1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
23 # define SHORT_COIL() LOW(GPIO_SSC_DOUT)
26 # define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
30 * Function to do a modulation and then get samples.
32 * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
36 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t periods
, uint32_t useHighFreq
, uint8_t *command
)
38 /* Make sure the tag is reset */
39 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
43 uint16_t period_0
= periods
>> 16;
44 uint16_t period_1
= periods
& 0xFFFF;
46 // 95 == 125 KHz 88 == 134.8 KHz
47 int divisor_used
= (useHighFreq
) ? 88 : 95;
48 sample_config sc
= { 0,0,1, divisor_used
, 0};
49 setSamplingConfig(&sc
);
52 BigBuf_Clear_keep_EM();
54 LFSetupFPGAForADC(sc
.divisor
, 1);
56 // And a little more time for the tag to fully power up
59 // now modulate the reader field
60 while(*command
!= '\0' && *command
!= ' ') {
61 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
64 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
68 if(*(command
++) == '0')
73 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
77 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
80 DoAcquisition_config(false);
82 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
85 /* blank r/w tag data stream
86 ...0000000000000000 01111111
87 1010101010101010101010101010101010101010101010101010101010101010
90 101010101010101[0]000...
92 [5555fe852c5555555555555555fe0000]
97 // some hardcoded initial params
98 // when we read a TI tag we sample the zerocross line at 2Mhz
99 // TI tags modulate a 1 as 16 cycles of 123.2Khz
100 // TI tags modulate a 0 as 16 cycles of 134.2Khz
101 #define FSAMPLE 2000000
102 #define FREQLO 123200
103 #define FREQHI 134200
105 signed char *dest
= (signed char *)BigBuf_get_addr();
106 uint16_t n
= BigBuf_max_traceLen();
107 // 128 bit shift register [shift3:shift2:shift1:shift0]
108 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
110 int i
, cycles
=0, samples
=0;
111 // how many sample points fit in 16 cycles of each frequency
112 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
113 // when to tell if we're close enough to one freq or another
114 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
116 // TI tags charge at 134.2Khz
117 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
118 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
120 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
121 // connects to SSP_DIN and the SSP_DOUT logic level controls
122 // whether we're modulating the antenna (high)
123 // or listening to the antenna (low)
124 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
126 // get TI tag data into the buffer
129 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
131 for (i
=0; i
<n
-1; i
++) {
132 // count cycles by looking for lo to hi zero crossings
133 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
135 // after 16 cycles, measure the frequency
138 samples
=i
-samples
; // number of samples in these 16 cycles
140 // TI bits are coming to us lsb first so shift them
141 // right through our 128 bit right shift register
142 shift0
= (shift0
>>1) | (shift1
<< 31);
143 shift1
= (shift1
>>1) | (shift2
<< 31);
144 shift2
= (shift2
>>1) | (shift3
<< 31);
147 // check if the cycles fall close to the number
148 // expected for either the low or high frequency
149 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
150 // low frequency represents a 1
152 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
153 // high frequency represents a 0
155 // probably detected a gay waveform or noise
156 // use this as gaydar or discard shift register and start again
157 shift3
= shift2
= shift1
= shift0
= 0;
161 // for each bit we receive, test if we've detected a valid tag
163 // if we see 17 zeroes followed by 6 ones, we might have a tag
164 // remember the bits are backwards
165 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
166 // if start and end bytes match, we have a tag so break out of the loop
167 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
168 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
176 // if flag is set we have a tag
178 DbpString("Info: No valid tag detected.");
180 // put 64 bit data into shift1 and shift0
181 shift0
= (shift0
>>24) | (shift1
<< 8);
182 shift1
= (shift1
>>24) | (shift2
<< 8);
184 // align 16 bit crc into lower half of shift2
185 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
187 // if r/w tag, check ident match
188 if (shift3
& (1<<15) ) {
189 DbpString("Info: TI tag is rewriteable");
190 // only 15 bits compare, last bit of ident is not valid
191 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
192 DbpString("Error: Ident mismatch!");
194 DbpString("Info: TI tag ident is valid");
197 DbpString("Info: TI tag is readonly");
200 // WARNING the order of the bytes in which we calc crc below needs checking
201 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
202 // bytes in reverse or something
206 crc
= update_crc16(crc
, (shift0
)&0xff);
207 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
208 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
209 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
210 crc
= update_crc16(crc
, (shift1
)&0xff);
211 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
212 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
213 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
215 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
216 if (crc
!= (shift2
&0xffff)) {
217 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
219 DbpString("Info: CRC is good");
225 void WriteTIbyte(uint8_t b
)
229 // modulate 8 bits out to the antenna
232 if ( b
& ( 1 << i
) ) {
233 // stop modulating antenna 1ms
236 // modulate antenna 1ms
240 // stop modulating antenna 1ms
243 // modulate antenna 1m
250 void AcquireTiType(void)
253 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
254 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
255 #define TIBUFLEN 1250
258 uint32_t *buf
= (uint32_t *)BigBuf_get_addr();
260 //clear buffer now so it does not interfere with timing later
261 BigBuf_Clear_ext(false);
263 // Set up the synchronous serial port
264 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
265 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
267 // steal this pin from the SSP and use it to control the modulation
268 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
269 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
271 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
272 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
274 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
275 // 48/2 = 24 MHz clock must be divided by 12
276 AT91C_BASE_SSC
->SSC_CMR
= 12;
278 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
279 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
280 AT91C_BASE_SSC
->SSC_TCMR
= 0;
281 AT91C_BASE_SSC
->SSC_TFMR
= 0;
282 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
288 // Charge TI tag for 50ms.
291 // stop modulating antenna and listen
298 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
299 buf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
300 i
++; if(i
>= TIBUFLEN
) break;
305 // return stolen pin to SSP
306 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
307 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
309 char *dest
= (char *)BigBuf_get_addr();
313 for (i
= TIBUFLEN
-1; i
>= 0; i
--) {
314 for (j
= 0; j
< 32; j
++) {
315 if(buf
[i
] & (1 << j
)) {
324 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
325 // if crc provided, it will be written with the data verbatim (even if bogus)
326 // if not provided a valid crc will be computed from the data and written.
327 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
330 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
332 crc
= update_crc16(crc
, (idlo
)&0xff);
333 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
334 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
335 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
336 crc
= update_crc16(crc
, (idhi
)&0xff);
337 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
338 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
339 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
341 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi
, (unsigned int) idlo
, crc
);
343 // TI tags charge at 134.2Khz
344 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
345 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
346 // connects to SSP_DIN and the SSP_DOUT logic level controls
347 // whether we're modulating the antenna (high)
348 // or listening to the antenna (low)
349 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
352 // steal this pin from the SSP and use it to control the modulation
353 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
354 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
356 // writing algorithm:
357 // a high bit consists of a field off for 1ms and field on for 1ms
358 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
359 // initiate a charge time of 50ms (field on) then immediately start writing bits
360 // start by writing 0xBB (keyword) and 0xEB (password)
361 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
362 // finally end with 0x0300 (write frame)
363 // all data is sent lsb first
364 // finish with 15ms programming time
368 WaitMS(50); // charge time
370 WriteTIbyte(0xbb); // keyword
371 WriteTIbyte(0xeb); // password
372 WriteTIbyte( (idlo
)&0xff );
373 WriteTIbyte( (idlo
>>8 )&0xff );
374 WriteTIbyte( (idlo
>>16)&0xff );
375 WriteTIbyte( (idlo
>>24)&0xff );
376 WriteTIbyte( (idhi
)&0xff );
377 WriteTIbyte( (idhi
>>8 )&0xff );
378 WriteTIbyte( (idhi
>>16)&0xff );
379 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
380 WriteTIbyte( (crc
)&0xff ); // crc lo
381 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
382 WriteTIbyte(0x00); // write frame lo
383 WriteTIbyte(0x03); // write frame hi
385 WaitMS(50); // programming time
389 // get TI tag data into the buffer
392 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
393 DbpString("Now use `lf ti read` to check");
397 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
400 uint8_t *buf
= BigBuf_get_addr();
402 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
403 //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
404 //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
406 // set frequency, get values from 'lf config' command
407 sample_config
*sc
= getSamplingConfig();
409 if ( (sc
->divisor
== 1) || (sc
->divisor
< 0) || (sc
->divisor
> 255) )
410 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
411 else if (sc
->divisor
== 0)
412 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
414 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
->divisor
);
416 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
418 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
419 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
420 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
429 if (ledcontrol
) LED_D_ON();
431 // wait until SSC_CLK goes HIGH
432 // used as a simple detection of a reader field?
433 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
435 if ( usb_poll_validate_length() || BUTTON_PRESS() )
444 //wait until SSC_CLK goes LOW
445 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
447 if ( usb_poll_validate_length() || BUTTON_PRESS() )
461 if (ledcontrol
) LED_D_OFF();
464 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
466 DbpString("Simulation stopped");
470 #define DEBUG_FRAME_CONTENTS 1
471 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
475 // compose fc/8 fc/10 waveform (FSK2)
476 static void fc(int c
, int *n
)
478 uint8_t *dest
= BigBuf_get_addr();
481 // for when we want an fc8 pattern every 4 logical bits
493 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
495 for (idx
=0; idx
<6; idx
++) {
507 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
509 for (idx
=0; idx
<5; idx
++) {
523 // compose fc/X fc/Y waveform (FSKx)
524 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
526 uint8_t *dest
= BigBuf_get_addr();
527 uint8_t halfFC
= fc
/2;
528 uint8_t wavesPerClock
= clock
/fc
;
529 uint8_t mod
= clock
% fc
; //modifier
530 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
531 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
532 // loop through clock - step field clock
533 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
534 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
535 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
536 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
539 if (mod
>0) (*modCnt
)++;
540 if ((mod
>0) && modAdjOk
){ //fsk2
541 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
542 memset(dest
+(*n
), 0, fc
-halfFC
);
543 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
547 if (mod
>0 && !modAdjOk
){ //fsk1
548 memset(dest
+(*n
), 0, mod
-(mod
/2));
549 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
554 // prepare a waveform pattern in the buffer based on the ID given then
555 // simulate a HID tag until the button is pressed
556 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
558 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
563 HID tag bitstream format
564 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
565 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
566 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
567 A fc8 is inserted before every 4 bits
568 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
569 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
573 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
577 // special start of frame marker containing invalid bit sequences
578 fc(8, &n
); fc(8, &n
); // invalid
579 fc(8, &n
); fc(10, &n
); // logical 0
580 fc(10, &n
); fc(10, &n
); // invalid
581 fc(8, &n
); fc(10, &n
); // logical 0
584 // manchester encode bits 43 to 32
585 for (i
=11; i
>=0; i
--) {
586 if ((i
%4)==3) fc(0,&n
);
588 fc(10, &n
); fc(8, &n
); // low-high transition
590 fc(8, &n
); fc(10, &n
); // high-low transition
595 // manchester encode bits 31 to 0
596 for (i
=31; i
>=0; i
--) {
597 if ((i
%4)==3) fc(0,&n
);
599 fc(10, &n
); fc(8, &n
); // low-high transition
601 fc(8, &n
); fc(10, &n
); // high-low transition
606 if (ledcontrol
) LED_A_ON();
607 SimulateTagLowFrequency(n
, 0, ledcontrol
);
608 if (ledcontrol
) LED_A_OFF();
611 // prepare a waveform pattern in the buffer based on the ID given then
612 // simulate a FSK tag until the button is pressed
613 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
614 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
616 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
618 // free eventually allocated BigBuf memory
619 BigBuf_free(); BigBuf_Clear_ext(false);
623 int ledcontrol
= 1, n
= 0, i
= 0;
624 uint8_t fcHigh
= arg1
>> 8;
625 uint8_t fcLow
= arg1
& 0xFF;
627 uint8_t clk
= arg2
& 0xFF;
628 uint8_t invert
= (arg2
>> 8) & 1;
630 for (i
=0; i
<size
; i
++){
632 if (BitStream
[i
] == invert
)
633 fcAll(fcLow
, &n
, clk
, &modCnt
);
635 fcAll(fcHigh
, &n
, clk
, &modCnt
);
639 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh
, fcLow
, clk
, invert
, n
);
641 if (ledcontrol
) LED_A_ON();
642 SimulateTagLowFrequency(n
, 0, ledcontrol
);
643 if (ledcontrol
) LED_A_OFF();
646 // compose ask waveform for one bit(ASK)
647 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
649 uint8_t *dest
= BigBuf_get_addr();
650 uint8_t halfClk
= clock
/2;
651 // c = current bit 1 or 0
653 memset(dest
+(*n
), c
, halfClk
);
654 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
656 memset(dest
+(*n
), c
, clock
);
661 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
663 uint8_t *dest
= BigBuf_get_addr();
664 uint8_t halfClk
= clock
/2;
666 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
667 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
669 memset(dest
+(*n
), c
^ *phase
, clock
);
675 static void stAskSimBit(int *n
, uint8_t clock
) {
676 uint8_t *dest
= BigBuf_get_addr();
677 uint8_t halfClk
= clock
/2;
678 //ST = .5 high .5 low 1.5 high .5 low 1 high
679 memset(dest
+(*n
), 1, halfClk
);
680 memset(dest
+(*n
) + halfClk
, 0, halfClk
);
681 memset(dest
+(*n
) + clock
, 1, clock
+ halfClk
);
682 memset(dest
+(*n
) + clock
*2 + halfClk
, 0, halfClk
);
683 memset(dest
+(*n
) + clock
*3, 1, clock
);
687 // args clock, ask/man or askraw, invert, transmission separator
688 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
690 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
693 int ledcontrol
= 1, n
= 0, i
= 0;
694 uint8_t clk
= (arg1
>> 8) & 0xFF;
695 uint8_t encoding
= arg1
& 0xFF;
696 uint8_t separator
= arg2
& 1;
697 uint8_t invert
= (arg2
>> 8) & 1;
699 if (encoding
== 2){ //biphase
701 for (i
=0; i
<size
; i
++){
702 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
704 if (phase
== 1) { //run a second set inverted to keep phase in check
705 for (i
=0; i
<size
; i
++){
706 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
709 } else { // ask/manchester || ask/raw
710 for (i
=0; i
<size
; i
++){
711 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
713 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for ask/raw || biphase phase)
714 for (i
=0; i
<size
; i
++){
715 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
719 if (separator
==1 && encoding
== 1)
720 stAskSimBit(&n
, clk
);
721 else if (separator
==1)
722 Dbprintf("sorry but separator option not yet available");
726 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
728 if (ledcontrol
) LED_A_ON();
729 SimulateTagLowFrequency(n
, 0, ledcontrol
);
730 if (ledcontrol
) LED_A_OFF();
733 //carrier can be 2,4 or 8
734 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
736 uint8_t *dest
= BigBuf_get_addr();
737 uint8_t halfWave
= waveLen
/2;
741 // write phase change
742 memset(dest
+(*n
), *curPhase
^1, halfWave
);
743 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
748 //write each normal clock wave for the clock duration
749 for (; i
< clk
; i
+=waveLen
){
750 memset(dest
+(*n
), *curPhase
, halfWave
);
751 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
756 // args clock, carrier, invert,
757 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
759 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
762 int ledcontrol
= 1, n
= 0, i
= 0;
763 uint8_t clk
= arg1
>> 8;
764 uint8_t carrier
= arg1
& 0xFF;
765 uint8_t invert
= arg2
& 0xFF;
766 uint8_t curPhase
= 0;
767 for (i
=0; i
<size
; i
++){
768 if (BitStream
[i
] == curPhase
){
769 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
771 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
777 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
779 if (ledcontrol
) LED_A_ON();
780 SimulateTagLowFrequency(n
, 0, ledcontrol
);
781 if (ledcontrol
) LED_A_OFF();
784 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
785 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
787 uint8_t *dest
= BigBuf_get_addr();
789 uint32_t hi2
=0, hi
=0, lo
=0;
791 // Configure to go in 125Khz listen mode
792 LFSetupFPGAForADC(95, true);
795 BigBuf_Clear_keep_EM();
797 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
800 if (ledcontrol
) LED_A_ON();
802 DoAcquisition_default(0, true);
804 size
= 50*128*2; //big enough to catch 2 sequences of largest format
805 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
807 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
808 // go over previously decoded manchester data and decode into usable tag ID
809 if (hi2
!= 0){ //extra large HID tags 88/192 bits
810 Dbprintf("TAG ID: %x%08x%08x (%d)",
814 (unsigned int) (lo
>>1) & 0xFFFF
816 } else { //standard HID tags 44/96 bits
819 uint32_t cardnum
= 0;
821 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
823 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
825 while(lo2
> 1){ //find last bit set to 1 (format len bit)
833 cardnum
= (lo
>>1)&0xFFFF;
837 cardnum
= (lo
>>1)&0x7FFFF;
838 fc
= ((hi
&0xF)<<12)|(lo
>>20);
841 cardnum
= (lo
>>1)&0xFFFF;
842 fc
= ((hi
&1)<<15)|(lo
>>17);
845 cardnum
= (lo
>>1)&0xFFFFF;
846 fc
= ((hi
&1)<<11)|(lo
>>21);
849 else { //if bit 38 is not set then 37 bit format is used
854 cardnum
= (lo
>>1)&0x7FFFF;
855 fc
= ((hi
&0xF)<<12)|(lo
>>20);
858 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
861 (unsigned int) (lo
>>1) & 0xFFFF,
862 (unsigned int) bitlen
,
864 (unsigned int) cardnum
);
867 if (ledcontrol
) LED_A_OFF();
874 hi2
= hi
= lo
= idx
= 0;
877 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
878 DbpString("Stopped");
879 if (ledcontrol
) LED_A_OFF();
882 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
883 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
885 uint8_t *dest
= BigBuf_get_addr();
889 BigBuf_Clear_keep_EM();
890 // Configure to go in 125Khz listen mode
891 LFSetupFPGAForADC(95, true);
893 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
896 if (ledcontrol
) LED_A_ON();
898 DoAcquisition_default(-1,true);
900 size
= 50*128*2; //big enough to catch 2 sequences of largest format
901 idx
= AWIDdemodFSK(dest
, &size
);
903 if (idx
<=0 || size
!=96) continue;
905 // 0 10 20 30 40 50 60
907 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
908 // -----------------------------------------------------------------------------
909 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
910 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
911 // |---26 bit---| |-----117----||-------------142-------------|
912 // b = format bit len, o = odd parity of last 3 bits
913 // f = facility code, c = card number
914 // w = wiegand parity
915 // (26 bit format shown)
917 //get raw ID before removing parities
918 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
919 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
920 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
922 size
= removeParity(dest
, idx
+8, 4, 1, 88);
923 if (size
!= 66) continue;
926 // 0 10 20 30 40 50 60
928 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
929 // -----------------------------------------------------------------------------
930 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
931 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
932 // |26 bit| |-117--| |-----142------|
934 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
935 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
936 // |50 bit| |----4000------||-----------2248975-------------|
938 // b = format bit len, o = odd parity of last 3 bits
939 // f = facility code, c = card number
940 // w = wiegand parity
943 uint32_t cardnum
= 0;
946 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
949 fc
= bytebits_to_byte(dest
+ 9, 8);
950 cardnum
= bytebits_to_byte(dest
+ 17, 16);
951 code1
= bytebits_to_byte(dest
+ 8,fmtLen
);
952 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
955 fc
= bytebits_to_byte(dest
+ 9, 16);
956 cardnum
= bytebits_to_byte(dest
+ 25, 32);
957 code1
= bytebits_to_byte(dest
+ 8, (fmtLen
-32) );
958 code2
= bytebits_to_byte(dest
+ 8 + (fmtLen
-32), 32);
959 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
963 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
964 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
965 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
966 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
968 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
969 code1
= bytebits_to_byte(dest
+8,fmtLen
);
970 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
981 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
982 DbpString("Stopped");
983 if (ledcontrol
) LED_A_OFF();
986 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
988 uint8_t *dest
= BigBuf_get_addr();
990 size_t size
=0, idx
=0;
991 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
995 BigBuf_Clear_keep_EM();
996 // Configure to go in 125Khz listen mode
997 LFSetupFPGAForADC(95, true);
999 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1002 if (ledcontrol
) LED_A_ON();
1004 DoAcquisition_default(-1,true);
1005 size
= BigBuf_max_traceLen();
1006 //askdemod and manchester decode
1007 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
1008 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
1011 if (errCnt
<0) continue;
1013 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
1016 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1020 (uint32_t)(lo
&0xFFFF),
1021 (uint32_t)((lo
>>16LL) & 0xFF),
1022 (uint32_t)(lo
& 0xFFFFFF));
1024 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1027 (uint32_t)(lo
&0xFFFF),
1028 (uint32_t)((lo
>>16LL) & 0xFF),
1029 (uint32_t)(lo
& 0xFFFFFF));
1033 if (ledcontrol
) LED_A_OFF();
1035 *low
=lo
& 0xFFFFFFFF;
1040 hi
= lo
= size
= idx
= 0;
1041 clk
= invert
= errCnt
= 0;
1043 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1044 DbpString("Stopped");
1045 if (ledcontrol
) LED_A_OFF();
1048 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
1050 uint8_t *dest
= BigBuf_get_addr();
1052 uint32_t code
=0, code2
=0;
1054 uint8_t facilitycode
=0;
1057 uint16_t calccrc
= 0;
1060 BigBuf_Clear_keep_EM();
1062 // Configure to go in 125Khz listen mode
1063 LFSetupFPGAForADC(95, true);
1065 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1067 if (ledcontrol
) LED_A_ON();
1068 DoAcquisition_default(-1,true);
1069 //fskdemod and get start index
1071 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
1072 if (idx
<0) continue;
1076 //0 10 20 30 40 50 60
1078 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1079 //-----------------------------------------------------------------------------
1080 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1083 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1084 //preamble F0 E0 01 03 B6 75
1085 // How to calc checksum,
1086 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1087 // F0 + E0 + 01 + 03 + B6 = 28A
1091 //XSF(version)facility:codeone+codetwo
1093 // if(findone){ //only print binary if we are doing one
1094 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1095 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1096 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1097 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1098 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1099 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1100 // Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1102 code
= bytebits_to_byte(dest
+idx
,32);
1103 code2
= bytebits_to_byte(dest
+idx
+32,32);
1104 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1105 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1106 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1108 crc
= bytebits_to_byte(dest
+idx
+54,8);
1109 for (uint8_t i
=1; i
<6; ++i
)
1110 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
1112 calccrc
= 0xff - calccrc
;
1114 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
1116 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
1117 // if we're only looking for one tag
1119 if (ledcontrol
) LED_A_OFF();
1125 version
=facilitycode
=0;
1131 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1132 DbpString("Stopped");
1133 if (ledcontrol
) LED_A_OFF();
1136 /*------------------------------
1137 * T5555/T5557/T5567/T5577 routines
1138 *------------------------------
1139 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1141 * Relevant communication times in microsecond
1142 * To compensate antenna falling times shorten the write times
1143 * and enlarge the gap ones.
1144 * Q5 tags seems to have issues when these values changes.
1147 #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
1148 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
1149 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
1150 #define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
1151 #define READ_GAP 15*8
1153 // VALUES TAKEN FROM EM4x function: SendForward
1154 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1155 // WRITE_GAP = 128; (16*8)
1156 // WRITE_1 = 256 32*8; (32*8)
1158 // These timings work for 4469/4269/4305 (with the 55*8 above)
1159 // WRITE_0 = 23*8 , 9*8
1161 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1162 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1163 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1164 // T0 = TIMER_CLOCK1 / 125000 = 192
1165 // 1 Cycle = 8 microseconds(us) == 1 field clock
1169 // 1fc = 8us = 12ticks
1170 void TurnReadLFOn(uint32_t delay
) {
1171 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1173 // measure antenna strength.
1174 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1176 // Give it a bit of time for the resonant antenna to settle.
1180 // Write one bit to card
1181 void T55xxWriteBit(int bit
) {
1183 TurnReadLFOn(WRITE_0
);
1185 TurnReadLFOn(WRITE_1
);
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1190 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1191 void T55xxResetRead(void) {
1193 //clear buffer now so it does not interfere with timing later
1194 BigBuf_Clear_keep_EM();
1196 // Set up FPGA, 125kHz
1197 LFSetupFPGAForADC(95, true);
1199 // Trigger T55x7 in mode.
1200 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1203 // reset tag - op code 00
1207 // Turn field on to read the response
1208 TurnReadLFOn(READ_GAP
);
1211 doT55x7Acquisition(BigBuf_max_traceLen());
1213 // Turn the field off
1214 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1215 cmd_send(CMD_ACK
,0,0,0,0,0);
1219 // Write one card block in page 0, no lock
1220 void T55xxWriteBlockExt(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1222 bool PwdMode
= arg
& 0x1;
1223 uint8_t Page
= (arg
& 0x2)>>1;
1226 // Set up FPGA, 125kHz
1227 LFSetupFPGAForADC(95, true);
1229 // Trigger T55x7 in mode.
1230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1235 T55xxWriteBit(Page
); //Page 0
1238 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1239 T55xxWriteBit(Pwd
& i
);
1245 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1246 T55xxWriteBit(Data
& i
);
1248 // Send Block number
1249 for (i
= 0x04; i
!= 0; i
>>= 1)
1250 T55xxWriteBit(Block
& i
);
1252 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1253 // so wait a little more)
1254 TurnReadLFOn(20 * 1000);
1256 //could attempt to do a read to confirm write took
1257 // as the tag should repeat back the new block
1258 // until it is reset, but to confirm it we would
1259 // need to know the current block 0 config mode
1262 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1266 // Write one card block in page 0, no lock
1267 void T55xxWriteBlock(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1268 T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
);
1269 cmd_send(CMD_ACK
,0,0,0,0,0);
1272 // Read one card block in page [page]
1273 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1275 bool PwdMode
= arg0
& 0x1;
1276 uint8_t Page
= (arg0
& 0x2) >> 1;
1278 bool RegReadMode
= (Block
== 0xFF);
1280 //clear buffer now so it does not interfere with timing later
1281 BigBuf_Clear_keep_EM();
1283 //make sure block is at max 7
1286 // Set up FPGA, 125kHz to power up the tag
1287 LFSetupFPGAForADC(95, true);
1290 // Trigger T55x7 Direct Access Mode with start gap
1291 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1296 T55xxWriteBit(Page
); //Page 0
1300 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1301 T55xxWriteBit(Pwd
& i
);
1303 // Send a zero bit separation
1306 // Send Block number (if direct access mode)
1308 for (i
= 0x04; i
!= 0; i
>>= 1)
1309 T55xxWriteBit(Block
& i
);
1311 // Turn field on to read the response
1312 TurnReadLFOn(READ_GAP
);
1315 doT55x7Acquisition(7679);
1317 // Turn the field off
1318 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1319 cmd_send(CMD_ACK
,0,0,0,0,0);
1323 void T55xxWakeUp(uint32_t Pwd
){
1327 // Set up FPGA, 125kHz
1328 LFSetupFPGAForADC(95, true);
1330 // Trigger T55x7 Direct Access Mode
1331 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1336 T55xxWriteBit(0); //Page 0
1339 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1340 T55xxWriteBit(Pwd
& i
);
1342 // Turn and leave field on to let the begin repeating transmission
1343 TurnReadLFOn(20*1000);
1346 /*-------------- Cloning routines -----------*/
1347 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1348 // write last block first and config block last (if included)
1349 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--)
1350 T55xxWriteBlockExt(blockdata
[i
-1], i
-1, 0, 0);
1353 // Copy HID id to card and setup block 0 config
1354 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1355 uint32_t data
[] = {0,0,0,0,0,0,0};
1356 uint8_t last_block
= 0;
1359 // Ensure no more than 84 bits supplied
1360 if (hi2
> 0xFFFFF) {
1361 DbpString("Tags can only have 84 bits.");
1364 // Build the 6 data blocks for supplied 84bit ID
1366 // load preamble (1D) & long format identifier (9E manchester encoded)
1367 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1368 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1369 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1370 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1371 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1372 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1373 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1375 // Ensure no more than 44 bits supplied
1377 DbpString("Tags can only have 44 bits.");
1380 // Build the 3 data blocks for supplied 44bit ID
1383 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1384 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1385 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1387 // load chip config block
1388 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1390 //TODO add selection of chip for Q5 or T55x7
1391 // data[0] = (((50-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1394 WriteT55xx(data
, 0, last_block
+1);
1398 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1399 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1400 //TODO add selection of chip for Q5 or T55x7
1401 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1402 // data[0] = ( ((64-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1405 // Program the data blocks for supplied ID
1406 // and the block 0 config
1407 WriteT55xx(data
, 0, 3);
1411 // Clone Indala 64-bit tag by UID to T55x7
1412 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1413 //Program the 2 data blocks for supplied 64bit UID
1414 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1415 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1416 //TODO add selection of chip for Q5 or T55x7
1417 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1419 WriteT55xx(data
, 0, 3);
1420 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1421 // T5567WriteBlock(0x603E1042,0);
1423 // Clone Indala 224-bit tag by UID to T55x7
1424 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1425 //Program the 7 data blocks for supplied 224bit UID
1426 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1427 // and the block 0 for Indala224 format
1428 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1429 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (7 << T55x7_MAXBLOCK_SHIFT
);
1430 //TODO add selection of chip for Q5 or T55x7
1431 // data[0] = (((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1432 WriteT55xx(data
, 0, 8);
1433 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1434 // T5567WriteBlock(0x603E10E2,0);
1436 // clone viking tag to T55xx
1437 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) {
1438 uint32_t data
[] = {T55x7_BITRATE_RF_32
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
};
1439 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1440 if (Q5
) data
[0] = (((32-2)>>1) << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| 2 << T5555_MAXBLOCK_SHIFT
;
1441 // Program the data blocks for supplied ID and the block 0 config
1442 WriteT55xx(data
, 0, 3);
1444 cmd_send(CMD_ACK
,0,0,0,0,0);
1447 // Define 9bit header for EM410x tags
1448 #define EM410X_HEADER 0x1FF
1449 #define EM410X_ID_LENGTH 40
1451 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1453 uint64_t id
= EM410X_HEADER
;
1454 uint64_t rev_id
= 0; // reversed ID
1455 int c_parity
[4]; // column parity
1456 int r_parity
= 0; // row parity
1459 // Reverse ID bits given as parameter (for simpler operations)
1460 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1462 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1465 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1470 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1471 id_bit
= rev_id
& 1;
1474 // Don't write row parity bit at start of parsing
1476 id
= (id
<< 1) | r_parity
;
1477 // Start counting parity for new row
1484 // First elements in column?
1486 // Fill out first elements
1487 c_parity
[i
] = id_bit
;
1489 // Count column parity
1490 c_parity
[i
% 4] ^= id_bit
;
1493 id
= (id
<< 1) | id_bit
;
1497 // Insert parity bit of last row
1498 id
= (id
<< 1) | r_parity
;
1500 // Fill out column parity at the end of tag
1501 for (i
= 0; i
< 4; ++i
)
1502 id
= (id
<< 1) | c_parity
[i
];
1507 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1511 uint32_t data
[] = {0, (uint32_t)(id
>>32), (uint32_t)(id
& 0xFFFFFFFF)};
1513 clock
= (card
& 0xFF00) >> 8;
1514 clock
= (clock
== 0) ? 64 : clock
;
1515 Dbprintf("Clock rate: %d", clock
);
1516 if (card
& 0xFF) { //t55x7
1517 clock
= GetT55xxClockBit(clock
);
1519 Dbprintf("Invalid clock rate: %d", clock
);
1522 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1523 } else { //t5555 (Q5)
1524 // t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1525 data
[0] = ( ((clock
-2) >> 1) << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1528 WriteT55xx(data
, 0, 3);
1531 Dbprintf("Tag %s written with 0x%08x%08x\n",
1532 card
? "T55x7":"T5555",
1533 (uint32_t)(id
>> 32),
1537 //-----------------------------------
1538 // EM4469 / EM4305 routines
1539 //-----------------------------------
1540 // Below given command set.
1541 // Commands are including the even parity, binary mirrored
1542 #define FWD_CMD_LOGIN 0xC
1543 #define FWD_CMD_WRITE 0xA
1544 #define FWD_CMD_READ 0x9
1545 #define FWD_CMD_DISABLE 0x5
1547 uint8_t forwardLink_data
[64]; //array of forwarded bits
1548 uint8_t * forward_ptr
; //ptr for forward message preparation
1549 uint8_t fwd_bit_sz
; //forwardlink bit counter
1550 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1552 //====================================================================
1553 // prepares command bits
1555 //====================================================================
1556 //--------------------------------------------------------------------
1557 // VALUES TAKEN FROM EM4x function: SendForward
1558 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1559 // WRITE_GAP = 128; (16*8)
1560 // WRITE_1 = 256 32*8; (32*8)
1562 // These timings work for 4469/4269/4305 (with the 55*8 above)
1563 // WRITE_0 = 23*8 , 9*8
1565 uint8_t Prepare_Cmd( uint8_t cmd
) {
1567 *forward_ptr
++ = 0; //start bit
1568 *forward_ptr
++ = 0; //second pause for 4050 code
1570 *forward_ptr
++ = cmd
;
1572 *forward_ptr
++ = cmd
;
1574 *forward_ptr
++ = cmd
;
1576 *forward_ptr
++ = cmd
;
1578 return 6; //return number of emited bits
1581 //====================================================================
1582 // prepares address bits
1584 //====================================================================
1585 uint8_t Prepare_Addr( uint8_t addr
) {
1587 register uint8_t line_parity
;
1591 for( i
=0; i
<6; i
++ ) {
1592 *forward_ptr
++ = addr
;
1593 line_parity
^= addr
;
1597 *forward_ptr
++ = (line_parity
& 1);
1599 return 7; //return number of emited bits
1602 //====================================================================
1603 // prepares data bits intreleaved with parity bits
1605 //====================================================================
1606 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1608 register uint8_t line_parity
;
1609 register uint8_t column_parity
;
1610 register uint8_t i
, j
;
1611 register uint16_t data
;
1616 for(i
=0; i
<4; i
++) {
1618 for(j
=0; j
<8; j
++) {
1619 line_parity
^= data
;
1620 column_parity
^= (data
& 1) << j
;
1621 *forward_ptr
++ = data
;
1624 *forward_ptr
++ = line_parity
;
1629 for(j
=0; j
<8; j
++) {
1630 *forward_ptr
++ = column_parity
;
1631 column_parity
>>= 1;
1635 return 45; //return number of emited bits
1638 //====================================================================
1639 // Forward Link send function
1640 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1641 // fwd_bit_count set with number of bits to be sent
1642 //====================================================================
1643 void SendForward(uint8_t fwd_bit_count
) {
1645 // iceman, 21.3us increments for the USclock verification.
1646 // 55FC * 8us == 440us / 21.3 === 20.65 steps. could be too short. Go for 56FC instead
1647 // 32FC * 8us == 256us / 21.3 == 12.018 steps. ok
1648 // 16FC * 8us == 128us / 21.3 == 6.009 steps. ok
1650 #ifndef EM_START_GAP
1651 #define EM_START_GAP 60*8
1654 #define EM_ONE_GAP 32*8
1657 # define EM_ZERO_GAP 16*8
1660 fwd_write_ptr
= forwardLink_data
;
1661 fwd_bit_sz
= fwd_bit_count
;
1663 // Set up FPGA, 125kHz
1664 LFSetupFPGAForADC(95, true);
1666 // force 1st mod pulse (start gap must be longer for 4305)
1667 fwd_bit_sz
--; //prepare next bit modulation
1670 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1671 WaitUS(EM_START_GAP
);
1674 // now start writting with bitbanging the antenna.
1675 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1676 if(((*fwd_write_ptr
++) & 1) == 1)
1679 //These timings work for 4469/4269/4305
1680 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1687 void EM4xLogin(uint32_t pwd
) {
1689 forward_ptr
= forwardLink_data
;
1690 len
= Prepare_Cmd( FWD_CMD_LOGIN
);
1691 len
+= Prepare_Data( pwd
& 0xFFFF, pwd
>> 16 );
1693 WaitMS(20); // no wait for login command.
1699 void EM4xReadWord(uint8_t addr
, uint32_t pwd
, uint8_t usepwd
) {
1705 //clear buffer now so it does not interfere with timing later
1706 BigBuf_Clear_ext(false);
1708 /* should we read answer from Logincommand?
1714 if (usepwd
) EM4xLogin(pwd
);
1716 forward_ptr
= forwardLink_data
;
1717 len
= Prepare_Cmd( FWD_CMD_READ
);
1718 len
+= Prepare_Addr( addr
);
1722 DoAcquisition_default(0, TRUE
);
1724 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1725 cmd_send(CMD_ACK
,0,0,0,0,0);
1729 void EM4xWriteWord(uint32_t flag
, uint32_t data
, uint32_t pwd
) {
1733 bool usePwd
= (flag
& 0xF);
1734 uint8_t addr
= (flag
>> 8) & 0xFF;
1737 //clear buffer now so it does not interfere with timing later
1738 BigBuf_Clear_ext(false);
1740 /* should we read answer from Logincommand?
1746 if (usePwd
) EM4xLogin(pwd
);
1748 forward_ptr
= forwardLink_data
;
1749 len
= Prepare_Cmd( FWD_CMD_WRITE
);
1750 len
+= Prepare_Addr( addr
);
1751 len
+= Prepare_Data( data
& 0xFFFF, data
>> 16 );
1755 //Wait 20ms for write to complete?
1758 //Capture response if one exists
1759 DoAcquisition_default(20, TRUE
);
1761 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1762 cmd_send(CMD_ACK
,0,0,0,0,0);
1769 COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1770 because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1772 READER START SEQUENCE:
1773 burst 800 us, gap 2.2 msecs
1774 burst 3.6 msecs gap 2.2 msecs
1775 burst 800 us gap 2.2 msecs
1778 This triggers a COTAG tag to response
1780 void Cotag(uint32_t arg0
) {
1782 # define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1785 # define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1787 uint8_t rawsignal
= arg0
& 0xF;
1791 // Switching to LF image on FPGA. This might empty BigBuff
1792 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1794 //clear buffer now so it does not interfere with timing later
1795 BigBuf_Clear_ext(false);
1797 // Set up FPGA, 132kHz to power up the tag
1798 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 89);
1799 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1801 // Connect the A/D to the peak-detected low-frequency path.
1802 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1804 // Now set up the SSC to get the ADC samples that are now streaming at us.
1807 // start clock - 1.5ticks is 1us
1810 //send COTAG start pulse
1817 case 0: doCotagAcquisition(50000); break;
1818 case 1: doCotagAcquisitionManchester(); break;
1819 case 2: DoAcquisition_config(TRUE
); break;
1822 // Turn the field off
1823 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1824 cmd_send(CMD_ACK
,0,0,0,0,0);