1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
25 static uint32_t iso14a_timeout
;
28 // the block number for the ISO14443-4 PCB
29 static uint8_t iso14_pcb_blocknum
= 0;
34 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
35 #define REQUEST_GUARD_TIME (7000/16 + 1)
36 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
37 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
38 // bool LastCommandWasRequest = FALSE;
41 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
43 // When the PM acts as reader and is receiving tag data, it takes
44 // 3 ticks delay in the AD converter
45 // 16 ticks until the modulation detector completes and sets curbit
46 // 8 ticks until bit_to_arm is assigned from curbit
47 // 8*16 ticks for the transfer from FPGA to ARM
48 // 4*16 ticks until we measure the time
49 // - 8*16 ticks because we measure the time of the previous transfer
50 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
52 // When the PM acts as a reader and is sending, it takes
53 // 4*16 ticks until we can write data to the sending hold register
54 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
55 // 8 ticks until the first transfer starts
56 // 8 ticks later the FPGA samples the data
57 // 1 tick to assign mod_sig_coil
58 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
60 // When the PM acts as tag and is receiving it takes
61 // 2 ticks delay in the RF part (for the first falling edge),
62 // 3 ticks for the A/D conversion,
63 // 8 ticks on average until the start of the SSC transfer,
64 // 8 ticks until the SSC samples the first data
65 // 7*16 ticks to complete the transfer from FPGA to ARM
66 // 8 ticks until the next ssp_clk rising edge
67 // 4*16 ticks until we measure the time
68 // - 8*16 ticks because we measure the time of the previous transfer
69 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
71 // The FPGA will report its internal sending delay in
72 uint16_t FpgaSendQueueDelay
;
73 // the 5 first bits are the number of bits buffered in mod_sig_buf
74 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
75 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
77 // When the PM acts as tag and is sending, it takes
78 // 4*16 ticks until we can write data to the sending hold register
79 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
80 // 8 ticks until the first transfer starts
81 // 8 ticks later the FPGA samples the data
82 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
83 // + 1 tick to assign mod_sig_coil
84 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
86 // When the PM acts as sniffer and is receiving tag data, it takes
87 // 3 ticks A/D conversion
88 // 14 ticks to complete the modulation detection
89 // 8 ticks (on average) until the result is stored in to_arm
90 // + the delays in transferring data - which is the same for
91 // sniffing reader and tag data and therefore not relevant
92 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
94 // When the PM acts as sniffer and is receiving reader data, it takes
95 // 2 ticks delay in analogue RF receiver (for the falling edge of the
96 // start bit, which marks the start of the communication)
97 // 3 ticks A/D conversion
98 // 8 ticks on average until the data is stored in to_arm.
99 // + the delays in transferring data - which is the same for
100 // sniffing reader and tag data and therefore not relevant
101 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
103 //variables used for timing purposes:
104 //these are in ssp_clk cycles:
105 static uint32_t NextTransferTime
;
106 static uint32_t LastTimeProxToAirStart
;
107 static uint32_t LastProxToAirDuration
;
109 // CARD TO READER - manchester
110 // Sequence D: 11110000 modulation with subcarrier during first half
111 // Sequence E: 00001111 modulation with subcarrier during second half
112 // Sequence F: 00000000 no modulation with subcarrier
113 // READER TO CARD - miller
114 // Sequence X: 00001100 drop after half a period
115 // Sequence Y: 00000000 no drop
116 // Sequence Z: 11000000 drop at start
124 void iso14a_set_trigger(bool enable
) {
128 void iso14a_set_timeout(uint32_t timeout
) {
129 iso14a_timeout
= timeout
;
130 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
133 void iso14a_set_ATS_timeout(uint8_t *ats
) {
139 if (ats
[0] > 1) { // there is a format byte T0
140 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
142 if ((ats
[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1)
147 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
148 //fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
149 fwt
= 4096 * (1 << fwi
);
151 //iso14a_set_timeout(fwt/(8*16));
152 iso14a_set_timeout(fwt
/128);
157 //-----------------------------------------------------------------------------
158 // Generate the parity value for a byte sequence
160 //-----------------------------------------------------------------------------
161 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
163 uint16_t paritybit_cnt
= 0;
164 uint16_t paritybyte_cnt
= 0;
165 uint8_t parityBits
= 0;
167 for (uint16_t i
= 0; i
< iLen
; i
++) {
168 // Generate the parity bits
169 parityBits
|= ((oddparity8(pbtCmd
[i
])) << (7-paritybit_cnt
));
170 if (paritybit_cnt
== 7) {
171 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
172 parityBits
= 0; // and advance to next Parity Byte
180 // save remaining parity bits
181 par
[paritybyte_cnt
] = parityBits
;
185 void AppendCrc14443a(uint8_t* data
, int len
)
187 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
190 void AppendCrc14443b(uint8_t* data
, int len
)
192 ComputeCrc14443(CRC_14443_B
,data
,len
,data
+len
,data
+len
+1);
196 //=============================================================================
197 // ISO 14443 Type A - Miller decoder
198 //=============================================================================
200 // This decoder is used when the PM3 acts as a tag.
201 // The reader will generate "pauses" by temporarily switching of the field.
202 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
203 // The FPGA does a comparison with a threshold and would deliver e.g.:
204 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
205 // The Miller decoder needs to identify the following sequences:
206 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
207 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
208 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
209 // Note 1: the bitstream may start at any time. We therefore need to sync.
210 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
211 //-----------------------------------------------------------------------------
214 // Lookup-Table to decide if 4 raw bits are a modulation.
215 // We accept the following:
216 // 0001 - a 3 tick wide pause
217 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
218 // 0111 - a 2 tick wide pause shifted left
219 // 1001 - a 2 tick wide pause shifted right
220 const bool Mod_Miller_LUT
[] = {
221 FALSE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, TRUE
,
222 FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
224 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
225 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
229 Uart
.state
= STATE_UNSYNCD
;
231 Uart
.len
= 0; // number of decoded data bytes
232 Uart
.parityLen
= 0; // number of decoded parity bytes
233 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
234 Uart
.parityBits
= 0; // holds 8 parity bits
243 void UartInit(uint8_t *data
, uint8_t *parity
)
246 Uart
.parity
= parity
;
247 Uart
.fourBits
= 0x00000000; // clear the buffer for 4 Bits
251 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
252 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
255 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
257 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
259 Uart
.syncBit
= 9999; // not set
261 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
262 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
263 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
265 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
266 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
267 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
268 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
270 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
271 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
273 if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 0)) == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
274 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 1)) == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
275 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 2)) == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
276 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 3)) == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
277 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 4)) == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
278 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 5)) == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
279 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 6)) == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
280 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 7)) == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
282 if (Uart
.syncBit
!= 9999) { // found a sync bit
283 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
284 Uart
.startTime
-= Uart
.syncBit
;
285 Uart
.endTime
= Uart
.startTime
;
286 Uart
.state
= STATE_START_OF_COMMUNICATION
;
291 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
292 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
294 } else { // Modulation in first half = Sequence Z = logic "0"
295 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
299 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
300 Uart
.state
= STATE_MILLER_Z
;
301 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
302 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
303 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
304 Uart
.parityBits
<<= 1; // make room for the parity bit
305 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
308 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
309 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
316 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
318 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
319 Uart
.state
= STATE_MILLER_X
;
320 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
321 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
322 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
323 Uart
.parityBits
<<= 1; // make room for the new parity bit
324 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
327 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
328 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
332 } else { // no modulation in both halves - Sequence Y
333 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
334 Uart
.state
= STATE_UNSYNCD
;
335 Uart
.bitCount
--; // last "0" was part of EOC sequence
336 Uart
.shiftReg
<<= 1; // drop it
337 if(Uart
.bitCount
> 0) { // if we decoded some bits
338 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
339 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
340 Uart
.parityBits
<<= 1; // add a (void) parity bit
341 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
342 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
344 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
345 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
346 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
349 return TRUE
; // we are finished with decoding the raw data sequence
351 UartReset(); // Nothing received - start over
354 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
356 } else { // a logic "0"
358 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
359 Uart
.state
= STATE_MILLER_Y
;
360 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
361 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
362 Uart
.parityBits
<<= 1; // make room for the parity bit
363 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
366 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
367 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
377 return FALSE
; // not finished yet, need more data
382 //=============================================================================
383 // ISO 14443 Type A - Manchester decoder
384 //=============================================================================
386 // This decoder is used when the PM3 acts as a reader.
387 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
388 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
389 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
390 // The Manchester decoder needs to identify the following sequences:
391 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
392 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
393 // 8 ticks unmodulated: Sequence F = end of communication
394 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
395 // Note 1: the bitstream may start at any time. We therefore need to sync.
396 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
399 // Lookup-Table to decide if 4 raw bits are a modulation.
400 // We accept three or four "1" in any position
401 const bool Mod_Manchester_LUT
[] = {
402 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
403 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
406 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
407 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
412 Demod
.state
= DEMOD_UNSYNCD
;
413 Demod
.len
= 0; // number of decoded data bytes
415 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
416 Demod
.parityBits
= 0; //
417 Demod
.collisionPos
= 0; // Position of collision bit
418 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
425 Demod
.syncBit
= 0xFFFF;
429 void DemodInit(uint8_t *data
, uint8_t *parity
)
432 Demod
.parity
= parity
;
436 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
437 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
440 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
442 if (Demod
.state
== DEMOD_UNSYNCD
) {
444 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
445 if (Demod
.twoBits
== 0x0000) {
451 Demod
.syncBit
= 0xFFFF; // not set
452 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
453 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
454 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
455 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
456 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
457 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
458 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
459 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
460 if (Demod
.syncBit
!= 0xFFFF) {
461 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
462 Demod
.startTime
-= Demod
.syncBit
;
463 Demod
.bitCount
= offset
; // number of decoded data bits
464 Demod
.state
= DEMOD_MANCHESTER_DATA
;
470 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
471 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
472 if (!Demod
.collisionPos
) {
473 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
475 } // modulation in first half only - Sequence D = 1
477 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
478 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
479 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
480 Demod
.parityBits
<<= 1; // make room for the parity bit
481 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
484 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
485 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
486 Demod
.parityBits
= 0;
489 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
490 } else { // no modulation in first half
491 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
493 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
494 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
495 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
496 Demod
.parityBits
<<= 1; // make room for the new parity bit
497 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
500 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
501 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
502 Demod
.parityBits
= 0;
505 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
506 } else { // no modulation in both halves - End of communication
507 if(Demod
.bitCount
> 0) { // there are some remaining data bits
508 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
509 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
510 Demod
.parityBits
<<= 1; // add a (void) parity bit
511 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
512 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
514 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
515 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
516 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
519 return TRUE
; // we are finished with decoding the raw data sequence
520 } else { // nothing received. Start over
526 return FALSE
; // not finished yet, need more data
529 //=============================================================================
530 // Finally, a `sniffer' for ISO 14443 Type A
531 // Both sides of communication!
532 //=============================================================================
534 //-----------------------------------------------------------------------------
535 // Record the sequence of commands sent by the reader to the tag, with
536 // triggering so that we start recording at the point that the tag is moved
538 //-----------------------------------------------------------------------------
539 void RAMFUNC
SniffIso14443a(uint8_t param
) {
541 // bit 0 - trigger from first card answer
542 // bit 1 - trigger from first reader 7-bit request
545 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
547 // Allocate memory from BigBuf for some buffers
548 // free all previous allocations first
555 // The command (reader -> tag) that we're receiving.
556 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
557 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
559 // The response (tag -> reader) that we're receiving.
560 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
561 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
563 // The DMA buffer, used to stream samples from the FPGA
564 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
566 uint8_t *data
= dmaBuf
;
567 uint8_t previous_data
= 0;
570 bool TagIsActive
= FALSE
;
571 bool ReaderIsActive
= FALSE
;
573 // Set up the demodulator for tag -> reader responses.
574 DemodInit(receivedResponse
, receivedResponsePar
);
576 // Set up the demodulator for the reader -> tag commands
577 UartInit(receivedCmd
, receivedCmdPar
);
579 // Setup and start DMA.
580 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
582 // We won't start recording the frames that we acquire until we trigger;
583 // a good trigger condition to get started is probably when we see a
584 // response from the tag.
585 // triggered == FALSE -- to wait first for card
586 bool triggered
= !(param
& 0x03);
588 // And now we loop, receiving samples.
589 for(uint32_t rsamples
= 0; TRUE
; ) {
592 DbpString("cancelled by button");
599 int register readBufDataP
= data
- dmaBuf
;
600 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
601 if (readBufDataP
<= dmaBufDataP
){
602 dataLen
= dmaBufDataP
- readBufDataP
;
604 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
606 // test for length of buffer
607 if(dataLen
> maxDataLen
) {
608 maxDataLen
= dataLen
;
609 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
610 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
614 if(dataLen
< 1) continue;
616 // primary buffer was stopped( <-- we lost data!
617 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
618 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
619 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
620 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
622 // secondary buffer sets as primary, secondary buffer was stopped
623 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
624 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
625 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
630 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
632 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
633 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
634 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
637 // check - if there is a short 7bit request from reader
638 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
641 if (!LogTrace(receivedCmd
,
643 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
644 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
648 /* And ready to receive another command. */
650 /* And also reset the demod code, which might have been */
651 /* false-triggered by the commands from the reader. */
655 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
658 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
659 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
660 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
663 if (!LogTrace(receivedResponse
,
665 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
666 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
670 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
672 // And ready to receive another response.
674 // And reset the Miller decoder including itS (now outdated) input buffer
675 UartInit(receivedCmd
, receivedCmdPar
);
679 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
683 previous_data
= *data
;
686 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
694 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
695 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
700 //-----------------------------------------------------------------------------
701 // Prepare tag messages
702 //-----------------------------------------------------------------------------
703 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
707 // Correction bit, might be removed when not needed
712 ToSendStuffBit(1); // 1
718 ToSend
[++ToSendMax
] = SEC_D
;
719 LastProxToAirDuration
= 8 * ToSendMax
- 4;
721 for(uint16_t i
= 0; i
< len
; i
++) {
725 for(uint16_t j
= 0; j
< 8; j
++) {
727 ToSend
[++ToSendMax
] = SEC_D
;
729 ToSend
[++ToSendMax
] = SEC_E
;
734 // Get the parity bit
735 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
736 ToSend
[++ToSendMax
] = SEC_D
;
737 LastProxToAirDuration
= 8 * ToSendMax
- 4;
739 ToSend
[++ToSendMax
] = SEC_E
;
740 LastProxToAirDuration
= 8 * ToSendMax
;
745 ToSend
[++ToSendMax
] = SEC_F
;
747 // Convert from last byte pos to length
751 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
753 uint8_t par
[MAX_PARITY_SIZE
] = {0};
755 GetParity(cmd
, len
, par
);
756 CodeIso14443aAsTagPar(cmd
, len
, par
);
760 static void Code4bitAnswerAsTag(uint8_t cmd
)
766 // Correction bit, might be removed when not needed
771 ToSendStuffBit(1); // 1
777 ToSend
[++ToSendMax
] = SEC_D
;
780 for(i
= 0; i
< 4; i
++) {
782 ToSend
[++ToSendMax
] = SEC_D
;
783 LastProxToAirDuration
= 8 * ToSendMax
- 4;
785 ToSend
[++ToSendMax
] = SEC_E
;
786 LastProxToAirDuration
= 8 * ToSendMax
;
792 ToSend
[++ToSendMax
] = SEC_F
;
794 // Convert from last byte pos to length
798 //-----------------------------------------------------------------------------
799 // Wait for commands from reader
800 // Stop when button is pressed
801 // Or return TRUE when command is captured
802 //-----------------------------------------------------------------------------
803 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
805 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
806 // only, since we are receiving, not transmitting).
807 // Signal field is off with the appropriate LED
809 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
811 // Now run a `software UART' on the stream of incoming samples.
812 UartInit(received
, parity
);
815 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
820 if(BUTTON_PRESS()) return FALSE
;
822 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
823 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
824 if(MillerDecoding(b
, 0)) {
832 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
833 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
834 int EmSend4bit(uint8_t resp
);
835 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
836 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
837 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
838 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
839 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
840 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
842 static uint8_t* free_buffer_pointer
;
849 uint32_t ProxToAirDuration
;
850 } tag_response_info_t
;
852 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
853 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
854 // This will need the following byte array for a modulation sequence
855 // 144 data bits (18 * 8)
858 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
859 // 1 just for the case
861 // 166 bytes, since every bit that needs to be send costs us a byte
865 // Prepare the tag modulation bits from the message
866 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
868 // Make sure we do not exceed the free buffer space
869 if (ToSendMax
> max_buffer_size
) {
870 Dbprintf("Out of memory, when modulating bits for tag answer:");
871 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
875 // Copy the byte array, used for this modulation to the buffer position
876 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
878 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
879 response_info
->modulation_n
= ToSendMax
;
880 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
886 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
887 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
888 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
889 // -> need 273 bytes buffer
890 // 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
891 // 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
892 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
894 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
895 // Retrieve and store the current buffer index
896 response_info
->modulation
= free_buffer_pointer
;
898 // Determine the maximum size we can use from our buffer
899 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
901 // Forward the prepare tag modulation function to the inner function
902 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
903 // Update the free buffer offset
904 free_buffer_pointer
+= ToSendMax
;
911 //-----------------------------------------------------------------------------
912 // Main loop of simulated tag: receive commands from reader, decide what
913 // response to send, and send it.
914 //-----------------------------------------------------------------------------
915 void SimulateIso14443aTag(int tagType
, int flags
, byte_t
* data
)
917 uint32_t counters
[] = {0,0,0};
918 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
919 // This can be used in a reader-only attack.
920 // (it can also be retrieved via 'hf 14a list', but hey...
921 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0,0,0};
922 uint8_t ar_nr_collected
= 0;
926 // PACK response to PWD AUTH for EV1/NTAG
927 uint8_t response8
[4] = {0,0,0,0};
929 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
930 uint8_t response1
[2] = {0,0};
933 case 1: { // MIFARE Classic
934 // Says: I am Mifare 1k - original line
939 case 2: { // MIFARE Ultralight
940 // Says: I am a stupid memory tag, no crypto
945 case 3: { // MIFARE DESFire
946 // Says: I am a DESFire tag, ph33r me
951 case 4: { // ISO/IEC 14443-4
952 // Says: I am a javacard (JCOP)
957 case 5: { // MIFARE TNP3XXX
963 case 6: { // MIFARE Mini
964 // Says: I am a Mifare Mini, 320b
970 // Says: I am a NTAG,
977 ComputeCrc14443(CRC_14443_A
, response8
, 2, &response8
[2], &response8
[3]);
978 // uid not supplied then get from emulator memory
980 uint16_t start
= 4 * (0+12);
982 emlGetMemBt( emdata
, start
, sizeof(emdata
));
983 memcpy(data
, emdata
, 3); //uid bytes 0-2
984 memcpy(data
+3, emdata
+4, 4); //uid bytes 3-7
985 flags
|= FLAG_7B_UID_IN_DATA
;
989 Dbprintf("Error: unkown tagtype (%d)",tagType
);
994 // The second response contains the (mandatory) first 24 bits of the UID
995 uint8_t response2
[5] = {0x00};
997 // Check if the uid uses the (optional) part
998 uint8_t response2a
[5] = {0x00};
1000 if (flags
& FLAG_7B_UID_IN_DATA
) {
1001 response2
[0] = 0x88;
1002 response2
[1] = data
[0];
1003 response2
[2] = data
[1];
1004 response2
[3] = data
[2];
1006 response2a
[0] = data
[3];
1007 response2a
[1] = data
[4];
1008 response2a
[2] = data
[5];
1009 response2a
[3] = data
[6]; //??
1010 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
1012 // Configure the ATQA and SAK accordingly
1013 response1
[0] |= 0x40;
1016 memcpy(response2
, data
, 4);
1017 //num_to_bytes(uid_1st,4,response2);
1018 // Configure the ATQA and SAK accordingly
1019 response1
[0] &= 0xBF;
1023 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1024 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
1026 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1027 uint8_t response3
[3] = {0x00};
1029 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
1031 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1032 uint8_t response3a
[3] = {0x00};
1033 response3a
[0] = sak
& 0xFB;
1034 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1036 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1037 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1038 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1039 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1040 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1041 // TC(1) = 0x02: CID supported, NAD not supported
1042 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1044 // Prepare GET_VERSION (different for UL EV-1 / NTAG)
1045 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1046 //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1048 // Prepare CHK_TEARING
1049 //uint8_t response9[] = {0xBD,0x90,0x3f};
1051 #define TAG_RESPONSE_COUNT 10
1052 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1053 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1054 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1055 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1056 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1057 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1058 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1059 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1061 { .response
= response8
, .response_n
= sizeof(response8
) } // EV1/NTAG PACK response
1063 //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
1064 //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
1067 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1068 // Such a response is less time critical, so we can prepare them on the fly
1069 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1070 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1071 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1072 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1073 tag_response_info_t dynamic_response_info
= {
1074 .response
= dynamic_response_buffer
,
1076 .modulation
= dynamic_modulation_buffer
,
1080 // We need to listen to the high-frequency, peak-detected path.
1081 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1083 BigBuf_free_keep_EM();
1085 // allocate buffers:
1086 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1087 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1088 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1094 // Prepare the responses of the anticollision phase
1095 // there will be not enough time to do this at the moment the reader sends it REQA
1096 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++)
1097 prepare_allocated_tag_modulation(&responses
[i
]);
1101 // To control where we are in the protocol
1105 // Just to allow some checks
1111 tag_response_info_t
* p_response
;
1118 // Clean receive command buffer
1119 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1120 DbpString("Button press");
1126 // Okay, look at the command now.
1128 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1129 p_response
= &responses
[0]; order
= 1;
1130 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1131 p_response
= &responses
[0]; order
= 6;
1132 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1133 p_response
= &responses
[1]; order
= 2;
1134 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1135 p_response
= &responses
[2]; order
= 20;
1136 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1137 p_response
= &responses
[3]; order
= 3;
1138 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1139 p_response
= &responses
[4]; order
= 30;
1140 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1141 uint8_t block
= receivedCmd
[1];
1142 // if Ultralight or NTAG (4 byte blocks)
1143 if ( tagType
== 7 || tagType
== 2 ) {
1144 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1145 uint16_t start
= 4 * (block
+12);
1146 uint8_t emdata
[MAX_MIFARE_FRAME_SIZE
];
1147 emlGetMemBt( emdata
, start
, 16);
1148 AppendCrc14443a(emdata
, 16);
1149 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1150 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1152 } else { // all other tags (16 byte block tags)
1153 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1154 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1155 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1158 } else if(receivedCmd
[0] == 0x3A) { // Received a FAST READ (ranged read)
1160 uint8_t emdata
[MAX_FRAME_SIZE
];
1161 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1162 int start
= (receivedCmd
[1]+12) * 4;
1163 int len
= (receivedCmd
[2] - receivedCmd
[1] + 1) * 4;
1164 emlGetMemBt( emdata
, start
, len
);
1165 AppendCrc14443a(emdata
, len
);
1166 EmSendCmdEx(emdata
, len
+2, false);
1169 } else if(receivedCmd
[0] == 0x3C && tagType
== 7) { // Received a READ SIGNATURE --
1170 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1171 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1172 uint16_t start
= 4 * 4;
1174 emlGetMemBt( emdata
, start
, 32);
1175 AppendCrc14443a(emdata
, 32);
1176 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1177 //uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1178 // 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1179 // 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1180 // 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1182 //AppendCrc14443a(data, sizeof(data)-2);
1183 //EmSendCmdEx(data,sizeof(data),false);
1185 } else if (receivedCmd
[0] == 0x39 && tagType
== 7) { // Received a READ COUNTER --
1186 uint8_t index
= receivedCmd
[1];
1187 uint8_t data
[] = {0x00,0x00,0x00,0x14,0xa5};
1188 if ( counters
[index
] > 0) {
1189 num_to_bytes(counters
[index
], 3, data
);
1190 AppendCrc14443a(data
, sizeof(data
)-2);
1192 EmSendCmdEx(data
,sizeof(data
),false);
1194 } else if (receivedCmd
[0] == 0xA5 && tagType
== 7) { // Received a INC COUNTER --
1195 // number of counter
1196 uint8_t counter
= receivedCmd
[1];
1197 uint32_t val
= bytes_to_num(receivedCmd
+2,4);
1198 counters
[counter
] = val
;
1201 uint8_t ack
[] = {0x0a};
1202 EmSendCmdEx(ack
,sizeof(ack
),false);
1205 } else if(receivedCmd
[0] == 0x3E && tagType
== 7) { // Received a CHECK_TEARING_EVENT --
1206 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1209 if (receivedCmd
[1]<3) counter
= receivedCmd
[1];
1210 emlGetMemBt( emdata
, 10+counter
, 1);
1211 AppendCrc14443a(emdata
, sizeof(emdata
)-2);
1212 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1214 //p_response = &responses[9];
1216 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1217 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1219 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1221 if ( tagType
== 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1223 emlGetMemBt( emdata
, 0, 8 );
1224 AppendCrc14443a(emdata
, sizeof(emdata
)-2);
1225 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1227 //p_response = &responses[7];
1229 p_response
= &responses
[5]; order
= 7;
1231 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1232 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1233 EmSend4bit(CARD_NACK_NA
);
1236 p_response
= &responses
[6]; order
= 70;
1238 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1239 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1240 uint32_t nonce
= bytes_to_num(response5
,4);
1241 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1242 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1243 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1245 if(flags
& FLAG_NR_AR_ATTACK
)
1247 if(ar_nr_collected
< 2){
1248 // Avoid duplicates... probably not necessary, nr should vary.
1249 //if(ar_nr_responses[3] != nr){
1250 ar_nr_responses
[ar_nr_collected
*5] = 0;
1251 ar_nr_responses
[ar_nr_collected
*5+1] = 0;
1252 ar_nr_responses
[ar_nr_collected
*5+2] = nonce
;
1253 ar_nr_responses
[ar_nr_collected
*5+3] = nr
;
1254 ar_nr_responses
[ar_nr_collected
*5+4] = ar
;
1259 if(ar_nr_collected
> 1 ) {
1261 if (MF_DBGLEVEL
>= 2) {
1262 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1263 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1264 ar_nr_responses
[0], // UID1
1265 ar_nr_responses
[1], // UID2
1266 ar_nr_responses
[2], // NT
1267 ar_nr_responses
[3], // AR1
1268 ar_nr_responses
[4], // NR1
1269 ar_nr_responses
[8], // AR2
1270 ar_nr_responses
[9] // NR2
1272 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
1273 ar_nr_responses
[0], // UID1
1274 ar_nr_responses
[1], // UID2
1275 ar_nr_responses
[2], // NT1
1276 ar_nr_responses
[3], // AR1
1277 ar_nr_responses
[4], // NR1
1278 ar_nr_responses
[7], // NT2
1279 ar_nr_responses
[8], // AR2
1280 ar_nr_responses
[9] // NR2
1283 uint8_t len
= ar_nr_collected
*5*4;
1284 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,len
,0,&ar_nr_responses
,len
);
1285 ar_nr_collected
= 0;
1286 memset(ar_nr_responses
, 0x00, len
);
1289 } else if (receivedCmd
[0] == 0x1a ) // ULC authentication
1293 else if (receivedCmd
[0] == 0x1b) // NTAG / EV-1 authentication
1295 if ( tagType
== 7 ) {
1296 uint16_t start
= 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
1298 emlGetMemBt( emdata
, start
, 2);
1299 AppendCrc14443a(emdata
, 2);
1300 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1302 //p_response = &responses[8]; // PACK response
1303 uint32_t pwd
= bytes_to_num(receivedCmd
+1,4);
1305 if ( MF_DBGLEVEL
>= 3) Dbprintf("Auth attempt: %08x", pwd
);
1308 // Check for ISO 14443A-4 compliant commands, look at left nibble
1309 switch (receivedCmd
[0]) {
1311 case 0x03: { // IBlock (command no CID)
1312 dynamic_response_info
.response
[0] = receivedCmd
[0];
1313 dynamic_response_info
.response
[1] = 0x90;
1314 dynamic_response_info
.response
[2] = 0x00;
1315 dynamic_response_info
.response_n
= 3;
1318 case 0x0A: { // IBlock (command CID)
1319 dynamic_response_info
.response
[0] = receivedCmd
[0];
1320 dynamic_response_info
.response
[1] = 0x00;
1321 dynamic_response_info
.response
[2] = 0x90;
1322 dynamic_response_info
.response
[3] = 0x00;
1323 dynamic_response_info
.response_n
= 4;
1327 case 0x1B: { // Chaining command
1328 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1329 dynamic_response_info
.response_n
= 2;
1334 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1335 dynamic_response_info
.response_n
= 2;
1338 case 0xBA: { // ping / pong
1339 dynamic_response_info
.response
[0] = 0xAB;
1340 dynamic_response_info
.response
[1] = 0x00;
1341 dynamic_response_info
.response_n
= 2;
1345 case 0xC2: { // Readers sends deselect command
1346 dynamic_response_info
.response
[0] = 0xCA;
1347 dynamic_response_info
.response
[1] = 0x00;
1348 dynamic_response_info
.response_n
= 2;
1352 // Never seen this command before
1353 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1354 Dbprintf("Received unknown command (len=%d):",len
);
1355 Dbhexdump(len
,receivedCmd
,false);
1357 dynamic_response_info
.response_n
= 0;
1361 if (dynamic_response_info
.response_n
> 0) {
1362 // Copy the CID from the reader query
1363 dynamic_response_info
.response
[1] = receivedCmd
[1];
1365 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1366 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1367 dynamic_response_info
.response_n
+= 2;
1369 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1370 Dbprintf("Error preparing tag response");
1371 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1374 p_response
= &dynamic_response_info
;
1378 // Count number of wakeups received after a halt
1379 if(order
== 6 && lastorder
== 5) { happened
++; }
1381 // Count number of other messages after a halt
1382 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1384 if(cmdsRecvd
> 999) {
1385 DbpString("1000 commands later...");
1390 if (p_response
!= NULL
) {
1391 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1392 // do the tracing for the previous reader request and this tag answer:
1393 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1394 GetParity(p_response
->response
, p_response
->response_n
, par
);
1396 EmLogTrace(Uart
.output
,
1398 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1399 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1401 p_response
->response
,
1402 p_response
->response_n
,
1403 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1404 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1409 Dbprintf("Trace Full. Simulation stopped.");
1414 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1416 BigBuf_free_keep_EM();
1419 if (MF_DBGLEVEL
>= 4){
1420 Dbprintf("-[ Wake ups after halt [%d]", happened
);
1421 Dbprintf("-[ Messages after halt [%d]", happened2
);
1422 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd
);
1427 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1428 // of bits specified in the delay parameter.
1429 void PrepareDelayedTransfer(uint16_t delay
)
1434 uint8_t bitmask
= 0;
1435 uint8_t bits_to_shift
= 0;
1436 uint8_t bits_shifted
= 0;
1439 for (i
= 0; i
< delay
; ++i
)
1440 bitmask
|= (0x01 << i
);
1442 ToSend
[++ToSendMax
] = 0x00;
1444 for (i
= 0; i
< ToSendMax
; ++i
) {
1445 bits_to_shift
= ToSend
[i
] & bitmask
;
1446 ToSend
[i
] = ToSend
[i
] >> delay
;
1447 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1448 bits_shifted
= bits_to_shift
;
1453 //-------------------------------------------------------------------------------------
1454 // Transmit the command (to the tag) that was placed in ToSend[].
1455 // Parameter timing:
1456 // if NULL: transfer at next possible time, taking into account
1457 // request guard time and frame delay time
1458 // if == 0: transfer immediately and return time of transfer
1459 // if != 0: delay transfer until time specified
1460 //-------------------------------------------------------------------------------------
1461 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1463 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1465 uint32_t ThisTransferTime
= 0;
1470 // Delay transfer (fine tuning - up to 7 MF clock ticks)
1471 PrepareDelayedTransfer(*timing
& 0x00000007);
1474 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1477 if (MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8))
1478 Dbprintf("TransmitFor14443a: Missed timing");
1480 // Delay transfer (multiple of 8 MF clock ticks)
1481 while (GetCountSspClk() < (*timing
& 0xfffffff8));
1483 LastTimeProxToAirStart
= *timing
;
1485 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1487 while(GetCountSspClk() < ThisTransferTime
);
1489 LastTimeProxToAirStart
= ThisTransferTime
;
1493 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1497 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1498 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1505 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1509 //-----------------------------------------------------------------------------
1510 // Prepare reader command (in bits, support short frames) to send to FPGA
1511 //-----------------------------------------------------------------------------
1512 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1520 // Start of Communication (Seq. Z)
1521 ToSend
[++ToSendMax
] = SEC_Z
;
1522 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1524 size_t bytecount
= nbytes(bits
);
1525 // Generate send structure for the data bits
1526 for (i
= 0; i
< bytecount
; i
++) {
1527 // Get the current byte to send
1529 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1531 for (j
= 0; j
< bitsleft
; j
++) {
1534 ToSend
[++ToSendMax
] = SEC_X
;
1535 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1540 ToSend
[++ToSendMax
] = SEC_Z
;
1541 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1544 ToSend
[++ToSendMax
] = SEC_Y
;
1551 // Only transmit parity bit if we transmitted a complete byte
1552 if (j
== 8 && parity
!= NULL
) {
1553 // Get the parity bit
1554 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1556 ToSend
[++ToSendMax
] = SEC_X
;
1557 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1562 ToSend
[++ToSendMax
] = SEC_Z
;
1563 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1566 ToSend
[++ToSendMax
] = SEC_Y
;
1573 // End of Communication: Logic 0 followed by Sequence Y
1576 ToSend
[++ToSendMax
] = SEC_Z
;
1577 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1580 ToSend
[++ToSendMax
] = SEC_Y
;
1583 ToSend
[++ToSendMax
] = SEC_Y
;
1585 // Convert to length of command:
1589 //-----------------------------------------------------------------------------
1590 // Prepare reader command to send to FPGA
1591 //-----------------------------------------------------------------------------
1592 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1594 //CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1595 CodeIso14443aBitsAsReaderPar(cmd
, len
<<3, parity
);
1599 //-----------------------------------------------------------------------------
1600 // Wait for commands from reader
1601 // Stop when button is pressed (return 1) or field was gone (return 2)
1602 // Or return 0 when command is captured
1603 //-----------------------------------------------------------------------------
1604 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1608 uint32_t timer
= 0, vtime
= 0;
1612 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1613 // only, since we are receiving, not transmitting).
1614 // Signal field is off with the appropriate LED
1616 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1618 // Set ADC to read field strength
1619 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1620 AT91C_BASE_ADC
->ADC_MR
=
1621 ADC_MODE_PRESCALE(63) |
1622 ADC_MODE_STARTUP_TIME(1) |
1623 ADC_MODE_SAMPLE_HOLD_TIME(15);
1624 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1626 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1628 // Now run a 'software UART' on the stream of incoming samples.
1629 UartInit(received
, parity
);
1632 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1637 if (BUTTON_PRESS()) return 1;
1639 // test if the field exists
1640 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1642 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1643 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1644 if (analogCnt
>= 32) {
1645 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1646 vtime
= GetTickCount();
1647 if (!timer
) timer
= vtime
;
1648 // 50ms no field --> card to idle state
1649 if (vtime
- timer
> 50) return 2;
1651 if (timer
) timer
= 0;
1657 // receive and test the miller decoding
1658 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1659 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1660 if(MillerDecoding(b
, 0)) {
1670 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1674 uint32_t ThisTransferTime
;
1676 // Modulate Manchester
1677 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1679 // include correction bit if necessary
1680 if (Uart
.parityBits
& 0x01) {
1681 correctionNeeded
= TRUE
;
1683 if(correctionNeeded
) {
1684 // 1236, so correction bit needed
1690 // clear receiving shift register and holding register
1691 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1692 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1693 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1694 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1696 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1697 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1698 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1699 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1702 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1705 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1708 for(; i
< respLen
; ) {
1709 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1710 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1711 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1714 if(BUTTON_PRESS()) break;
1717 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1718 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3; // twich /8 ?? >>3,
1719 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1720 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1721 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1722 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1727 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1732 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1733 Code4bitAnswerAsTag(resp
);
1734 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1735 // do the tracing for the previous reader request and this tag answer:
1736 uint8_t par
[1] = {0x00};
1737 GetParity(&resp
, 1, par
);
1738 EmLogTrace(Uart
.output
,
1740 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1741 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1745 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1746 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1751 int EmSend4bit(uint8_t resp
){
1752 return EmSend4bitEx(resp
, false);
1755 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1756 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1757 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1758 // do the tracing for the previous reader request and this tag answer:
1759 EmLogTrace(Uart
.output
,
1761 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1762 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1766 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1767 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1772 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1773 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1774 GetParity(resp
, respLen
, par
);
1775 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1778 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1779 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1780 GetParity(resp
, respLen
, par
);
1781 return EmSendCmdExPar(resp
, respLen
, false, par
);
1784 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1785 return EmSendCmdExPar(resp
, respLen
, false, par
);
1788 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1789 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1791 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1792 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1793 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1794 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1795 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1796 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1797 reader_EndTime
= tag_StartTime
- exact_fdt
;
1798 reader_StartTime
= reader_EndTime
- reader_modlen
;
1800 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
))
1803 return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1807 //-----------------------------------------------------------------------------
1808 // Wait a certain time for tag response
1809 // If a response is captured return TRUE
1810 // If it takes too long return FALSE
1811 //-----------------------------------------------------------------------------
1812 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1816 // Set FPGA mode to "reader listen mode", no modulation (listen
1817 // only, since we are receiving, not transmitting).
1818 // Signal field is on with the appropriate LED
1820 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1822 // Now get the answer from the card
1823 DemodInit(receivedResponse
, receivedResponsePar
);
1826 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1831 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1832 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1833 if(ManchesterDecoding(b
, offset
, 0)) {
1834 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1836 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1843 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1845 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1847 // Send command to tag
1848 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1852 // Log reader command in trace buffer
1853 //LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1854 LogTrace(frame
, nbytes(bits
), (LastTimeProxToAirStart
<<4) + DELAY_ARM2AIR_AS_READER
, ((LastTimeProxToAirStart
+ LastProxToAirDuration
)<<4) + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1857 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1859 //ReaderTransmitBitsPar(frame, len*8, par, timing);
1860 ReaderTransmitBitsPar(frame
, len
<<3, par
, timing
);
1863 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1865 // Generate parity and redirect
1866 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1867 //GetParity(frame, len/8, par);
1868 GetParity(frame
, len
>> 3, par
);
1869 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1872 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1874 // Generate parity and redirect
1875 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1876 GetParity(frame
, len
, par
);
1877 //ReaderTransmitBitsPar(frame, len*8, par, timing);
1878 ReaderTransmitBitsPar(frame
, len
<<3, par
, timing
);
1881 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1883 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
))
1886 //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1887 LogTrace(receivedAnswer
, Demod
.len
, (Demod
.startTime
<<4) - DELAY_AIR2ARM_AS_READER
, (Demod
.endTime
<<4) - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1891 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1893 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0))
1896 //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1897 LogTrace(receivedAnswer
, Demod
.len
, (Demod
.startTime
<<4) - DELAY_AIR2ARM_AS_READER
, (Demod
.endTime
<<4) - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1901 // performs iso14443a anticollision (optional) and card select procedure
1902 // fills the uid and cuid pointer unless NULL
1903 // fills the card info record unless NULL
1904 // if anticollision is false, then the UID must be provided in uid_ptr[]
1905 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1906 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
, bool anticollision
, uint8_t num_cascades
) {
1907 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1908 uint8_t sel_all
[] = { 0x93,0x20 };
1909 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1910 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1911 uint8_t resp
[MAX_FRAME_SIZE
] = {0}; // theoretically. A usual RATS will be much smaller
1912 uint8_t resp_par
[MAX_PARITY_SIZE
] = {0};
1913 byte_t uid_resp
[4] = {0};
1914 size_t uid_resp_len
= 0;
1916 uint8_t sak
= 0x04; // cascade uid
1917 int cascade_level
= 0;
1920 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1921 ReaderTransmitBitsPar(wupa
, 7, NULL
, NULL
);
1924 if(!ReaderReceive(resp
, resp_par
)) return 0;
1927 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1928 p_hi14a_card
->uidlen
= 0;
1929 memset(p_hi14a_card
->uid
,0,10);
1932 if (anticollision
) {
1935 memset(uid_ptr
,0,10);
1938 // check for proprietary anticollision:
1939 if ((resp
[0] & 0x1F) == 0) return 3;
1941 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1942 // which case we need to make a cascade 2 request and select - this is a long UID
1943 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1944 for(; sak
& 0x04; cascade_level
++) {
1945 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1946 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1948 if (anticollision
) {
1950 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1951 if (!ReaderReceive(resp
, resp_par
)) return 0;
1953 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1954 memset(uid_resp
, 0, 4);
1955 uint16_t uid_resp_bits
= 0;
1956 uint16_t collision_answer_offset
= 0;
1957 // anti-collision-loop:
1958 while (Demod
.collisionPos
) {
1959 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1960 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1961 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1962 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1964 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1966 // construct anticollosion command:
1967 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1968 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1969 sel_uid
[2+i
] = uid_resp
[i
];
1971 collision_answer_offset
= uid_resp_bits
%8;
1972 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1973 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1975 // finally, add the last bits and BCC of the UID
1976 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1977 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1978 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1981 } else { // no collision, use the response to SELECT_ALL as current uid
1982 memcpy(uid_resp
, resp
, 4);
1986 if (cascade_level
< num_cascades
- 1) {
1988 memcpy(uid_resp
+1, uid_ptr
+cascade_level
*3, 3);
1990 memcpy(uid_resp
, uid_ptr
+cascade_level
*3, 4);
1995 // calculate crypto UID. Always use last 4 Bytes.
1997 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1999 // Construct SELECT UID command
2000 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
2001 memcpy(sel_uid
+2, uid_resp
, 4); // the UID received during anticollision, or the provided UID
2002 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
2003 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
2004 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
2007 if (!ReaderReceive(resp
, resp_par
)) return 0;
2011 // Test if more parts of the uid are coming
2012 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
2013 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
2014 // http://www.nxp.com/documents/application_note/AN10927.pdf
2015 uid_resp
[0] = uid_resp
[1];
2016 uid_resp
[1] = uid_resp
[2];
2017 uid_resp
[2] = uid_resp
[3];
2021 if(uid_ptr
&& anticollision
)
2022 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
2025 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
2026 p_hi14a_card
->uidlen
+= uid_resp_len
;
2031 p_hi14a_card
->sak
= sak
;
2032 p_hi14a_card
->ats_len
= 0;
2035 // non iso14443a compliant tag
2036 if( (sak
& 0x20) == 0) return 2;
2038 // Request for answer to select
2039 AppendCrc14443a(rats
, 2);
2040 ReaderTransmit(rats
, sizeof(rats
), NULL
);
2042 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
2045 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
2046 p_hi14a_card
->ats_len
= len
;
2049 // reset the PCB block number
2050 iso14_pcb_blocknum
= 0;
2052 // set default timeout based on ATS
2053 iso14a_set_ATS_timeout(resp
);
2058 void iso14443a_setup(uint8_t fpga_minor_mode
) {
2059 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
2060 // Set up the synchronous serial port
2062 // connect Demodulated Signal to ADC:
2063 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2065 // Signal field is on with the appropriate LED
2066 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
2067 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
2072 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
2079 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
2080 iso14a_set_timeout(10*106); // 10ms default
2083 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
2084 uint8_t parity
[MAX_PARITY_SIZE
] = {0x00};
2085 uint8_t real_cmd
[cmd_len
+4];
2086 real_cmd
[0] = 0x0a; //I-Block
2087 // put block number into the PCB
2088 real_cmd
[0] |= iso14_pcb_blocknum
;
2089 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2090 memcpy(real_cmd
+2, cmd
, cmd_len
);
2091 AppendCrc14443a(real_cmd
,cmd_len
+2);
2093 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
2094 size_t len
= ReaderReceive(data
, parity
);
2095 uint8_t *data_bytes
= (uint8_t *) data
;
2097 return 0; //DATA LINK ERROR
2098 // if we received an I- or R(ACK)-Block with a block number equal to the
2099 // current block number, toggle the current block number
2100 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
2101 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
2102 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2103 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
2105 iso14_pcb_blocknum
^= 1;
2111 //-----------------------------------------------------------------------------
2112 // Read an ISO 14443a tag. Send out commands and store answers.
2114 //-----------------------------------------------------------------------------
2115 void ReaderIso14443a(UsbCommand
*c
)
2117 iso14a_command_t param
= c
->arg
[0];
2118 uint8_t *cmd
= c
->d
.asBytes
;
2119 size_t len
= c
->arg
[1] & 0xffff;
2120 size_t lenbits
= c
->arg
[1] >> 16;
2121 uint32_t timeout
= c
->arg
[2];
2123 byte_t buf
[USB_CMD_DATA_SIZE
] = {0x00};
2124 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
2126 if (param
& ISO14A_CONNECT
)
2131 if (param
& ISO14A_REQUEST_TRIGGER
)
2132 iso14a_set_trigger(TRUE
);
2135 if (param
& ISO14A_CONNECT
) {
2136 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
2137 if(!(param
& ISO14A_NO_SELECT
)) {
2138 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
2139 arg0
= iso14443a_select_card(NULL
,card
,NULL
, true, 0);
2140 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
2144 if (param
& ISO14A_SET_TIMEOUT
)
2145 iso14a_set_timeout(timeout
);
2147 if (param
& ISO14A_APDU
) {
2148 arg0
= iso14_apdu(cmd
, len
, buf
);
2149 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2152 if (param
& ISO14A_RAW
) {
2153 if(param
& ISO14A_APPEND_CRC
) {
2154 if(param
& ISO14A_TOPAZMODE
) {
2155 AppendCrc14443b(cmd
,len
);
2157 AppendCrc14443a(cmd
,len
);
2160 if (lenbits
) lenbits
+= 16;
2162 if(lenbits
>0) { // want to send a specific number of bits (e.g. short commands)
2163 if(param
& ISO14A_TOPAZMODE
) {
2164 int bits_to_send
= lenbits
;
2166 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 7), NULL
, NULL
); // first byte is always short (7bits) and no parity
2168 while (bits_to_send
> 0) {
2169 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 8), NULL
, NULL
); // following bytes are 8 bit and no parity
2173 GetParity(cmd
, lenbits
/8, par
);
2174 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
); // bytes are 8 bit with odd parity
2176 } else { // want to send complete bytes only
2177 if(param
& ISO14A_TOPAZMODE
) {
2179 ReaderTransmitBitsPar(&cmd
[i
++], 7, NULL
, NULL
); // first byte: 7 bits, no paritiy
2181 ReaderTransmitBitsPar(&cmd
[i
++], 8, NULL
, NULL
); // following bytes: 8 bits, no paritiy
2184 ReaderTransmit(cmd
,len
, NULL
); // 8 bits, odd parity
2187 arg0
= ReaderReceive(buf
, par
);
2188 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2191 if (param
& ISO14A_REQUEST_TRIGGER
)
2192 iso14a_set_trigger(FALSE
);
2195 if (param
& ISO14A_NO_DISCONNECT
)
2198 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2204 // Determine the distance between two nonces.
2205 // Assume that the difference is small, but we don't know which is first.
2206 // Therefore try in alternating directions.
2207 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
2209 if (nt1
== nt2
) return 0;
2212 uint32_t nttmp1
= nt1
;
2213 uint32_t nttmp2
= nt2
;
2215 for (i
= 1; i
< 0xFFFF; i
+= 8) {
2216 nttmp1
= prng_successor_one(nttmp1
); if (nttmp1
== nt2
) return i
;
2217 nttmp2
= prng_successor_one(nttmp2
); if (nttmp2
== nt1
) return -i
;
2219 nttmp1
= prng_successor_one(nttmp1
); if (nttmp1
== nt2
) return i
+1;
2220 nttmp2
= prng_successor_one(nttmp2
); if (nttmp2
== nt1
) return -i
+1;
2222 nttmp1
= prng_successor_one(nttmp1
); if (nttmp1
== nt2
) return i
+2;
2223 nttmp2
= prng_successor_one(nttmp2
); if (nttmp2
== nt1
) return -i
+2;
2225 nttmp1
= prng_successor_one(nttmp1
); if (nttmp1
== nt2
) return i
+3;
2226 nttmp2
= prng_successor_one(nttmp2
); if (nttmp2
== nt1
) return -i
+3;
2228 nttmp1
= prng_successor_one(nttmp1
); if (nttmp1
== nt2
) return i
+4;
2229 nttmp2
= prng_successor_one(nttmp2
); if (nttmp2
== nt1
) return -i
+4;
2231 nttmp1
= prng_successor_one(nttmp1
); if (nttmp1
== nt2
) return i
+5;
2232 nttmp2
= prng_successor_one(nttmp2
); if (nttmp2
== nt1
) return -i
+5;
2234 nttmp1
= prng_successor_one(nttmp1
); if (nttmp1
== nt2
) return i
+6;
2235 nttmp2
= prng_successor_one(nttmp2
); if (nttmp2
== nt1
) return -i
+6;
2237 nttmp1
= prng_successor_one(nttmp1
); if (nttmp1
== nt2
) return i
+7;
2238 nttmp2
= prng_successor_one(nttmp2
); if (nttmp2
== nt1
) return -i
+7;
2240 nttmp1
= prng_successor_one(nttmp1
); if (nttmp1
== nt2
) return i
+8;
2241 nttmp2
= prng_successor_one(nttmp2
); if (nttmp2
== nt1
) return -i
+8;
2243 if ( prng_successor(nttmp1, i) == nt2) return i;
2244 if ( prng_successor(nttmp2, i) == nt1) return -i;
2246 if ( prng_successor(nttmp1, i+2) == nt2) return i+2;
2247 if ( prng_successor(nttmp2, i+2) == nt1) return -(i+2);
2249 if ( prng_successor(nttmp1, i+3) == nt2) return i+3;
2250 if ( prng_successor(nttmp2, i+3) == nt1) return -(i+3);
2252 if ( prng_successor(nttmp1, i+4) == nt2) return i+4;
2253 if ( prng_successor(nttmp2, i+4) == nt1) return -(i+4);
2255 if ( prng_successor(nttmp1, i+5) == nt2) return i+5;
2256 if ( prng_successor(nttmp2, i+5) == nt1) return -(i+5);
2258 if ( prng_successor(nttmp1, i+6) == nt2) return i+6;
2259 if ( prng_successor(nttmp2, i+6) == nt1) return -(i+6);
2261 if ( prng_successor(nttmp1, i+7) == nt2) return i+7;
2262 if ( prng_successor(nttmp2, i+7) == nt1) return -(i+7);
2264 if ( prng_successor(nttmp1, i+8) == nt2) return i+8;
2265 if ( prng_successor(nttmp2, i+8) == nt1) return -(i+8);
2269 return(-99999); // either nt1 or nt2 are invalid nonces
2273 //-----------------------------------------------------------------------------
2274 // Recover several bits of the cypher stream. This implements (first stages of)
2275 // the algorithm described in "The Dark Side of Security by Obscurity and
2276 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2277 // (article by Nicolas T. Courtois, 2009)
2278 //-----------------------------------------------------------------------------
2279 void ReaderMifare(bool first_try
, uint8_t block
)
2282 //uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2283 //uint8_t mf_auth[] = { 0x60,0x05, 0x58, 0x2c };
2284 uint8_t mf_auth
[] = { 0x60,0x00, 0x00, 0x00 };
2285 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2286 static uint8_t mf_nr_ar3
= 0;
2289 AppendCrc14443a(mf_auth
, 2);
2291 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2292 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2295 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2296 static byte_t par_low
= 0;
2297 uint8_t uid
[10] = {0};
2298 //uint32_t cuid = 0;
2301 uint32_t previous_nt
= 0;
2302 static uint32_t nt_attacked
= 0;
2303 byte_t par_list
[8] = {0x00};
2304 byte_t ks_list
[8] = {0x00};
2306 static uint32_t sync_time
= 0;
2307 static int32_t sync_cycles
= 0;
2308 int catch_up_cycles
= 0;
2309 int last_catch_up
= 0;
2310 uint16_t elapsed_prng_sequences
= 1;
2311 uint16_t consecutive_resyncs
= 0;
2314 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2315 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2316 #define MAX_SYNC_TRIES 32
2317 #define NUM_DEBUG_INFOS 8 // per strategy
2318 #define MAX_STRATEGY 3
2320 uint16_t unexpected_random
= 0;
2321 uint16_t sync_tries
= 0;
2322 uint16_t strategy
= 0;
2323 uint32_t halt_time
= 0;
2333 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2335 // free eventually allocated BigBuf memory. We want all for tracing.
2339 sync_time
= GetCountSspClk() & 0xfffffff8;
2340 sync_cycles
= PRNG_SEQUENCE_LENGTH
; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2345 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2347 mf_nr_ar
[3] = mf_nr_ar3
;
2352 for(uint16_t i
= 0; TRUE
; ++i
) {
2356 // Test if the action was cancelled
2357 if(BUTTON_PRESS()) {
2362 if (strategy
== 2) {
2363 // test with additional halt command
2365 int len
= mifare_sendcmd_short(NULL
, false, 0x50, 0x00, receivedAnswer
, receivedAnswerPar
, &halt_time
);
2367 if (len
&& MF_DBGLEVEL
>= 3)
2368 Dbprintf("Unexpected response of %d bytes to halt command.", len
);
2371 if (strategy
== 3) {
2372 // test with FPGA power off/on
2373 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2375 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2377 sync_time
= GetCountSspClk() & 0xfffffff8;
2381 if (!iso14443a_select_card(uid
, NULL
, NULL
, true, 0)) {
2382 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card\n");
2386 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2387 catch_up_cycles
= 0;
2389 // if we missed the sync time already, advance to the next nonce repeat
2390 while(GetCountSspClk() > sync_time
) {
2391 ++elapsed_prng_sequences
;
2392 sync_time
+= sync_cycles
;
2394 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2395 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2397 // Receive the (4 Byte) "random" nonce
2398 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2401 // Transmit reader nonce with fake par
2402 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2405 nt
= bytes_to_num(receivedAnswer
, 4);
2407 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2408 int nt_distance
= dist_nt(previous_nt
, nt
);
2409 if (nt_distance
== 0) {
2412 if (nt_distance
== -99999) { // invalid nonce received
2413 unexpected_random
++;
2414 if (unexpected_random
> MAX_UNEXPECTED_RANDOM
) {
2415 isOK
= -3; // Card has an unpredictable PRNG. Give up
2418 continue; // continue trying...
2422 if (++sync_tries
> MAX_SYNC_TRIES
) {
2423 if (strategy
> MAX_STRATEGY
|| MF_DBGLEVEL
< 3) {
2424 isOK
= -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2431 sync_cycles
= (sync_cycles
- nt_distance
)/elapsed_prng_sequences
;
2432 if (sync_cycles
<= 0)
2433 sync_cycles
+= PRNG_SEQUENCE_LENGTH
;
2435 if (MF_DBGLEVEL
>= 3)
2436 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i
, nt_distance
, elapsed_prng_sequences
, sync_cycles
);
2442 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2444 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2445 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2446 catch_up_cycles
= 0;
2451 catch_up_cycles
/= elapsed_prng_sequences
;
2453 if (catch_up_cycles
== last_catch_up
) {
2454 ++consecutive_resyncs
;
2456 last_catch_up
= catch_up_cycles
;
2457 consecutive_resyncs
= 0;
2460 if (consecutive_resyncs
< 3) {
2461 if (MF_DBGLEVEL
>= 3)
2462 Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2464 sync_cycles
+= catch_up_cycles
;
2466 if (MF_DBGLEVEL
>= 3)
2467 Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2470 catch_up_cycles
= 0;
2471 consecutive_resyncs
= 0;
2476 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2477 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2478 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2481 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2483 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2484 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2486 // Test if the information is complete
2487 if (nt_diff
== 0x07) {
2492 nt_diff
= (nt_diff
+ 1) & 0x07;
2493 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2497 if (nt_diff
== 0 && first_try
) {
2499 if (par
[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2504 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2508 consecutive_resyncs
= 0;
2511 mf_nr_ar
[3] &= 0x1F;
2524 byte_t buf
[28] = {0x00};
2525 memcpy(buf
+ 0, uid
, 4);
2526 num_to_bytes(nt
, 4, buf
+ 4);
2527 memcpy(buf
+ 8, par_list
, 8);
2528 memcpy(buf
+ 16, ks_list
, 8);
2529 memcpy(buf
+ 24, mf_nr_ar
, 4);
2531 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2533 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2539 *MIFARE 1K simulate.
2542 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2543 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2544 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2545 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2546 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2548 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2550 int cardSTATE
= MFEMUL_NOFIELD
;
2552 int vHf
= 0; // in mV
2554 uint32_t selTimer
= 0;
2555 uint32_t authTimer
= 0;
2557 uint8_t cardWRBL
= 0;
2558 uint8_t cardAUTHSC
= 0;
2559 uint8_t cardAUTHKEY
= 0xff; // no authentication
2560 // uint32_t cardRr = 0;
2562 //uint32_t rn_enc = 0;
2564 uint32_t cardINTREG
= 0;
2565 uint8_t cardINTBLOCK
= 0;
2566 struct Crypto1State mpcs
= {0, 0};
2567 struct Crypto1State
*pcs
;
2569 uint32_t numReads
= 0;//Counts numer of times reader read a block
2570 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2571 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2572 uint8_t response
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2573 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2575 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2576 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2577 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2578 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2579 //uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2580 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2582 //uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
2583 uint8_t rAUTH_NT
[] = {0x55, 0x41, 0x49, 0x92};
2584 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2586 //Here, we collect UID1,UID2,NT,AR,NR,0,0,NT2,AR2,NR2
2587 // This can be used in a reader-only attack.
2588 // (it can also be retrieved via 'hf 14a list', but hey...
2589 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0,0,0};
2590 uint8_t ar_nr_collected
= 0;
2592 // Authenticate response - nonce
2593 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2595 //-- Determine the UID
2596 // Can be set from emulator memory, incoming data
2597 // and can be 7 or 4 bytes long
2598 if (flags
& FLAG_4B_UID_IN_DATA
)
2600 // 4B uid comes from data-portion of packet
2601 memcpy(rUIDBCC1
,datain
,4);
2602 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2604 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2605 // 7B uid comes from data-portion of packet
2606 memcpy(&rUIDBCC1
[1],datain
,3);
2607 memcpy(rUIDBCC2
, datain
+3, 4);
2610 // get UID from emul memory
2611 emlGetMemBt(receivedCmd
, 7, 1);
2612 _7BUID
= !(receivedCmd
[0] == 0x00);
2613 if (!_7BUID
) { // ---------- 4BUID
2614 emlGetMemBt(rUIDBCC1
, 0, 4);
2615 } else { // ---------- 7BUID
2616 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2617 emlGetMemBt(rUIDBCC2
, 3, 4);
2622 ar_nr_responses
[0*5] = bytes_to_num(rUIDBCC1
+1, 3);
2624 ar_nr_responses
[0*5+1] = bytes_to_num(rUIDBCC2
, 4);
2627 * Regardless of what method was used to set the UID, set fifth byte and modify
2628 * the ATQA for 4 or 7-byte UID
2630 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2634 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2635 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2638 if (MF_DBGLEVEL
>= 1) {
2640 Dbprintf("4B UID: %02x%02x%02x%02x",
2641 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2643 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2644 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2645 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2649 // We need to listen to the high-frequency, peak-detected path.
2650 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2652 // free eventually allocated BigBuf memory but keep Emulator Memory
2653 BigBuf_free_keep_EM();
2660 bool finished
= FALSE
;
2661 while (!BUTTON_PRESS() && !finished
&& !usb_poll_validate_length()) {
2664 // find reader field
2665 if (cardSTATE
== MFEMUL_NOFIELD
) {
2666 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2667 if (vHf
> MF_MINFIELDV
) {
2668 cardSTATE_TO_IDLE();
2672 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2675 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2676 if (res
== 2) { //Field is off!
2677 cardSTATE
= MFEMUL_NOFIELD
;
2680 } else if (res
== 1) {
2681 break; //return value 1 means button press
2684 // REQ or WUP request in ANY state and WUP in HALTED state
2685 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2686 selTimer
= GetTickCount();
2687 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2688 cardSTATE
= MFEMUL_SELECT1
;
2690 // init crypto block
2693 crypto1_destroy(pcs
);
2698 switch (cardSTATE
) {
2699 case MFEMUL_NOFIELD
:
2702 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2705 case MFEMUL_SELECT1
:{
2707 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2708 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2709 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2713 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2715 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2719 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2720 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2721 cuid
= bytes_to_num(rUIDBCC1
, 4);
2723 cardSTATE
= MFEMUL_WORK
;
2725 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2728 cardSTATE
= MFEMUL_SELECT2
;
2735 cardSTATE_TO_IDLE();
2736 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2740 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2741 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2744 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2745 if(ar_nr_collected
< 2) {
2746 if(ar_nr_responses
[2] != ar
) {
2747 // Avoid duplicates... probably not necessary, ar should vary.
2748 //ar_nr_responses[ar_nr_collected*5] = 0;
2749 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2750 ar_nr_responses
[ar_nr_collected
*5+2] = nonce
;
2751 ar_nr_responses
[ar_nr_collected
*5+3] = nr
;
2752 ar_nr_responses
[ar_nr_collected
*5+4] = ar
;
2755 // Interactive mode flag, means we need to send ACK
2756 if(flags
& FLAG_INTERACTIVE
&& ar_nr_collected
== 2)
2761 //crypto1_word(pcs, ar , 1);
2762 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2765 //if (cardRr != prng_successor(nonce, 64)){
2767 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2768 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2769 // cardRr, prng_successor(nonce, 64));
2770 // Shouldn't we respond anything here?
2771 // Right now, we don't nack or anything, which causes the
2772 // reader to do a WUPA after a while. /Martin
2773 // -- which is the correct response. /piwi
2774 //cardSTATE_TO_IDLE();
2775 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2779 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2781 num_to_bytes(ans
, 4, rAUTH_AT
);
2783 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2785 cardSTATE
= MFEMUL_WORK
;
2786 if (MF_DBGLEVEL
>= 4) {
2787 Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2789 cardAUTHKEY
== 0 ? 'A' : 'B',
2790 GetTickCount() - authTimer
2795 case MFEMUL_SELECT2
:{
2797 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2800 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2801 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2807 (receivedCmd
[0] == 0x95 &&
2808 receivedCmd
[1] == 0x70 &&
2809 memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0) ) {
2810 EmSendCmd(rSAK
, sizeof(rSAK
));
2811 cuid
= bytes_to_num(rUIDBCC2
, 4);
2812 cardSTATE
= MFEMUL_WORK
;
2814 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2818 // i guess there is a command). go into the work state.
2820 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2823 cardSTATE
= MFEMUL_WORK
;
2825 //intentional fall-through to the next case-stmt
2830 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2834 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2838 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2840 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2841 authTimer
= GetTickCount();
2842 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2843 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2844 crypto1_destroy(pcs
);//Added by martin
2845 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2847 if (!encrypted_data
) { // first authentication
2848 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2850 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2851 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2852 } else { // nested authentication
2853 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2854 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2855 num_to_bytes(ans
, 4, rAUTH_AT
);
2858 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2859 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2860 cardSTATE
= MFEMUL_AUTH1
;
2864 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2865 // BUT... ACK --> NACK
2866 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2867 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2871 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2872 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2873 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2878 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2882 if(receivedCmd
[0] == 0x30 // read block
2883 || receivedCmd
[0] == 0xA0 // write block
2884 || receivedCmd
[0] == 0xC0 // inc
2885 || receivedCmd
[0] == 0xC1 // dec
2886 || receivedCmd
[0] == 0xC2 // restore
2887 || receivedCmd
[0] == 0xB0) { // transfer
2888 if (receivedCmd
[1] >= 16 * 4) {
2889 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2890 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2894 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2895 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2896 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2901 if (receivedCmd
[0] == 0x30) {
2902 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2904 emlGetMem(response
, receivedCmd
[1], 1);
2905 AppendCrc14443a(response
, 16);
2906 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2907 EmSendCmdPar(response
, 18, response_par
);
2909 if(exitAfterNReads
> 0 && numReads
>= exitAfterNReads
) {
2910 Dbprintf("%d reads done, exiting", numReads
);
2916 if (receivedCmd
[0] == 0xA0) {
2917 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2918 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2919 cardSTATE
= MFEMUL_WRITEBL2
;
2920 cardWRBL
= receivedCmd
[1];
2923 // increment, decrement, restore
2924 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2925 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2926 if (emlCheckValBl(receivedCmd
[1])) {
2927 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2928 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2931 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2932 if (receivedCmd
[0] == 0xC1)
2933 cardSTATE
= MFEMUL_INTREG_INC
;
2934 if (receivedCmd
[0] == 0xC0)
2935 cardSTATE
= MFEMUL_INTREG_DEC
;
2936 if (receivedCmd
[0] == 0xC2)
2937 cardSTATE
= MFEMUL_INTREG_REST
;
2938 cardWRBL
= receivedCmd
[1];
2942 if (receivedCmd
[0] == 0xB0) {
2943 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2944 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2945 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2947 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2951 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2954 cardSTATE
= MFEMUL_HALTED
;
2955 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2956 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2960 if (receivedCmd
[0] == 0xe0) {//RATS
2961 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2964 // command not allowed
2965 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2966 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2969 case MFEMUL_WRITEBL2
:{
2971 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2972 emlSetMem(receivedCmd
, cardWRBL
, 1);
2973 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2974 cardSTATE
= MFEMUL_WORK
;
2976 cardSTATE_TO_IDLE();
2977 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2982 case MFEMUL_INTREG_INC
:{
2983 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2984 memcpy(&ans
, receivedCmd
, 4);
2985 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2986 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2987 cardSTATE_TO_IDLE();
2990 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2991 cardINTREG
= cardINTREG
+ ans
;
2992 cardSTATE
= MFEMUL_WORK
;
2995 case MFEMUL_INTREG_DEC
:{
2996 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2997 memcpy(&ans
, receivedCmd
, 4);
2998 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2999 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
3000 cardSTATE_TO_IDLE();
3003 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
3004 cardINTREG
= cardINTREG
- ans
;
3005 cardSTATE
= MFEMUL_WORK
;
3008 case MFEMUL_INTREG_REST
:{
3009 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
3010 memcpy(&ans
, receivedCmd
, 4);
3011 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
3012 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
3013 cardSTATE_TO_IDLE();
3016 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
3017 cardSTATE
= MFEMUL_WORK
;
3023 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
3026 // Interactive mode flag, means we need to send ACK
3027 if(flags
& FLAG_INTERACTIVE
) {
3028 //May just aswell send the collected ar_nr in the response aswell
3029 uint8_t len
= ar_nr_collected
*5*4;
3030 cmd_send(CMD_ACK
, CMD_SIMULATE_MIFARE_CARD
, len
, 0, &ar_nr_responses
, len
);
3033 if(flags
& FLAG_NR_AR_ATTACK
&& MF_DBGLEVEL
>= 1 ) {
3034 if(ar_nr_collected
> 1 ) {
3035 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
3036 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
3037 ar_nr_responses
[0], // UID1
3038 ar_nr_responses
[1], // UID2
3039 ar_nr_responses
[2], // NT
3040 ar_nr_responses
[3], // AR1
3041 ar_nr_responses
[4], // NR1
3042 ar_nr_responses
[8], // AR2
3043 ar_nr_responses
[9] // NR2
3045 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
3046 ar_nr_responses
[0], // UID1
3047 ar_nr_responses
[1], // UID2
3048 ar_nr_responses
[2], // NT1
3049 ar_nr_responses
[3], // AR1
3050 ar_nr_responses
[4], // NR1
3051 ar_nr_responses
[7], // NT2
3052 ar_nr_responses
[8], // AR2
3053 ar_nr_responses
[9] // NR2
3056 Dbprintf("Failed to obtain two AR/NR pairs!");
3057 if(ar_nr_collected
> 0 ) {
3058 Dbprintf("Only got these: UID=%06x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
3059 ar_nr_responses
[0], // UID1
3060 ar_nr_responses
[1], // UID2
3061 ar_nr_responses
[2], // NT
3062 ar_nr_responses
[3], // AR1
3063 ar_nr_responses
[4] // NR1
3068 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
3074 //-----------------------------------------------------------------------------
3077 //-----------------------------------------------------------------------------
3078 void RAMFUNC
SniffMifare(uint8_t param
) {
3080 // bit 0 - trigger from first card answer
3081 // bit 1 - trigger from first reader 7-bit request
3084 // init trace buffer
3088 // The command (reader -> tag) that we're receiving.
3089 // The length of a received command will in most cases be no more than 18 bytes.
3090 // So 32 should be enough!
3091 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
3092 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
3094 // The response (tag -> reader) that we're receiving.
3095 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
3096 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
3098 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
3100 // free eventually allocated BigBuf memory
3103 // allocate the DMA buffer, used to stream samples from the FPGA
3104 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
3105 uint8_t *data
= dmaBuf
;
3106 uint8_t previous_data
= 0;
3109 bool ReaderIsActive
= FALSE
;
3110 bool TagIsActive
= FALSE
;
3112 // Set up the demodulator for tag -> reader responses.
3113 DemodInit(receivedResponse
, receivedResponsePar
);
3115 // Set up the demodulator for the reader -> tag commands
3116 UartInit(receivedCmd
, receivedCmdPar
);
3118 // Setup for the DMA.
3119 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
3126 // And now we loop, receiving samples.
3127 for(uint32_t sniffCounter
= 0; TRUE
; ) {
3129 if(BUTTON_PRESS()) {
3130 DbpString("cancelled by button");
3137 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
3138 // check if a transaction is completed (timeout after 2000ms).
3139 // if yes, stop the DMA transfer and send what we have so far to the client
3140 if (MfSniffSend(2000)) {
3141 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3145 ReaderIsActive
= FALSE
;
3146 TagIsActive
= FALSE
;
3147 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
3151 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
3152 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
3154 if (readBufDataP
<= dmaBufDataP
) // we are processing the same block of data which is currently being transferred
3155 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
3157 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
3159 // test for length of buffer
3160 if(dataLen
> maxDataLen
) { // we are more behind than ever...
3161 maxDataLen
= dataLen
;
3162 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
3163 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
3167 if(dataLen
< 1) continue;
3169 // primary buffer was stopped ( <-- we lost data!
3170 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
3171 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
3172 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
3173 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
3175 // secondary buffer sets as primary, secondary buffer was stopped
3176 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
3177 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
3178 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
3183 if (sniffCounter
& 0x01) {
3185 // no need to try decoding tag data if the reader is sending
3187 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
3188 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
3191 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
3193 /* And ready to receive another command. */
3194 UartInit(receivedCmd
, receivedCmdPar
);
3196 /* And also reset the demod code */
3199 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
3202 // no need to try decoding tag data if the reader is sending
3203 if(!ReaderIsActive
) {
3204 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
3205 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
3208 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
3210 // And ready to receive another response.
3213 // And reset the Miller decoder including its (now outdated) input buffer
3214 UartInit(receivedCmd
, receivedCmdPar
);
3216 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
3220 previous_data
= *data
;
3224 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
)
3229 FpgaDisableSscDma();
3232 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);