]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
FIX: memcpy bug...
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include "cmdlfem4x.h"
12
13 uint64_t g_em410xid = 0;
14
15 static int CmdHelp(const char *Cmd);
16
17 int CmdEMdemodASK(const char *Cmd)
18 {
19 char cmdp = param_getchar(Cmd, 0);
20 uint8_t findone = (cmdp == '1') ? 1 : 0;
21 UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}};
22 SendCommand(&c);
23 return 0;
24 }
25
26 /* Read the ID of an EM410x tag.
27 * Format:
28 * 1111 1111 1 <-- standard non-repeatable header
29 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
30 * ....
31 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
32 * 0 <-- stop bit, end of tag
33 */
34 int CmdEM410xRead(const char *Cmd)
35 {
36 uint32_t hi=0;
37 uint64_t lo=0;
38
39 if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
40 PrintAndLog("EM410x pattern found: ");
41 printEM410x(hi, lo);
42 if (hi){
43 PrintAndLog ("EM410x XL pattern found");
44 return 0;
45 }
46 g_em410xid = lo;
47 return 1;
48 }
49
50
51 int usage_lf_em410x_sim(void) {
52 PrintAndLog("Simulating EM410x tag");
53 PrintAndLog("");
54 PrintAndLog("Usage: lf em4x em410xsim [h] <uid> <clock>");
55 PrintAndLog("Options:");
56 PrintAndLog(" h - this help");
57 PrintAndLog(" uid - uid (10 HEX symbols)");
58 PrintAndLog(" clock - clock (32|64) (optional)");
59 PrintAndLog("samples:");
60 PrintAndLog(" lf em4x em410xsim 0F0368568B");
61 PrintAndLog(" lf em4x em410xsim 0F0368568B 32");
62 return 0;
63 }
64
65 // emulate an EM410X tag
66 int CmdEM410xSim(const char *Cmd)
67 {
68 int i, n, j, binary[4], parity[4];
69 uint8_t uid[5] = {0x00};
70
71 char cmdp = param_getchar(Cmd, 0);
72 if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
73
74 /* clock is 64 in EM410x tags */
75 uint8_t clock = 64;
76
77 if (param_gethex(Cmd, 0, uid, 10)) {
78 PrintAndLog("UID must include 10 HEX symbols");
79 return 0;
80 }
81
82 param_getdec(Cmd, 1, &clock);
83
84 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
85 PrintAndLog("Press pm3-button to about simulation");
86
87 /* clear our graph */
88 ClearGraph(0);
89
90 /* write 9 start bits */
91 for (i = 0; i < 9; i++)
92 AppendGraph(0, clock, 1);
93
94 /* for each hex char */
95 parity[0] = parity[1] = parity[2] = parity[3] = 0;
96 for (i = 0; i < 10; i++)
97 {
98 /* read each hex char */
99 sscanf(&Cmd[i], "%1x", &n);
100 for (j = 3; j >= 0; j--, n/= 2)
101 binary[j] = n % 2;
102
103 /* append each bit */
104 AppendGraph(0, clock, binary[0]);
105 AppendGraph(0, clock, binary[1]);
106 AppendGraph(0, clock, binary[2]);
107 AppendGraph(0, clock, binary[3]);
108
109 /* append parity bit */
110 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
111
112 /* keep track of column parity */
113 parity[0] ^= binary[0];
114 parity[1] ^= binary[1];
115 parity[2] ^= binary[2];
116 parity[3] ^= binary[3];
117 }
118
119 /* parity columns */
120 AppendGraph(0, clock, parity[0]);
121 AppendGraph(0, clock, parity[1]);
122 AppendGraph(0, clock, parity[2]);
123 AppendGraph(0, clock, parity[3]);
124
125 /* stop bit */
126 AppendGraph(1, clock, 0);
127
128 CmdLFSim("0"); //240 start_gap.
129 return 0;
130 }
131
132 /* Function is equivalent of lf read + data samples + em410xread
133 * looped until an EM410x tag is detected
134 *
135 * Why is CmdSamples("16000")?
136 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
137 * rate gets lower, then grow the number of samples
138 * Changed by martin, 4000 x 4 = 16000,
139 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
140 */
141 int CmdEM410xWatch(const char *Cmd)
142 {
143 do {
144 if (ukbhit()) {
145 printf("\naborted via keyboard!\n");
146 break;
147 }
148
149 CmdLFRead("s");
150 getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)
151 } while (!CmdEM410xRead(""));
152
153 return 0;
154 }
155
156 //currently only supports manchester modulations
157 // todo: helptext
158 int CmdEM410xWatchnSpoof(const char *Cmd)
159 {
160 // loops if the captured ID was in XL-format.
161 CmdEM410xWatch(Cmd);
162 PrintAndLog("# Replaying captured ID: %llu", g_em410xid);
163 CmdLFaskSim("");
164 return 0;
165 }
166
167 int CmdEM410xWrite(const char *Cmd)
168 {
169 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
170 int card = 0xFF; // invalid card value
171 uint32_t clock = 0; // invalid clock value
172
173 sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
174
175 // Check ID
176 if (id == 0xFFFFFFFFFFFFFFFF) {
177 PrintAndLog("Error! ID is required.\n");
178 return 0;
179 }
180 if (id >= 0x10000000000) {
181 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
182 return 0;
183 }
184
185 // Check Card
186 if (card == 0xFF) {
187 PrintAndLog("Error! Card type required.\n");
188 return 0;
189 }
190 if (card < 0) {
191 PrintAndLog("Error! Bad card type selected.\n");
192 return 0;
193 }
194
195 // Check Clock
196 // Default: 64
197 if (clock == 0)
198 clock = 64;
199
200 // Allowed clock rates: 16, 32, 40 and 64
201 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
202 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
203 return 0;
204 }
205
206 if (card == 1) {
207 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
208 // NOTE: We really should pass the clock in as a separate argument, but to
209 // provide for backwards-compatibility for older firmware, and to avoid
210 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
211 // the clock rate in bits 8-15 of the card value
212 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
213 } else if (card == 0) {
214 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
215 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
216 } else {
217 PrintAndLog("Error! Bad card type selected.\n");
218 return 0;
219 }
220
221 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
222 SendCommand(&c);
223 return 0;
224 }
225
226 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
227 {
228 if (rows*cols>size) return FALSE;
229 uint8_t colP=0;
230 //assume last col is a parity and do not test
231 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
232 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
233 colP ^= BitStream[(rowNum*cols)+colNum];
234 }
235 if (colP != pType) return FALSE;
236 }
237 return TRUE;
238 }
239
240 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
241 {
242 if (rows*cols>size) return FALSE;
243 uint8_t rowP=0;
244 //assume last row is a parity row and do not test
245 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
246 for (uint8_t colNum = 0; colNum < cols; colNum++) {
247 rowP ^= BitStream[(rowNum*cols)+colNum];
248 }
249 if (rowP != pType) return FALSE;
250 }
251 return TRUE;
252 }
253
254 // EM word parity test.
255 // 9*5 = 45 bits in total
256 // 012345678|r1
257 // 012345678|r2
258 // 012345678|r3
259 // 012345678|r4
260 // ------------
261 //c012345678| 0
262 // |- must be zero
263
264 bool EMwordparitytest(uint8_t *bits){
265
266 // last row/col parity must be 0
267 if (bits[44] != 0 ) return FALSE;
268
269 // col parity check
270 uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits+9, 8) ^ bytebits_to_byte(bits+18, 8) ^ bytebits_to_byte(bits+27, 8);
271 uint8_t c2 = bytebits_to_byte(bits+36, 8);
272 if ( c1 != c2 ) return FALSE;
273
274 // row parity check
275 uint8_t rowP = 0;
276 for ( uint8_t i = 0; i < 36; ++i ) {
277
278 rowP ^= bits[i];
279 if ( i>0 && (i % 9) == 0) {
280
281 if ( rowP != EVEN )
282 return FALSE;
283
284 rowP = 0;
285 }
286 }
287 // all checks ok.
288 return TRUE;
289 }
290
291
292 //////////////// 4050 / 4450 commands
293 int usage_lf_em4x50_dump(void) {
294 PrintAndLog("Dump EM4x50/EM4x69. Tag must be on antenna. ");
295 PrintAndLog("");
296 PrintAndLog("Usage: lf em 4x50dump [h] <pwd>");
297 PrintAndLog("Options:");
298 PrintAndLog(" h - this help");
299 PrintAndLog(" pwd - password (hex) (optional)");
300 PrintAndLog("samples:");
301 PrintAndLog(" lf em 4x50dump");
302 PrintAndLog(" lf em 4x50dump 11223344");
303 return 0;
304 }
305 int usage_lf_em4x50_read(void) {
306 PrintAndLog("Read EM 4x50/EM4x69. Tag must be on antenna. ");
307 PrintAndLog("");
308 PrintAndLog("Usage: lf em 4x50read [h] <address> <pwd>");
309 PrintAndLog("Options:");
310 PrintAndLog(" h - this help");
311 PrintAndLog(" address - memory address to read. (0-15)");
312 PrintAndLog(" pwd - password (hex) (optional)");
313 PrintAndLog("samples:");
314 PrintAndLog(" lf em 4x50read 1");
315 PrintAndLog(" lf em 4x50read 1 11223344");
316 return 0;
317 }
318 int usage_lf_em4x50_write(void) {
319 PrintAndLog("Write EM 4x50/4x69. Tag must be on antenna. ");
320 PrintAndLog("");
321 PrintAndLog("Usage: lf em 4x50write [h] <address> <data> <pwd>");
322 PrintAndLog("Options:");
323 PrintAndLog(" h - this help");
324 PrintAndLog(" address - memory address to write to. (0-15)");
325 PrintAndLog(" data - data to write (hex)");
326 PrintAndLog(" pwd - password (hex) (optional)");
327 PrintAndLog("samples:");
328 PrintAndLog(" lf em 4x50write 1 deadc0de");
329 PrintAndLog(" lf em 4x50write 1 deadc0de 11223344");
330 return 0;
331 }
332
333 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
334 {
335 if (size<45) return 0;
336
337 uint32_t code = bytebits_to_byte(BitStream,8);
338 code = code<<8 | bytebits_to_byte(BitStream+9,8);
339 code = code<<8 | bytebits_to_byte(BitStream+18,8);
340 code = code<<8 | bytebits_to_byte(BitStream+27,8);
341
342 if (verbose || g_debugMode){
343 for (uint8_t i = 0; i<5; i++){
344 if (i == 4) PrintAndLog(""); //parity byte spacer
345 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
346 BitStream[i*9],
347 BitStream[i*9+1],
348 BitStream[i*9+2],
349 BitStream[i*9+3],
350 BitStream[i*9+4],
351 BitStream[i*9+5],
352 BitStream[i*9+6],
353 BitStream[i*9+7],
354 BitStream[i*9+8],
355 bytebits_to_byte(BitStream+i*9,8)
356 );
357 }
358 if (pTest)
359 PrintAndLog("Parity Passed");
360 else
361 PrintAndLog("Parity Failed");
362 }
363 return code;
364 }
365
366
367 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
368 * Format:
369 *
370 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
371 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
372 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
373 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
374 * CCCCCCCC <- column parity bits
375 * 0 <- stop bit
376 * LW <- Listen Window
377 *
378 * This pattern repeats for every block of data being transmitted.
379 * Transmission starts with two Listen Windows (LW - a modulated
380 * pattern of 320 cycles each (32/32/128/64/64)).
381 *
382 * Note that this data may or may not be the UID. It is whatever data
383 * is stored in the blocks defined in the control word First and Last
384 * Word Read values. UID is stored in block 32.
385 */
386 //completed by Marshmellow
387 int EM4x50Read(const char *Cmd, bool verbose) {
388 uint8_t fndClk[] = {8,16,32,40,50,64,128};
389 int clk = 0;
390 int invert = 0;
391 int tol = 0;
392 int i, j, startblock, skip, block, start, end, low, high, minClk;
393 bool complete = false;
394 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
395 uint32_t Code[6];
396 char tmp[6];
397 char tmp2[20];
398 int phaseoff;
399 high = low = 0;
400 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
401
402 // get user entry if any
403 sscanf(Cmd, "%i %i", &clk, &invert);
404
405 // save GraphBuffer - to restore it later
406 save_restoreGB(1);
407
408 // first get high and low values
409 for (i = 0; i < GraphTraceLen; i++) {
410 if (GraphBuffer[i] > high)
411 high = GraphBuffer[i];
412 else if (GraphBuffer[i] < low)
413 low = GraphBuffer[i];
414 }
415
416 i = 0;
417 j = 0;
418 minClk = 255;
419 // get to first full low to prime loop and skip incomplete first pulse
420 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
421 ++i;
422 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
423 ++i;
424 skip = i;
425
426 // populate tmpbuff buffer with pulse lengths
427 while (i < GraphTraceLen) {
428 // measure from low to low
429 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
430 ++i;
431 start= i;
432 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
433 ++i;
434 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
435 ++i;
436 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
437 break;
438 }
439 tmpbuff[j++]= i - start;
440 if (i-start < minClk && i < GraphTraceLen) {
441 minClk = i - start;
442 }
443 }
444 // set clock
445 if (!clk) {
446 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
447 tol = fndClk[clkCnt]/8;
448 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
449 clk=fndClk[clkCnt];
450 break;
451 }
452 }
453 if (!clk) {
454 PrintAndLog("ERROR: EM4x50 - didn't find a clock");
455 return 0;
456 }
457 } else tol = clk/8;
458
459 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
460 start = -1;
461 for (i= 0; i < j - 4 ; ++i) {
462 skip += tmpbuff[i];
463 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
464 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
465 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
466 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
467 {
468 start= i + 4;
469 break;
470 }
471 }
472 startblock = i + 4;
473
474 // skip over the remainder of LW
475 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
476 if (tmpbuff[i+3]>clk)
477 phaseoff = tmpbuff[i+3]-clk;
478 else
479 phaseoff = 0;
480 // now do it again to find the end
481 end = skip;
482 for (i += 3; i < j - 4 ; ++i) {
483 end += tmpbuff[i];
484 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
485 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
486 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
487 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
488 {
489 complete= true;
490 break;
491 }
492 }
493 end = i;
494 // report back
495 if (verbose || g_debugMode) {
496 if (start >= 0) {
497 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
498 } else {
499 PrintAndLog("No data found!, clock tried:%d",clk);
500 PrintAndLog("Try again with more samples.");
501 PrintAndLog(" or after a 'data askedge' command to clean up the read");
502 return 0;
503 }
504 } else if (start < 0) return 0;
505 start = skip;
506 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
507 // get rid of leading crap
508 snprintf(tmp, sizeof(tmp), "%i", skip);
509 CmdLtrim(tmp);
510 bool pTest;
511 bool AllPTest = true;
512 // now work through remaining buffer printing out data blocks
513 block = 0;
514 i = startblock;
515 while (block < 6) {
516 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
517 skip = phaseoff;
518
519 // look for LW before start of next block
520 for ( ; i < j - 4 ; ++i) {
521 skip += tmpbuff[i];
522 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
523 if (tmpbuff[i+1] >= clk-tol)
524 break;
525 }
526 if (i >= j-4) break; //next LW not found
527 skip += clk;
528 if (tmpbuff[i+1]>clk)
529 phaseoff = tmpbuff[i+1]-clk;
530 else
531 phaseoff = 0;
532 i += 2;
533 if (ASKDemod(tmp2, false, false, 1) < 1) {
534 save_restoreGB(0);
535 return 0;
536 }
537 //set DemodBufferLen to just one block
538 DemodBufferLen = skip/clk;
539 //test parities
540 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
541 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
542 AllPTest &= pTest;
543 //get output
544 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
545 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
546 //skip to start of next block
547 snprintf(tmp,sizeof(tmp),"%i",skip);
548 CmdLtrim(tmp);
549 block++;
550 if (i >= end) break; //in case chip doesn't output 6 blocks
551 }
552 //print full code:
553 if (verbose || g_debugMode || AllPTest){
554 if (!complete) {
555 PrintAndLog("*** Warning!");
556 PrintAndLog("Partial data - no end found!");
557 PrintAndLog("Try again with more samples.");
558 }
559 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
560 end = block;
561 for (block=0; block < end; block++){
562 PrintAndLog("Block %d: %08x",block,Code[block]);
563 }
564 if (AllPTest) {
565 PrintAndLog("Parities Passed");
566 } else {
567 PrintAndLog("Parities Failed");
568 PrintAndLog("Try cleaning the read samples with 'data askedge'");
569 }
570 }
571
572 //restore GraphBuffer
573 save_restoreGB(0);
574 return (int)AllPTest;
575 }
576
577 int CmdEM4x50Read(const char *Cmd) {
578 uint8_t ctmp = param_getchar(Cmd, 0);
579 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read();
580 return EM4x50Read(Cmd, true);
581 }
582 int CmdEM4x50Write(const char *Cmd){
583 uint8_t ctmp = param_getchar(Cmd, 0);
584 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write();
585 PrintAndLog("no implemented yet");
586 return 0;
587 }
588 int CmdEM4x50Dump(const char *Cmd){
589 uint8_t ctmp = param_getchar(Cmd, 0);
590 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump();
591 PrintAndLog("no implemented yet");
592 return 0;
593 }
594
595 #define EM_PREAMBLE_LEN 6
596 // download samples from device
597 // and copy them to Graphbuffer
598 bool downloadSamplesEM(){
599
600 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
601 uint8_t got[6000];
602 GetFromBigBuf(got, sizeof(got), 0);
603 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) {
604 PrintAndLog("command execution time out");
605 return FALSE;
606 }
607 setGraphBuf(got, sizeof(got));
608 return TRUE;
609 }
610 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex
611 bool doPreambleSearch(size_t *startIdx){
612
613 // sanity check
614 if ( DemodBufferLen < EM_PREAMBLE_LEN) {
615 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 demodbuffer too small");
616 return FALSE;
617 }
618
619 // skip first two 0 bits as they might have been missed in the demod
620 uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0};
621
622 // set size to 15 to only test first 4 positions for the preamble
623 size_t size = (15 > DemodBufferLen) ? DemodBufferLen : 15;
624 *startIdx = 0;
625 uint8_t found = 0;
626
627 // em only sends preamble once, so look for it once in the first x bits
628 for (int idx = 0; idx < size - EM_PREAMBLE_LEN; idx++){
629 if (memcmp(DemodBuffer+idx, preamble, EM_PREAMBLE_LEN) == 0){
630 //first index found
631 *startIdx = idx;
632 found = 1;
633 break;
634 }
635 }
636
637 if ( !found) {
638 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", *startIdx);
639 return FALSE;
640 }
641 return TRUE;
642 }
643
644 bool detectFSK(){
645 // detect fsk clock
646 if (!GetFskClock("", FALSE, FALSE)) {
647 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed");
648 return FALSE;
649 }
650 // demod
651 int ans = FSKrawDemod("0 0", FALSE);
652 if (!ans) {
653 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed");
654 return FALSE;
655 }
656 return TRUE;
657 }
658 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
659 bool detectPSK(){
660 int ans = GetPskClock("", FALSE, FALSE);
661 if (ans <= 0) {
662 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed");
663 return FALSE;
664 }
665 //demod
666 //try psk1 -- 0 0 6 (six errors?!?)
667 ans = PSKDemod("0 0 6", FALSE);
668 if (!ans) {
669 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed");
670
671 //try psk1 inverted
672 ans = PSKDemod("0 1 6", FALSE);
673 if (!ans) {
674 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed");
675 return FALSE;
676 }
677 }
678 // either PSK1 or PSK1 inverted is ok from here.
679 // lets check PSK2 later.
680 return TRUE;
681 }
682 // try manchester - NOTE: ST only applies to T55x7 tags.
683 bool detectASK_MAN(){
684 bool stcheck = FALSE;
685 int ans = ASKDemod_ext("0 0 0", FALSE, FALSE, 1, &stcheck);
686 if (!ans) {
687 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed");
688 return FALSE;
689 }
690 return TRUE;
691 }
692 bool detectASK_BI(){
693 int ans = ASKbiphaseDemod("0 0 1", FALSE);
694 if (!ans) {
695 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed");
696
697 ans = ASKbiphaseDemod("0 1 1", FALSE);
698 if (!ans) {
699 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed");
700 return FALSE;
701 }
702 }
703 return TRUE;
704 }
705
706 // param: idx - start index in demoded data.
707 bool setDemodBufferEM(uint32_t *word, size_t idx){
708
709 //test for even parity bits.
710 uint8_t parity[45] = {0};
711 memcpy( parity, DemodBuffer, 45);
712 if (!EMwordparitytest(parity) ){
713 PrintAndLog("DEBUG: Error - EM Parity tests failed");
714 return FALSE;
715 }
716
717 size_t size = removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 44);
718 if (!size) {
719 if (g_debugMode) PrintAndLog("DEBUG: Error - EM Parity not detected");
720 return FALSE;
721 }
722 // set & copy to output
723 setDemodBuf(DemodBuffer, 40, 0);
724 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
725 return TRUE;
726 }
727
728 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
729 // should cover 90% of known used configs
730 // the rest will need to be manually demoded for now...
731 bool demodEM4x05resp(uint32_t *word) {
732 size_t idx = 0;
733
734 if (detectASK_MAN() && doPreambleSearch( &idx ))
735 return setDemodBufferEM(word, idx);
736
737 if (detectASK_BI() && doPreambleSearch( &idx ))
738 return setDemodBufferEM(word, idx);
739
740 if (detectFSK() && doPreambleSearch( &idx ))
741 return setDemodBufferEM(word, idx);
742
743 if (detectPSK()) {
744 if (doPreambleSearch( &idx ))
745 return setDemodBufferEM(word, idx);
746
747 psk1TOpsk2(DemodBuffer, DemodBufferLen);
748 if (doPreambleSearch( &idx ))
749 return setDemodBufferEM(word, idx);
750 }
751 return FALSE;
752 }
753
754 //////////////// 4205 / 4305 commands
755 int usage_lf_em4x05_dump(void) {
756 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
757 PrintAndLog("");
758 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
759 PrintAndLog("Options:");
760 PrintAndLog(" h - this help");
761 PrintAndLog(" pwd - password (hex) (optional)");
762 PrintAndLog("samples:");
763 PrintAndLog(" lf em 4x05dump");
764 PrintAndLog(" lf em 4x05dump 11223344");
765 return 0;
766 }
767 int usage_lf_em4x05_read(void) {
768 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
769 PrintAndLog("");
770 PrintAndLog("Usage: lf em 4x05read [h] <address> <pwd>");
771 PrintAndLog("Options:");
772 PrintAndLog(" h - this help");
773 PrintAndLog(" address - memory address to read. (0-15)");
774 PrintAndLog(" pwd - password (hex) (optional)");
775 PrintAndLog("samples:");
776 PrintAndLog(" lf em 4x05read 1");
777 PrintAndLog(" lf em 4x05read 1 11223344");
778 return 0;
779 }
780 int usage_lf_em4x05_write(void) {
781 PrintAndLog("Write EM4x05/4x69. Tag must be on antenna. ");
782 PrintAndLog("");
783 PrintAndLog("Usage: lf em 4x05write [h] <address> <data> <pwd>");
784 PrintAndLog("Options:");
785 PrintAndLog(" h - this help");
786 PrintAndLog(" address - memory address to write to. (0-15)");
787 PrintAndLog(" data - data to write (hex)");
788 PrintAndLog(" pwd - password (hex) (optional)");
789 PrintAndLog("samples:");
790 PrintAndLog(" lf em 4x05write 1 deadc0de");
791 PrintAndLog(" lf em 4x05write 1 deadc0de 11223344");
792 return 0;
793 }
794
795 int CmdEM4x05Dump(const char *Cmd) {
796 uint8_t addr = 0;
797 uint32_t pwd = 0;
798 bool usePwd = false;
799 uint8_t ctmp = param_getchar(Cmd, 0);
800 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump();
801
802 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
803 pwd = param_get32ex(Cmd, 0, 1, 16);
804
805 if ( pwd != 1 )
806 usePwd = true;
807
808 int success = 1;
809 PrintAndLog("Addr | data | ascii");
810 PrintAndLog("-----+--------+------");
811 for (; addr < 16; addr++) {
812 if (addr == 2) {
813 if (usePwd) {
814 PrintAndLog(" %02u | %08X", addr, pwd);
815 } else {
816 PrintAndLog(" 02 | cannot read");
817 }
818 } else {
819 //success &= EM4x05Read(addr, pwd, usePwd);
820 }
821 }
822
823 return success;
824 }
825 //ICEMAN; mentalnote to self: -1 is not doable for uint32_t..
826 int CmdEM4x05Read(const char *Cmd) {
827 int addr, pwd;
828 bool usePwd = false;
829 uint8_t ctmp = param_getchar(Cmd, 0);
830 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read();
831
832 addr = param_get8ex(Cmd, 0, -1, 10);
833 pwd = param_get32ex(Cmd, 1, -1, 16);
834
835 if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
836 PrintAndLog("Address must be between 0 and 15");
837 return 1;
838 }
839 if ( pwd == -1 )
840 PrintAndLog("Reading address %d", addr);
841 else {
842 usePwd = true;
843 PrintAndLog("Reading address %d | password %08X", addr, pwd);
844 }
845
846 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
847 clearCommandBuffer();
848 SendCommand(&c);
849 UsbCommand resp;
850 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
851 PrintAndLog("Command timed out");
852 return -1;
853 }
854
855 if (!downloadSamplesEM())
856 return -1;
857
858 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
859 if (graphJustNoise(GraphBuffer, testLen)) {
860 PrintAndLog("Tag not found");
861 return -1;
862 }
863
864 //attempt demod
865 uint32_t word = 0;
866 int isOk = demodEM4x05resp(&word);
867 if (isOk)
868 PrintAndLog("Got Address %02d | %08X",addr, word);
869 else
870 PrintAndLog("Read failed");
871
872 return isOk;
873 }
874
875 int CmdEM4x05Write(const char *Cmd) {
876 uint8_t ctmp = param_getchar(Cmd, 0);
877 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write();
878
879 bool usePwd = false;
880 int addr = 16; // default to invalid address
881 int data = 0xFFFFFFFF; // default to blank data
882 int pwd = 0xFFFFFFFF; // default to blank password
883
884 addr = param_get8ex(Cmd, 0, -1, 10);
885 data = param_get32ex(Cmd, 1, -1, 16);
886 pwd = param_get32ex(Cmd, 2, -1, 16);
887
888 if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
889 PrintAndLog("Address must be between 0 and 15");
890 return 1;
891 }
892 if ( pwd == -1 )
893 PrintAndLog("Writing address %d data %08X", addr, data);
894 else {
895 usePwd = true;
896 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
897 }
898
899 uint16_t flag = (addr << 8 ) | usePwd;
900
901 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
902 clearCommandBuffer();
903 SendCommand(&c);
904 UsbCommand resp;
905 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
906 PrintAndLog("Error occurred, device did not respond during write operation.");
907 return -1;
908 }
909
910 if (!downloadSamplesEM())
911 return -1;
912
913 //todo: check response for 00001010 then write data for write confirmation!
914
915 //attempt demod:
916 //need 0 bits demoded (after preamble) to verify write cmd
917 uint32_t dummy = 0;
918 int isOk = demodEM4x05resp(&dummy);
919 if (isOk)
920 PrintAndLog("Write Verified");
921
922 return isOk;
923 }
924
925 static command_t CommandTable[] = {
926 {"help", CmdHelp, 1, "This help"},
927 {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
928 {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
929 {"410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
930 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
931 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
932 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
933 {"4x05read", CmdEM4x05Read, 0, "read word data from EM4205/4305"},
934 {"4x05write", CmdEM4x05Write, 0, "write word data to EM4205/4305"},
935 {"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"},
936 {"4x50read", CmdEM4x50Read, 0, "read word data from EM4x50"},
937 {"4x50write", CmdEM4x50Write, 0, "write word data to EM4x50"},
938 {"4x50dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"},
939 {NULL, NULL, 0, NULL}
940 };
941
942 int CmdLFEM4X(const char *Cmd) {
943 clearCommandBuffer();
944 CmdsParse(CommandTable, Cmd);
945 return 0;
946 }
947
948 int CmdHelp(const char *Cmd) {
949 CmdsHelp(CommandTable);
950 return 0;
951 }
Impressum, Datenschutz