]> git.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
Merge branch 'master' of https://github.com/iceman1001/proxmark3
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <pthread.h>
15 #include "mifarehost.h"
16 #include "proxmark3.h"
17 //#include "radixsort.h"
18
19 // MIFARE
20 int compar_int(const void * a, const void * b) {
21 // didn't work: (the result is truncated to 32 bits)
22 //return (*(uint64_t*)b - *(uint64_t*)a);
23
24 // better:
25 // if (*(uint64_t*)b > *(uint64_t*)a) return 1;
26 // if (*(uint64_t*)b < *(uint64_t*)a) return -1;
27 // return 0;
28
29 return (*(uint64_t*)b > *(uint64_t*)a) - (*(uint64_t*)b < *(uint64_t*)a);
30 //return (*(int64_t*)b > *(int64_t*)a) - (*(int64_t*)b < *(int64_t*)a);
31 }
32
33 // Compare 16 Bits out of cryptostate
34 int Compare16Bits(const void * a, const void * b) {
35
36 // if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
37 // if ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000)) return -1;
38 // return 0;
39
40 return
41 ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000))
42 -
43 ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000))
44 ;
45 // return
46 // ((*(int64_t*)b & 0x00ff000000ff0000) > (*(int64_t*)a & 0x00ff000000ff0000))
47 // -
48 // ((*(int64_t*)b & 0x00ff000000ff0000) < (*(int64_t*)a & 0x00ff000000ff0000))
49 // ;
50 }
51
52 typedef
53 struct {
54 union {
55 struct Crypto1State *slhead;
56 uint64_t *keyhead;
57 } head;
58 union {
59 struct Crypto1State *sltail;
60 uint64_t *keytail;
61 } tail;
62 uint32_t len;
63 uint32_t uid;
64 uint32_t blockNo;
65 uint32_t keyType;
66 uint32_t nt;
67 uint32_t ks1;
68 } StateList_t;
69
70
71 // wrapper function for multi-threaded lfsr_recovery32
72 void* nested_worker_thread(void *arg)
73 {
74 struct Crypto1State *p1;
75 StateList_t *statelist = arg;
76
77 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
78
79 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; ++p1);
80
81 statelist->len = p1 - statelist->head.slhead;
82 statelist->tail.sltail = --p1;
83 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
84
85 return statelist->head.slhead;
86 }
87
88 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
89 {
90 uint16_t i;
91 uint32_t uid;
92 UsbCommand resp;
93 StateList_t statelists[2];
94 struct Crypto1State *p1, *p2, *p3, *p4;
95
96 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
97 memcpy(c.d.asBytes, key, 6);
98 clearCommandBuffer();
99 SendCommand(&c);
100 if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1;
101
102 // error during nested
103 if (resp.arg[0]) return resp.arg[0];
104
105 memcpy(&uid, resp.d.asBytes, 4);
106
107 for (i = 0; i < 2; ++i) {
108 statelists[i].blockNo = resp.arg[2] & 0xff;
109 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
110 statelists[i].uid = uid;
111 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
112 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
113 }
114
115 // calc keys
116 pthread_t thread_id[2];
117
118 // create and run worker threads
119 for (i = 0; i < 2; i++)
120 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
121
122 // wait for threads to terminate:
123 for (i = 0; i < 2; i++)
124 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
125
126
127 // the first 16 Bits of the cryptostate already contain part of our key.
128 // Create the intersection of the two lists based on these 16 Bits and
129 // roll back the cryptostate
130 p1 = p3 = statelists[0].head.slhead;
131 p2 = p4 = statelists[1].head.slhead;
132 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
133 if (Compare16Bits(p1, p2) == 0) {
134 struct Crypto1State savestate, *savep = &savestate;
135 savestate = *p1;
136 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
137 *p3 = *p1;
138 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
139 p3++;
140 p1++;
141 }
142 savestate = *p2;
143 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
144 *p4 = *p2;
145 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
146 p4++;
147 p2++;
148 }
149 }
150 else {
151 while (Compare16Bits(p1, p2) == -1) p1++;
152 while (Compare16Bits(p1, p2) == 1) p2++;
153 }
154 }
155
156 p3->even = 0; p3->odd = 0;
157 p4->even = 0; p4->odd = 0;
158 statelists[0].len = p3 - statelists[0].head.slhead;
159 statelists[1].len = p4 - statelists[1].head.slhead;
160 statelists[0].tail.sltail=--p3;
161 statelists[1].tail.sltail=--p4;
162
163 // the statelists now contain possible keys. The key we are searching for must be in the
164 // intersection of both lists. Create the intersection:
165 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
166 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
167
168 // clock_t t1 = clock();
169 //radixSort(statelists[0].head.keyhead, statelists[0].len);
170 //radixSort(statelists[1].head.keyhead, statelists[1].len);
171 // t1 = clock() - t1;
172 // PrintAndLog("radixsort, ticks %.0f", (float)t1);
173
174 uint64_t *p5, *p6, *p7;
175 p5 = p7 = statelists[0].head.keyhead;
176 p6 = statelists[1].head.keyhead;
177 while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
178 if (compar_int(p5, p6) == 0) {
179 *p7++ = *p5++;
180 p6++;
181 }
182 else {
183 while (compar_int(p5, p6) == -1) p5++;
184 while (compar_int(p5, p6) == 1) p6++;
185 }
186 }
187 statelists[0].len = p7 - statelists[0].head.keyhead;
188 statelists[0].tail.keytail = --p7;
189
190 memset(resultKey, 0, 6);
191 uint64_t key64 = 0;
192
193 // The list may still contain several key candidates. Test each of them with mfCheckKeys
194 for (i = 0; i < statelists[0].len; i++) {
195
196 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
197 num_to_bytes(key64, 6, resultKey);
198
199 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, resultKey, &key64)) {
200 free(statelists[0].head.slhead);
201 free(statelists[1].head.slhead);
202 PrintAndLog("UID: %08x target block:%3u key type: %c -- Found key [%012"llx"]", uid, (uint16_t)resp.arg[2] & 0xff, (resp.arg[2] >> 8)?'B':'A', key64);
203 return -5;
204 }
205 }
206 PrintAndLog("UID: %08x target block:%3u key type: %c", uid, (uint16_t)resp.arg[2] & 0xff, (resp.arg[2] >> 8)?'B':'A');
207 free(statelists[0].head.slhead);
208 free(statelists[1].head.slhead);
209 return -4;
210 }
211
212 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
213
214 *key = 0;
215 UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType<<8)), clear_trace, keycnt}};
216 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
217 clearCommandBuffer();
218 SendCommand(&c);
219 UsbCommand resp;
220 if (!WaitForResponseTimeout(CMD_ACK,&resp, 3000)) return 1;
221 if ((resp.arg[0] & 0xff) != 0x01) return 2;
222 *key = bytes_to_num(resp.d.asBytes, 6);
223 return 0;
224 }
225
226 // EMULATOR
227
228 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
229 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
230 clearCommandBuffer();
231 SendCommand(&c);
232 UsbCommand resp;
233 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
234 memcpy(data, resp.d.asBytes, blocksCount * 16);
235 return 0;
236 }
237
238 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
239 return mfEmlSetMem_xt(data, blockNum, blocksCount, 16);
240 }
241
242 int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) {
243 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, blockBtWidth}};
244 memcpy(c.d.asBytes, data, blocksCount * blockBtWidth);
245
246 clearCommandBuffer();
247 SendCommand(&c);
248 return 0;
249 }
250
251 // "MAGIC" CARD
252
253 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) {
254
255 uint8_t params = MAGIC_SINGLE;
256 uint8_t block0[16];
257 memset(block0, 0x00, sizeof(block0));
258
259 int old = mfCGetBlock(0, block0, params);
260 if (old == 0)
261 PrintAndLog("old block 0: %s", sprint_hex(block0, sizeof(block0)));
262 else
263 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
264
265 // fill in the new values
266 // UID
267 memcpy(block0, uid, 4);
268 // Mifare UID BCC
269 block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
270 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
271 if ( sak != NULL )
272 block0[5]=sak[0];
273
274 if ( atqa != NULL ) {
275 block0[6]=atqa[1];
276 block0[7]=atqa[0];
277 }
278 PrintAndLog("new block 0: %s", sprint_hex(block0,16));
279
280 if ( wipecard ) params |= MAGIC_WIPE;
281 if ( oldUID == NULL) params |= MAGIC_UID;
282
283 return mfCSetBlock(0, block0, oldUID, params);
284 }
285
286 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
287
288 uint8_t isOK = 0;
289 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params, blockNo, 0}};
290 memcpy(c.d.asBytes, data, 16);
291 clearCommandBuffer();
292 SendCommand(&c);
293 UsbCommand resp;
294 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
295 isOK = resp.arg[0] & 0xff;
296 if (uid != NULL)
297 memcpy(uid, resp.d.asBytes, 4);
298 if (!isOK)
299 return 2;
300 } else {
301 PrintAndLog("Command execute timeout");
302 return 1;
303 }
304 return 0;
305 }
306
307 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
308 uint8_t isOK = 0;
309 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
310 clearCommandBuffer();
311 SendCommand(&c);
312 UsbCommand resp;
313 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
314 isOK = resp.arg[0] & 0xff;
315 memcpy(data, resp.d.asBytes, 16);
316 if (!isOK) return 2;
317 } else {
318 PrintAndLog("Command execute timeout");
319 return 1;
320 }
321 return 0;
322 }
323
324 // SNIFFER
325
326 // constants
327 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
328
329 // variables
330 char logHexFileName[FILE_PATH_SIZE] = {0x00};
331 static uint8_t traceCard[4096] = {0x00};
332 static char traceFileName[FILE_PATH_SIZE] = {0x00};
333 static int traceState = TRACE_IDLE;
334 static uint8_t traceCurBlock = 0;
335 static uint8_t traceCurKey = 0;
336
337 struct Crypto1State *traceCrypto1 = NULL;
338
339 struct Crypto1State *revstate = NULL;
340
341 uint64_t key = 0;
342 uint32_t ks2 = 0;
343 uint32_t ks3 = 0;
344
345 uint32_t uid = 0; // serial number
346 uint32_t nt =0; // tag challenge
347 uint32_t nr_enc =0; // encrypted reader challenge
348 uint32_t ar_enc =0; // encrypted reader response
349 uint32_t at_enc =0; // encrypted tag response
350
351 int isTraceCardEmpty(void) {
352 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
353 }
354
355 int isBlockEmpty(int blockN) {
356 for (int i = 0; i < 16; i++)
357 if (traceCard[blockN * 16 + i] != 0) return 0;
358
359 return 1;
360 }
361
362 int isBlockTrailer(int blockN) {
363 return ((blockN & 0x03) == 0x03);
364 }
365
366 int loadTraceCard(uint8_t *tuid) {
367 FILE * f;
368 char buf[64] = {0x00};
369 uint8_t buf8[64] = {0x00};
370 int i, blockNum;
371
372 if (!isTraceCardEmpty())
373 saveTraceCard();
374
375 memset(traceCard, 0x00, 4096);
376 memcpy(traceCard, tuid + 3, 4);
377
378 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
379
380 f = fopen(traceFileName, "r");
381 if (!f) return 1;
382
383 blockNum = 0;
384
385 while(!feof(f)){
386
387 memset(buf, 0, sizeof(buf));
388 if (fgets(buf, sizeof(buf), f) == NULL) {
389 PrintAndLog("File reading error.");
390 fclose(f);
391 return 2;
392 }
393
394 if (strlen(buf) < 32){
395 if (feof(f)) break;
396 PrintAndLog("File content error. Block data must include 32 HEX symbols");
397 fclose(f);
398 return 2;
399 }
400 for (i = 0; i < 32; i += 2)
401 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
402
403 memcpy(traceCard + blockNum * 16, buf8, 16);
404
405 blockNum++;
406 }
407 fclose(f);
408
409 return 0;
410 }
411
412 int saveTraceCard(void) {
413 FILE * f;
414
415 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
416
417 f = fopen(traceFileName, "w+");
418 if ( !f ) return 1;
419
420 for (int i = 0; i < 64; i++) { // blocks
421 for (int j = 0; j < 16; j++) // bytes
422 fprintf(f, "%02x", *(traceCard + i * 16 + j));
423 fprintf(f,"\n");
424 }
425 fclose(f);
426 return 0;
427 }
428
429 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
430
431 if (traceCrypto1)
432 crypto1_destroy(traceCrypto1);
433
434 traceCrypto1 = NULL;
435
436 if (wantSaveToEmlFile)
437 loadTraceCard(tuid);
438
439 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
440 traceCard[5] = sak;
441 memcpy(&traceCard[6], atqa, 2);
442 traceCurBlock = 0;
443 uid = bytes_to_num(tuid + 3, 4);
444
445 traceState = TRACE_IDLE;
446
447 return 0;
448 }
449
450 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
451 uint8_t bt = 0;
452 int i;
453
454 if (len != 1) {
455 for (i = 0; i < len; i++)
456 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
457 } else {
458 bt = 0;
459 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 0)) << 0;
460 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 1)) << 1;
461 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 2)) << 2;
462 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 3)) << 3;
463 data[0] = bt;
464 }
465 return;
466 }
467
468 int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
469
470 uint8_t data[64];
471
472 if (traceState == TRACE_ERROR) return 1;
473
474 if (len > 64) {
475 traceState = TRACE_ERROR;
476 return 1;
477 }
478
479 memcpy(data, data_src, len);
480 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
481 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
482 PrintAndLog("dec> %s", sprint_hex(data, len));
483 AddLogHex(logHexFileName, "dec> ", data, len);
484 }
485
486 switch (traceState) {
487 case TRACE_IDLE:
488 // check packet crc16!
489 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
490 PrintAndLog("dec> CRC ERROR!!!");
491 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
492 traceState = TRACE_ERROR; // do not decrypt the next commands
493 return 1;
494 }
495
496 // AUTHENTICATION
497 if ((len == 4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
498 traceState = TRACE_AUTH1;
499 traceCurBlock = data[1];
500 traceCurKey = data[0] == 60 ? 1:0;
501 return 0;
502 }
503
504 // READ
505 if ((len ==4) && ((data[0] == 0x30))) {
506 traceState = TRACE_READ_DATA;
507 traceCurBlock = data[1];
508 return 0;
509 }
510
511 // WRITE
512 if ((len ==4) && ((data[0] == 0xA0))) {
513 traceState = TRACE_WRITE_OK;
514 traceCurBlock = data[1];
515 return 0;
516 }
517
518 // HALT
519 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
520 traceState = TRACE_ERROR; // do not decrypt the next commands
521 return 0;
522 }
523
524 return 0;
525 break;
526
527 case TRACE_READ_DATA:
528 if (len == 18) {
529 traceState = TRACE_IDLE;
530
531 if (isBlockTrailer(traceCurBlock)) {
532 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
533 } else {
534 memcpy(traceCard + traceCurBlock * 16, data, 16);
535 }
536 if (wantSaveToEmlFile) saveTraceCard();
537 return 0;
538 } else {
539 traceState = TRACE_ERROR;
540 return 1;
541 }
542 break;
543
544 case TRACE_WRITE_OK:
545 if ((len == 1) && (data[0] == 0x0a)) {
546 traceState = TRACE_WRITE_DATA;
547
548 return 0;
549 } else {
550 traceState = TRACE_ERROR;
551 return 1;
552 }
553 break;
554
555 case TRACE_WRITE_DATA:
556 if (len == 18) {
557 traceState = TRACE_IDLE;
558
559 memcpy(traceCard + traceCurBlock * 16, data, 16);
560 if (wantSaveToEmlFile) saveTraceCard();
561 return 0;
562 } else {
563 traceState = TRACE_ERROR;
564 return 1;
565 }
566 break;
567
568 case TRACE_AUTH1:
569 if (len == 4) {
570 traceState = TRACE_AUTH2;
571 nt = bytes_to_num(data, 4);
572 return 0;
573 } else {
574 traceState = TRACE_ERROR;
575 return 1;
576 }
577 break;
578
579 case TRACE_AUTH2:
580 if (len == 8) {
581 traceState = TRACE_AUTH_OK;
582
583 nr_enc = bytes_to_num(data, 4);
584 ar_enc = bytes_to_num(data + 4, 4);
585 return 0;
586 } else {
587 traceState = TRACE_ERROR;
588 return 1;
589 }
590 break;
591
592 case TRACE_AUTH_OK:
593 if (len ==4) {
594 traceState = TRACE_IDLE;
595
596 at_enc = bytes_to_num(data, 4);
597
598 // decode key here)
599 ks2 = ar_enc ^ prng_successor(nt, 64);
600 ks3 = at_enc ^ prng_successor(nt, 96);
601 revstate = lfsr_recovery64(ks2, ks3);
602 lfsr_rollback_word(revstate, 0, 0);
603 lfsr_rollback_word(revstate, 0, 0);
604 lfsr_rollback_word(revstate, nr_enc, 1);
605 lfsr_rollback_word(revstate, uid ^ nt, 0);
606
607 crypto1_get_lfsr(revstate, &key);
608 printf("Key: %012"llx"\n",key);
609 AddLogUint64(logHexFileName, "key: ", key);
610
611 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
612 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
613
614 if (traceCurKey) {
615 num_to_bytes(key, 6, traceCard + blockShift + 10);
616 } else {
617 num_to_bytes(key, 6, traceCard + blockShift);
618 }
619 if (wantSaveToEmlFile) saveTraceCard();
620
621 if (traceCrypto1) {
622 crypto1_destroy(traceCrypto1);
623 }
624
625 // set cryptosystem state
626 traceCrypto1 = lfsr_recovery64(ks2, ks3);
627
628 // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
629
630 /* traceCrypto1 = crypto1_create(key); // key in lfsr
631 crypto1_word(traceCrypto1, nt ^ uid, 0);
632 crypto1_word(traceCrypto1, ar, 1);
633 crypto1_word(traceCrypto1, 0, 0);
634 crypto1_word(traceCrypto1, 0, 0);*/
635
636 return 0;
637 } else {
638 traceState = TRACE_ERROR;
639 return 1;
640 }
641 break;
642
643 default:
644 traceState = TRACE_ERROR;
645 return 1;
646 }
647
648 return 0;
649 }
650
651 int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
652 /*
653 uint32_t nt; // tag challenge
654 uint32_t nr_enc; // encrypted reader challenge
655 uint32_t ar_enc; // encrypted reader response
656 uint32_t at_enc; // encrypted tag response
657 */
658 struct Crypto1State *pcs = NULL;
659
660 ks2 = ar_enc ^ prng_successor(nt, 64);
661 ks3 = at_enc ^ prng_successor(nt, 96);
662
663 PrintAndLog("Decrypting data with:");
664 PrintAndLog(" nt: %08x",nt);
665 PrintAndLog(" ar_enc: %08x",ar_enc);
666 PrintAndLog(" at_enc: %08x",at_enc);
667 PrintAndLog("\nEncrypted data: [%s]", sprint_hex(data,len) );
668
669 pcs = lfsr_recovery64(ks2, ks3);
670 mf_crypto1_decrypt(pcs, data, len, FALSE);
671 PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
672 crypto1_destroy(pcs);
673 return 0;
674 }
Impressum, Datenschutz