be released
381 while(BUTTON_PRESS())
382 WDT_HIT();
383
384 /* need this delay to prevent catching some weird data */
385 SpinDelay(500);
386
387 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
388 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
389
390 LEDsoff();
391 LED(selected + 1, 0);
392 // Finished recording
393
394 // If we were previously playing, set playing off
395 // so next button push begins playing what we recorded
396 playing = 0;
397
398 cardRead = 1;
399
400 }
401
402 else if (button_pressed > 0 && cardRead == 1)
403 {
404 LEDsoff();
405 LED(selected + 1, 0);
406 LED(LED_ORANGE, 0);
407
408 // record
409 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
410
411 // wait for button to be released
412 while(BUTTON_PRESS())
413 WDT_HIT();
414
415 /* need this delay to prevent catching some weird data */
416 SpinDelay(500);
417
418 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
419 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
420
421 LEDsoff();
422 LED(selected + 1, 0);
423 // Finished recording
424
425 // If we were previously playing, set playing off
426 // so next button push begins playing what we recorded
427 playing = 0;
428
429 cardRead = 0;
430
431 }
432
433 // Change where to record (or begin playing)
434 else if (button_pressed)
435 {
436 // Next option if we were previously playing
437 if (playing)
438 selected = (selected + 1) % OPTS;
439 playing = !playing;
440
441 LEDsoff();
442 LED(selected + 1, 0);
443
444 // Begin transmitting
445 if (playing)
446 {
447 LED(LED_GREEN, 0);
448 DbpString("Playing");
449 // wait for button to be released
450 while(BUTTON_PRESS())
451 WDT_HIT();
452 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
453 CmdHIDsimTAG(high[selected], low[selected], 0);
454 DbpString("Done playing");
455 if (BUTTON_HELD(1000) > 0)
456 {
457 DbpString("Exiting");
458 LEDsoff();
459 return;
460 }
461
462 /* We pressed a button so ignore it here with a delay */
463 SpinDelay(300);
464
465 // when done, we're done playing, move to next option
466 selected = (selected + 1) % OPTS;
467 playing = !playing;
468 LEDsoff();
469 LED(selected + 1, 0);
470 }
471 else
472 while(BUTTON_PRESS())
473 WDT_HIT();
474 }
475 }
476 }
477 #endif
478
479 /*
480 OBJECTIVE
481 Listen and detect an external reader. Determine the best location
482 for the antenna.
483
484 INSTRUCTIONS:
485 Inside the ListenReaderField() function, there is two mode.
486 By default, when you call the function, you will enter mode 1.
487 If you press the PM3 button one time, you will enter mode 2.
488 If you press the PM3 button a second time, you will exit the function.
489
490 DESCRIPTION OF MODE 1:
491 This mode just listens for an external reader field and lights up green
492 for HF and/or red for LF. This is the original mode of the detectreader
493 function.
494
495 DESCRIPTION OF MODE 2:
496 This mode will visually represent, using the LEDs, the actual strength of the
497 current compared to the maximum current detected. Basically, once you know
498 what kind of external reader is present, it will help you spot the best location to place
499 your antenna. You will probably not get some good results if there is a LF and a HF reader
500 at the same place! :-)
501
502 LIGHT SCHEME USED:
503 */
504 static const char LIGHT_SCHEME[] = {
505 0x0, /* ---- | No field detected */
506 0x1, /* X--- | 14% of maximum current detected */
507 0x2, /* -X-- | 29% of maximum current detected */
508 0x4, /* --X- | 43% of maximum current detected */
509 0x8, /* ---X | 57% of maximum current detected */
510 0xC, /* --XX | 71% of maximum current detected */
511 0xE, /* -XXX | 86% of maximum current detected */
512 0xF, /* XXXX | 100% of maximum current detected */
513 };
514 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
515
516 void ListenReaderField(int limit)
517 {
518 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
519 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
520 int mode=1, display_val, display_max, i;
521
522 #define LF_ONLY 1
523 #define HF_ONLY 2
524
525 LEDsoff();
526
527 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
528
529 if(limit != HF_ONLY) {
530 Dbprintf("LF 125/134 Baseline: %d", lf_av);
531 lf_baseline = lf_av;
532 }
533
534 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
535
536 if (limit != LF_ONLY) {
537 Dbprintf("HF 13.56 Baseline: %d", hf_av);
538 hf_baseline = hf_av;
539 }
540
541 for(;;) {
542 if (BUTTON_PRESS()) {
543 SpinDelay(500);
544 switch (mode) {
545 case 1:
546 mode=2;
547 DbpString("Signal Strength Mode");
548 break;
549 case 2:
550 default:
551 DbpString("Stopped");
552 LEDsoff();
553 return;
554 break;
555 }
556 }
557 WDT_HIT();
558
559 if (limit != HF_ONLY) {
560 if(mode==1) {
561 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
562 else LED_D_OFF();
563 }
564
565 ++lf_count;
566 lf_av_new= ReadAdc(ADC_CHAN_LF);
567 // see if there's a significant change
568 if(abs(lf_av - lf_av_new) > 10) {
569 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
570 lf_av = lf_av_new;
571 if (lf_av > lf_max)
572 lf_max = lf_av;
573 lf_count= 0;
574 }
575 }
576
577 if (limit != LF_ONLY) {
578 if (mode == 1){
579 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
580 else LED_B_OFF();
581 }
582
583 ++hf_count;
584 hf_av_new= ReadAdc(ADC_CHAN_HF);
585 // see if there's a significant change
586 if(abs(hf_av - hf_av_new) > 10) {
587 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
588 hf_av = hf_av_new;
589 if (hf_av > hf_max)
590 hf_max = hf_av;
591 hf_count= 0;
592 }
593 }
594
595 if(mode == 2) {
596 if (limit == LF_ONLY) {
597 display_val = lf_av;
598 display_max = lf_max;
599 } else if (limit == HF_ONLY) {
600 display_val = hf_av;
601 display_max = hf_max;
602 } else { /* Pick one at random */
603 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
604 display_val = hf_av;
605 display_max = hf_max;
606 } else {
607 display_val = lf_av;
608 display_max = lf_max;
609 }
610 }
611 for (i=0; i<LIGHT_LEN; i++) {
612 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
613 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
614 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
615 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
616 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
617 break;
618 }
619 }
620 }
621 }
622 }
623
624 void UsbPacketReceived(uint8_t *packet, int len)
625 {
626 UsbCommand *c = (UsbCommand *)packet;
627
628 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
629
630 switch(c->cmd) {
631 #ifdef WITH_LF
632 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
633 AcquireRawAdcSamples125k(c->arg[0]);
634 cmd_send(CMD_ACK,0,0,0,0,0);
635 break;
636 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
637 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
638 break;
639 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
640 SnoopLFRawAdcSamples(c->arg[0], c->arg[1]);
641 cmd_send(CMD_ACK,0,0,0,0,0);
642 break;
643 case CMD_HID_DEMOD_FSK:
644 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
645 break;
646 case CMD_HID_SIM_TAG:
647 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
648 break;
649 case CMD_HID_CLONE_TAG:
650 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
651 break;
652 case CMD_IO_DEMOD_FSK:
653 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
654 break;
655 case CMD_IO_CLONE_TAG:
656 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
657 break;
658 case CMD_EM410X_DEMOD:
659 CmdEM410xdemod(c->arg[0], 0, 0, 1);
660 break;
661 case CMD_EM410X_WRITE_TAG:
662 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
663 break;
664 case CMD_READ_TI_TYPE:
665 ReadTItag();
666 break;
667 case CMD_WRITE_TI_TYPE:
668 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
669 break;
670 case CMD_SIMULATE_TAG_125K:
671 SimulateTagLowFrequency(c->arg[0], c->arg[1], 0);
672 //SimulateTagLowFrequencyA(c->arg[0], c->arg[1]);
673 break;
674 case CMD_LF_SIMULATE_BIDIR:
675 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
676 break;
677 case CMD_INDALA_CLONE_TAG:
678 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
679 break;
680 case CMD_INDALA_CLONE_TAG_L:
681 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
682 break;
683 case CMD_T55XX_READ_BLOCK:
684 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
685 break;
686 case CMD_T55XX_WRITE_BLOCK:
687 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
688 break;
689 case CMD_T55XX_READ_TRACE:
690 T55xxReadTrace();
691 break;
692 case CMD_PCF7931_READ:
693 ReadPCF7931();
694 cmd_send(CMD_ACK,0,0,0,0,0);
695 break;
696 case CMD_EM4X_READ_WORD:
697 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
698 break;
699 case CMD_EM4X_WRITE_WORD:
700 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
701 break;
702 #endif
703
704 #ifdef WITH_HITAG
705 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
706 SnoopHitag(c->arg[0]);
707 break;
708 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
709 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
710 break;
711 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
712 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
713 break;
714 #endif
715
716 #ifdef WITH_ISO15693
717 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
718 AcquireRawAdcSamplesIso15693();
719 break;
720 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
721 RecordRawAdcSamplesIso15693();
722 break;
723
724 case CMD_ISO_15693_COMMAND:
725 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
726 break;
727
728 case CMD_ISO_15693_FIND_AFI:
729 BruteforceIso15693Afi(c->arg[0]);
730 break;
731
732 case CMD_ISO_15693_DEBUG:
733 SetDebugIso15693(c->arg[0]);
734 break;
735
736 case CMD_READER_ISO_15693:
737 ReaderIso15693(c->arg[0]);
738 break;
739 case CMD_SIMTAG_ISO_15693:
740 SimTagIso15693(c->arg[0], c->d.asBytes);
741 break;
742 #endif
743
744 #ifdef WITH_LEGICRF
745 case CMD_SIMULATE_TAG_LEGIC_RF:
746 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
747 break;
748
749 case CMD_WRITER_LEGIC_RF:
750 LegicRfWriter(c->arg[1], c->arg[0]);
751 break;
752
753 case CMD_READER_LEGIC_RF:
754 LegicRfReader(c->arg[0], c->arg[1]);
755 break;
756 #endif
757
758 #ifdef WITH_ISO14443b
759 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
760 AcquireRawAdcSamplesIso14443(c->arg[0]);
761 break;
762 case CMD_READ_SRI512_TAG:
763 ReadSTMemoryIso14443(0x0F);
764 break;
765 case CMD_READ_SRIX4K_TAG:
766 ReadSTMemoryIso14443(0x7F);
767 break;
768 case CMD_SNOOP_ISO_14443:
769 SnoopIso14443();
770 break;
771 case CMD_SIMULATE_TAG_ISO_14443:
772 SimulateIso14443Tag();
773 break;
774 case CMD_ISO_14443B_COMMAND:
775 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
776 break;
777 #endif
778
779 #ifdef WITH_ISO14443a
780 case CMD_SNOOP_ISO_14443a:
781 SnoopIso14443a(c->arg[0]);
782 break;
783 case CMD_READER_ISO_14443a:
784 ReaderIso14443a(c);
785 break;
786 case CMD_SIMULATE_TAG_ISO_14443a:
787 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
788 break;
789
790 case CMD_EPA_PACE_COLLECT_NONCE:
791 EPA_PACE_Collect_Nonce(c);
792 break;
793
794 // case CMD_EPA_:
795 // EpaFoo(c);
796 // break;
797
798 case CMD_READER_MIFARE:
799 ReaderMifare(c->arg[0]);
800 break;
801 case CMD_MIFARE_READBL:
802 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
803 break;
804 case CMD_MIFAREU_READBL:
805 MifareUReadBlock(c->arg[0],c->d.asBytes);
806 break;
807 case CMD_MIFAREUC_AUTH1:
808 MifareUC_Auth1(c->arg[0],c->d.asBytes);
809 break;
810 case CMD_MIFAREUC_AUTH2:
811 MifareUC_Auth2(c->arg[0],c->d.asBytes);
812 break;
813 case CMD_MIFAREU_READCARD:
814 MifareUReadCard(c->arg[0],c->arg[1],c->d.asBytes);
815 break;
816 case CMD_MIFAREUC_READCARD:
817 MifareUReadCard(c->arg[0],c->arg[1],c->d.asBytes);
818 break;
819 case CMD_MIFARE_READSC:
820 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
821 break;
822 case CMD_MIFARE_WRITEBL:
823 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
824 break;
825 case CMD_MIFAREU_WRITEBL_COMPAT:
826 MifareUWriteBlock(c->arg[0], c->d.asBytes);
827 break;
828 case CMD_MIFAREU_WRITEBL:
829 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
830 break;
831 case CMD_MIFARE_NESTED:
832 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
833 break;
834 case CMD_MIFARE_CHKKEYS:
835 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
836 break;
837 case CMD_SIMULATE_MIFARE_CARD:
838 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
839 break;
840
841 // emulator
842 case CMD_MIFARE_SET_DBGMODE:
843 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
844 break;
845 case CMD_MIFARE_EML_MEMCLR:
846 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
847 break;
848 case CMD_MIFARE_EML_MEMSET:
849 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
850 break;
851 case CMD_MIFARE_EML_MEMGET:
852 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
853 break;
854 case CMD_MIFARE_EML_CARDLOAD:
855 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
856 break;
857
858 // Work with "magic Chinese" card
859 case CMD_MIFARE_CSETBLOCK:
860 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
861 break;
862 case CMD_MIFARE_CGETBLOCK:
863 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
864 break;
865 case CMD_MIFARE_CIDENT:
866 MifareCIdent();
867 break;
868
869 // mifare sniffer
870 case CMD_MIFARE_SNIFFER:
871 SniffMifare(c->arg[0]);
872 break;
873
874 // mifare desfire
875 case CMD_MIFARE_DESFIRE_READBL:
876 break;
877 case CMD_MIFARE_DESFIRE_WRITEBL:
878 break;
879 case CMD_MIFARE_DESFIRE_AUTH1:
880 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
881 break;
882 case CMD_MIFARE_DESFIRE_AUTH2:
883 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
884 break;
885 // case CMD_MIFARE_DES_READER:
886 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
887 //break;
888 case CMD_MIFARE_DESFIRE_INFO:
889 MifareDesfireGetInformation();
890 break;
891 case CMD_MIFARE_DESFIRE:
892 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
893 break;
894
895 #endif
896
897 #ifdef WITH_ICLASS
898 // Makes use of ISO14443a FPGA Firmware
899 case CMD_SNOOP_ICLASS:
900 SnoopIClass();
901 break;
902 case CMD_SIMULATE_TAG_ICLASS:
903 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
904 break;
905 case CMD_READER_ICLASS:
906 ReaderIClass(c->arg[0]);
907 break;
908 case CMD_READER_ICLASS_REPLAY:
909 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
910 break;
911 #endif
912
913 case CMD_SIMULATE_TAG_HF_LISTEN:
914 SimulateTagHfListen();
915 break;
916
917 case CMD_BUFF_CLEAR:
918 BufferClear();
919 break;
920
921 case CMD_MEASURE_ANTENNA_TUNING:
922 MeasureAntennaTuning();
923 break;
924
925 case CMD_MEASURE_ANTENNA_TUNING_HF:
926 MeasureAntennaTuningHf();
927 break;
928
929 case CMD_LISTEN_READER_FIELD:
930 ListenReaderField(c->arg[0]);
931 break;
932
933 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
934 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
935 SpinDelay(200);
936 LED_D_OFF(); // LED D indicates field ON or OFF
937 break;
938
939 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
940
941 LED_B_ON();
942 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
943 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
944 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
945 }
946 // Trigger a finish downloading signal with an ACK frame
947 cmd_send(CMD_ACK,0,0,0,0,0);
948 LED_B_OFF();
949 break;
950
951 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
952 uint8_t *b = (uint8_t *)BigBuf;
953 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
954 cmd_send(CMD_ACK,0,0,0,0,0);
955 break;
956 }
957 case CMD_READ_MEM:
958 ReadMem(c->arg[0]);
959 break;
960
961 case CMD_SET_LF_DIVISOR:
962 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
963 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
964 break;
965
966 case CMD_SET_ADC_MUX:
967 switch(c->arg[0]) {
968 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
969 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
970 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
971 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
972 }
973 break;
974
975 case CMD_VERSION:
976 SendVersion();
977 break;
978
979 #ifdef WITH_LCD
980 case CMD_LCD_RESET:
981 LCDReset();
982 break;
983 case CMD_LCD:
984 LCDSend(c->arg[0]);
985 break;
986 #endif
987 case CMD_SETUP_WRITE:
988 case CMD_FINISH_WRITE:
989 case CMD_HARDWARE_RESET:
990 usb_disable();
991 SpinDelay(1000);
992 SpinDelay(1000);
993 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
994 for(;;) {
995 // We're going to reset, and the bootrom will take control.
996 }
997 break;
998
999 case CMD_START_FLASH:
1000 if(common_area.flags.bootrom_present) {
1001 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1002 }
1003 usb_disable();
1004 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1005 for(;;);
1006 break;
1007
1008 case CMD_DEVICE_INFO: {
1009 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1010 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1011 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1012 break;
1013 }
1014 default:
1015 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1016 break;
1017 }
1018 }
1019
1020 void __attribute__((noreturn)) AppMain(void)
1021 {
1022 SpinDelay(100);
1023
1024 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1025 /* Initialize common area */
1026 memset(&common_area, 0, sizeof(common_area));
1027 common_area.magic = COMMON_AREA_MAGIC;
1028 common_area.version = 1;
1029 }
1030 common_area.flags.osimage_present = 1;
1031
1032 LED_D_OFF();
1033 LED_C_OFF();
1034 LED_B_OFF();
1035 LED_A_OFF();
1036
1037 // Init USB device
1038 usb_enable();
1039
1040 // The FPGA gets its clock from us from PCK0 output, so set that up.
1041 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1042 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1043 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1044 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1045 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1046 AT91C_PMC_PRES_CLK_4;
1047 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1048
1049 // Reset SPI
1050 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1051 // Reset SSC
1052 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1053
1054 // Load the FPGA image, which we have stored in our flash.
1055 // (the HF version by default)
1056 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1057
1058 StartTickCount();
1059
1060 #ifdef WITH_LCD
1061 LCDInit();
1062 #endif
1063
1064 byte_t rx[sizeof(UsbCommand)];
1065 size_t rx_len;
1066
1067 for(;;) {
1068 if (usb_poll()) {
1069 rx_len = usb_read(rx,sizeof(UsbCommand));
1070 if (rx_len) {
1071 UsbPacketReceived(rx,rx_len);
1072 }
1073 }
1074 WDT_HIT();
1075
1076 #ifdef WITH_LF
1077 if (BUTTON_HELD(1000) > 0)
1078 SamyRun();
1079 #endif
1080 }
1081 }
Impressum, Datenschutz