]>
git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
12 //un_comment to allow debug print calls when used not on device
13 void dummy ( char * fmt
, ...){}
18 # include "cmdparser.h"
20 # define prnt PrintAndLog
22 uint8_t g_debugMode
= 0 ;
26 //test samples are not just noise
27 uint8_t justNoise ( uint8_t * bits
, size_t size
) {
30 for ( size_t idx
= 0 ; idx
< size
&& val
; idx
++)
31 val
= bits
[ idx
] < THRESHOLD
;
36 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
37 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
41 // get high and low thresholds
42 for ( size_t i
= 0 ; i
< size
; i
++){
43 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
44 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
46 if (* high
< 123 ) return - 1 ; // just noise
47 * high
= ((* high
- 128 )* fuzzHi
+ 12800 )/ 100 ;
48 * low
= ((* low
- 128 )* fuzzLo
+ 12800 )/ 100 ;
53 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
54 // returns 1 if passed
55 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
58 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
59 ans
^= (( bits
>> i
) & 1 );
61 //prnt("DEBUG: ans: %d, ptype: %d",ans,pType);
62 return ( ans
== pType
);
66 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
67 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
68 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
70 uint32_t parityWd
= 0 ;
71 size_t j
= 0 , bitCnt
= 0 ;
72 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
){
73 for ( int bit
= 0 ; bit
< pLen
; bit
++){
74 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
75 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
77 j
--; // overwrite parity with next data
78 // if parity fails then return 0
80 case 3 : if ( BitStream
[ j
]== 1 ) { return 0 ; } break ; //should be 0 spacer bit
81 case 2 : if ( BitStream
[ j
]== 0 ) { return 0 ; } break ; //should be 1 spacer bit
82 default : if ( parityTest ( parityWd
, pLen
, pType
) == 0 ) { return 0 ; } break ; //test parity
87 // if we got here then all the parities passed
88 //return ID start index and size
93 // takes a array of binary values, length of bits per parity (includes parity bit),
94 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
95 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
96 size_t addParity ( uint8_t * BitSource
, uint8_t * dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
98 uint32_t parityWd
= 0 ;
99 size_t j
= 0 , bitCnt
= 0 ;
100 for ( int word
= 0 ; word
< sourceLen
; word
+= pLen
- 1 ) {
101 for ( int bit
= 0 ; bit
< pLen
- 1 ; bit
++){
102 parityWd
= ( parityWd
<< 1 ) | BitSource
[ word
+ bit
];
103 dest
[ j
++] = ( BitSource
[ word
+ bit
]);
106 // if parity fails then return 0
108 case 3 : dest
[ j
++]= 0 ; break ; // marker bit which should be a 0
109 case 2 : dest
[ j
++]= 1 ; break ; // marker bit which should be a 1
111 dest
[ j
++] = parityTest ( parityWd
, pLen
- 1 , pType
) ^ 1 ;
117 // if we got here then all the parities passed
118 //return ID start index and size
122 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
)
125 for ( int i
= 0 ; i
< numbits
; i
++) {
126 num
= ( num
<< 1 ) | (* src
);
132 //least significant bit first
133 uint32_t bytebits_to_byteLSBF ( uint8_t * src
, size_t numbits
)
136 for ( int i
= 0 ; i
< numbits
; i
++) {
137 num
= ( num
<< 1 ) | *( src
+ ( numbits
-( i
+ 1 )));
143 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
144 uint8_t preambleSearch ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
)
146 // Sanity check. If preamble length is bigger than bitstream length.
147 if ( * size
<= pLen
) return 0 ;
149 uint8_t foundCnt
= 0 ;
150 for ( int idx
= 0 ; idx
< * size
- pLen
; idx
++){
151 if ( memcmp ( BitStream
+ idx
, preamble
, pLen
) == 0 ){
158 * size
= idx
- * startIdx
;
167 //takes 1s and 0s and searches for EM410x format - output EM ID
168 int Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
, uint32_t * hi
, uint64_t * lo
)
170 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
171 // otherwise could be a void with no arguments
174 if ( BitStream
[ 1 ]> 1 ) return - 1 ; //allow only 1s and 0s
176 // 111111111 bit pattern represent start of frame
177 // include 0 in front to help get start pos
178 uint8_t preamble
[] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
180 uint32_t parityBits
= 0 ;
184 errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, startIdx
);
185 if ( errChk
== 0 ) return - 4 ;
186 if (* size
< 64 ) return - 3 ;
187 if (* size
> 64 ) FmtLen
= 22 ;
188 * startIdx
+= 1 ; //get rid of 0 from preamble
190 for ( i
= 0 ; i
< FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
191 parityBits
= bytebits_to_byte ( BitStream
+( i
* 5 )+ idx
, 5 );
192 //check even parity - quit if failed
193 if ( parityTest ( parityBits
, 5 , 0 ) == 0 ) return - 5 ;
194 //set uint64 with ID from BitStream
195 for ( uint8_t ii
= 0 ; ii
< 4 ; ii
++){
196 * hi
= (* hi
<< 1 ) | (* lo
>> 63 );
197 * lo
= (* lo
<< 1 ) | ( BitStream
[( i
* 5 )+ ii
+ idx
]);
200 if ( errChk
!= 0 ) return 1 ;
201 //skip last 5 bit parity test for simplicity.
207 //demodulates strong heavily clipped samples
208 int cleanAskRawDemod ( uint8_t * BinStream
, size_t * size
, int clk
, int invert
, int high
, int low
)
210 size_t bitCnt
= 0 , smplCnt
= 0 , errCnt
= 0 ;
211 uint8_t waveHigh
= 0 ;
212 for ( size_t i
= 0 ; i
< * size
; i
++){
213 if ( BinStream
[ i
] >= high
&& waveHigh
){
215 } else if ( BinStream
[ i
] <= low
&& ! waveHigh
){
217 } else { //transition
218 if (( BinStream
[ i
] >= high
&& ! waveHigh
) || ( BinStream
[ i
] <= low
&& waveHigh
)){
220 if ( smplCnt
> clk
-( clk
/ 4 )- 1 ) { //full clock
221 if ( smplCnt
> clk
+ ( clk
/ 4 )+ 1 ) { //too many samples
223 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
224 BinStream
[ bitCnt
++] = 7 ;
225 } else if ( waveHigh
) {
226 BinStream
[ bitCnt
++] = invert
;
227 BinStream
[ bitCnt
++] = invert
;
228 } else if (! waveHigh
) {
229 BinStream
[ bitCnt
++] = invert
^ 1 ;
230 BinStream
[ bitCnt
++] = invert
^ 1 ;
234 } else if ( smplCnt
> ( clk
/ 2 ) - ( clk
/ 4 )- 1 ) {
236 BinStream
[ bitCnt
++] = invert
;
237 } else if (! waveHigh
) {
238 BinStream
[ bitCnt
++] = invert
^ 1 ;
242 } else if (! bitCnt
) {
244 waveHigh
= ( BinStream
[ i
] >= high
);
248 //transition bit oops
250 } else { //haven't hit new high or new low yet
260 void askAmp ( uint8_t * BitStream
, size_t size
)
263 for ( size_t i
= 1 ; i
< size
; ++ i
){
264 if ( BitStream
[ i
]- BitStream
[ i
- 1 ] >= 30 ) //large jump up
266 else if ( BitStream
[ i
- 1 ] - BitStream
[ i
] >= 20 ) //large jump down
274 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
275 int askdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
277 if (* size
== 0 ) return - 1 ;
278 int start
= DetectASKClock ( BinStream
, * size
, clk
, maxErr
); //clock default
279 if (* clk
== 0 || start
< 0 ) return - 3 ;
280 if (* invert
!= 1 ) * invert
= 0 ;
281 if ( amp
== 1 ) askAmp ( BinStream
, * size
);
282 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, beststart %d, amp %d" , * clk
, start
, amp
);
284 uint8_t initLoopMax
= 255 ;
285 if ( initLoopMax
> * size
) initLoopMax
= * size
;
286 // Detect high and lows
287 //25% clip in case highs and lows aren't clipped [marshmellow]
289 if ( getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 ) < 1 )
290 return - 2 ; //just noise
293 // if clean clipped waves detected run alternate demod
294 if ( DetectCleanAskWave ( BinStream
, * size
, high
, low
)) {
295 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Clean Wave Detected - using clean wave demod" );
296 errCnt
= cleanAskRawDemod ( BinStream
, size
, * clk
, * invert
, high
, low
);
297 if ( askType
) //askman
298 return manrawdecode ( BinStream
, size
, 0 );
302 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Weak Wave Detected - using weak wave demod" );
304 int lastBit
; //set first clock check - can go negative
305 size_t i
, bitnum
= 0 ; //output counter
307 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
308 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
309 size_t MaxBits
= 3072 ; //max bits to collect
310 lastBit
= start
- * clk
;
312 for ( i
= start
; i
< * size
; ++ i
) {
313 if ( i
- lastBit
>= * clk
- tol
){
314 if ( BinStream
[ i
] >= high
) {
315 BinStream
[ bitnum
++] = * invert
;
316 } else if ( BinStream
[ i
] <= low
) {
317 BinStream
[ bitnum
++] = * invert
^ 1 ;
318 } else if ( i
- lastBit
>= * clk
+ tol
) {
320 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
321 BinStream
[ bitnum
++]= 7 ;
324 } else { //in tolerance - looking for peak
329 } else if ( i
- lastBit
>= (* clk
/ 2 - tol
) && ! midBit
&& ! askType
){
330 if ( BinStream
[ i
] >= high
) {
331 BinStream
[ bitnum
++] = * invert
;
332 } else if ( BinStream
[ i
] <= low
) {
333 BinStream
[ bitnum
++] = * invert
^ 1 ;
334 } else if ( i
- lastBit
>= * clk
/ 2 + tol
) {
335 BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
337 } else { //in tolerance - looking for peak
342 if ( bitnum
>= MaxBits
) break ;
348 //take 10 and 01 and manchester decode
349 //run through 2 times and take least errCnt
350 int manrawdecode ( uint8_t * BitStream
, size_t * size
, uint8_t invert
){
351 int errCnt
= 0 , bestErr
= 1000 ;
352 uint16_t bitnum
= 0 , MaxBits
= 512 , bestRun
= 0 ;
354 if (* size
< 16 ) return - 1 ;
355 //find correct start position [alignment]
356 for ( k
= 0 ; k
< 2 ; ++ k
){
357 for ( i
= k
; i
<* size
- 3 ; i
+= 2 )
358 if ( BitStream
[ i
] == BitStream
[ i
+ 1 ])
361 if ( bestErr
> errCnt
){
368 for ( i
= bestRun
; i
< * size
- 3 ; i
+= 2 ){
369 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
370 BitStream
[ bitnum
++] = invert
;
371 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
372 BitStream
[ bitnum
++] = invert
^ 1 ;
374 BitStream
[ bitnum
++] = 7 ;
376 if ( bitnum
> MaxBits
) break ;
382 uint32_t manchesterEncode2Bytes ( uint16_t datain
) {
385 for ( uint8_t i
= 0 ; i
< 16 ; i
++) {
386 curBit
= ( datain
>> ( 15 - i
) & 1 );
387 output
|= ( 1 <<((( 15 - i
)* 2 )+ curBit
));
393 //encode binary data into binary manchester
394 int ManchesterEncode ( uint8_t * BitStream
, size_t size
)
396 size_t modIdx
= 20000 , i
= 0 ;
397 if ( size
> modIdx
) return - 1 ;
398 for ( size_t idx
= 0 ; idx
< size
; idx
++){
399 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
400 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
402 for (; i
<( size
* 2 ); i
++){
403 BitStream
[ i
] = BitStream
[ i
+ 20000 ];
409 //take 01 or 10 = 1 and 11 or 00 = 0
410 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
411 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
412 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
)
417 uint16_t MaxBits
= 512 ;
418 //if not enough samples - error
419 if (* size
< 51 ) return - 1 ;
420 //check for phase change faults - skip one sample if faulty
421 uint8_t offsetA
= 1 , offsetB
= 1 ;
423 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) offsetA
= 0 ;
424 if ( BitStream
[ i
+ 2 ]== BitStream
[ i
+ 3 ]) offsetB
= 0 ;
426 if (! offsetA
&& offsetB
) offset
++;
427 for ( i
= offset
; i
<* size
- 3 ; i
+= 2 ){
428 //check for phase error
429 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) {
430 BitStream
[ bitnum
++]= 7 ;
433 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
434 BitStream
[ bitnum
++]= 1 ^ invert
;
435 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
436 BitStream
[ bitnum
++]= invert
;
438 BitStream
[ bitnum
++]= 7 ;
441 if ( bitnum
> MaxBits
) break ;
448 // demod gProxIIDemod
449 // error returns as -x
450 // success returns start position in BitStream
451 // BitStream must contain previously askrawdemod and biphasedemoded data
452 int gProxII_Demod ( uint8_t BitStream
[], size_t * size
)
455 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 0 };
457 uint8_t errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, & startIdx
);
458 if ( errChk
== 0 ) return - 3 ; //preamble not found
459 if (* size
!= 96 ) return - 2 ; //should have found 96 bits
460 //check first 6 spacer bits to verify format
461 if (! BitStream
[ startIdx
+ 5 ] && ! BitStream
[ startIdx
+ 10 ] && ! BitStream
[ startIdx
+ 15 ] && ! BitStream
[ startIdx
+ 20 ] && ! BitStream
[ startIdx
+ 25 ] && ! BitStream
[ startIdx
+ 30 ]){
462 //confirmed proper separator bits found
463 //return start position
464 return ( int ) startIdx
;
466 return - 5 ; //spacer bits not found - not a valid gproxII
469 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
470 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
472 size_t last_transition
= 0 ;
475 if ( fchigh
== 0 ) fchigh
= 10 ;
476 if ( fclow
== 0 ) fclow
= 8 ;
477 //set the threshold close to 0 (graph) or 128 std to avoid static
478 uint8_t threshold_value
= 123 ;
479 size_t preLastSample
= 0 ;
480 size_t LastSample
= 0 ;
481 size_t currSample
= 0 ;
482 // sync to first lo-hi transition, and threshold
484 // Need to threshold first sample
485 // skip 160 samples to allow antenna/samples to settle
486 if ( dest
[ 160 ] < threshold_value
) dest
[ 0 ] = 0 ;
490 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
491 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
492 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
493 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
494 for ( idx
= 161 ; idx
< size
- 20 ; idx
++) {
495 // threshold current value
497 if ( dest
[ idx
] < threshold_value
) dest
[ idx
] = 0 ;
500 // Check for 0->1 transition
501 if ( dest
[ idx
- 1 ] < dest
[ idx
]) {
502 preLastSample
= LastSample
;
503 LastSample
= currSample
;
504 currSample
= idx
- last_transition
;
505 if ( currSample
< ( fclow
- 2 )){ //0-5 = garbage noise (or 0-3)
506 //do nothing with extra garbage
507 } else if ( currSample
< ( fchigh
- 1 )) { //6-8 = 8 sample waves (or 3-6 = 5)
508 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
509 if ( LastSample
> ( fchigh
- 2 ) && ( preLastSample
< ( fchigh
- 1 ) || preLastSample
== 0 )){
514 } else if ( currSample
> ( fchigh
) && ! numBits
) { //12 + and first bit = unusable garbage
515 //do nothing with beginning garbage
516 } else if ( currSample
== ( fclow
+ 1 ) && LastSample
== ( fclow
- 1 )) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
518 } else { //9+ = 10 sample waves (or 6+ = 7)
521 last_transition
= idx
;
524 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
527 //translate 11111100000 to 10
528 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
529 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
,
530 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
532 uint8_t lastval
= dest
[ 0 ];
536 for ( idx
= 1 ; idx
< size
; idx
++) {
538 if ( dest
[ idx
]== lastval
) continue ; //skip until we hit a transition
540 //find out how many bits (n) we collected
541 //if lastval was 1, we have a 1->0 crossing
542 if ( dest
[ idx
- 1 ]== 1 ) {
543 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
544 } else { // 0->1 crossing
545 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
549 //add to our destination the bits we collected
550 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
555 // if valid extra bits at the end were all the same frequency - add them in
556 if ( n
> rfLen
/ fchigh
) {
557 if ( dest
[ idx
- 2 ]== 1 ) {
558 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
560 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
562 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
568 //by marshmellow (from holiman's base)
569 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
570 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
573 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
);
574 size
= aggregate_bits ( dest
, size
, rfLen
, invert
, fchigh
, fclow
);
578 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
579 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
581 if ( justNoise ( dest
, * size
)) return - 1 ;
583 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
585 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
586 if (* size
< 96 * 2 ) return - 2 ;
587 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
588 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 };
589 // find bitstring in array
590 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
591 if ( errChk
== 0 ) return - 3 ; //preamble not found
593 numStart
= startIdx
+ sizeof ( preamble
);
594 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
595 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
596 if ( dest
[ idx
] == dest
[ idx
+ 1 ]){
597 return - 4 ; //not manchester data
599 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
600 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
601 //Then, shift in a 0 or one into low
603 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
608 return ( int ) startIdx
;
611 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
612 int ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
614 if ( justNoise ( dest
, * size
)) return - 1 ;
616 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
618 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
619 if (* size
< 96 ) return - 2 ;
621 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
622 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
624 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
625 if ( errChk
== 0 ) return - 3 ; //preamble not found
627 numStart
= startIdx
+ sizeof ( preamble
);
628 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
629 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
630 if ( dest
[ idx
] == dest
[ idx
+ 1 ])
631 return - 4 ; //not manchester data
632 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
633 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
634 //Then, shift in a 0 or one into low
635 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
640 return ( int ) startIdx
;
643 int IOdemodFSK ( uint8_t * dest
, size_t size
)
645 if ( justNoise ( dest
, size
)) return - 1 ;
646 //make sure buffer has data
647 if ( size
< 66 * 64 ) return - 2 ;
649 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // FSK2a RF/64
650 if ( size
< 65 ) return - 3 ; //did we get a good demod?
652 //0 10 20 30 40 50 60
654 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
655 //-----------------------------------------------------------------------------
656 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
658 //XSF(version)facility:codeone+codetwo
661 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
662 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), & size
, & startIdx
);
663 if ( errChk
== 0 ) return - 4 ; //preamble not found
665 if (! dest
[ startIdx
+ 8 ] && dest
[ startIdx
+ 17 ]== 1 && dest
[ startIdx
+ 26 ]== 1 && dest
[ startIdx
+ 35 ]== 1 && dest
[ startIdx
+ 44 ]== 1 && dest
[ startIdx
+ 53 ]== 1 ){
666 //confirmed proper separator bits found
667 //return start position
668 return ( int ) startIdx
;
674 // find viking preamble 0xF200 in already demoded data
675 int VikingDemod_AM ( uint8_t * dest
, size_t * size
) {
676 //make sure buffer has data
677 if (* size
< 64 * 2 ) return - 2 ;
679 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
680 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
681 if ( errChk
== 0 ) return - 4 ; //preamble not found
682 uint32_t checkCalc
= bytebits_to_byte ( dest
+ startIdx
, 8 ) ^
683 bytebits_to_byte ( dest
+ startIdx
+ 8 , 8 ) ^
684 bytebits_to_byte ( dest
+ startIdx
+ 16 , 8 ) ^
685 bytebits_to_byte ( dest
+ startIdx
+ 24 , 8 ) ^
686 bytebits_to_byte ( dest
+ startIdx
+ 32 , 8 ) ^
687 bytebits_to_byte ( dest
+ startIdx
+ 40 , 8 ) ^
688 bytebits_to_byte ( dest
+ startIdx
+ 48 , 8 ) ^
689 bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
690 if ( checkCalc
!= 0xA8 ) return - 5 ;
691 if (* size
!= 64 ) return - 6 ;
692 //return start position
693 return ( int ) startIdx
;
697 // find Visa2000 preamble in already demoded data
698 int Visa2kDemod_AM ( uint8_t * dest
, size_t * size
) {
699 if (* size
< 96 ) return - 1 ; //make sure buffer has data
701 uint8_t preamble
[] = { 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 };
702 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
703 if ( errChk
== 0 ) return - 2 ; //preamble not found
704 if (* size
!= 96 ) return - 3 ; //wrong demoded size
705 //return start position
706 return ( int ) startIdx
;
709 // find Noralsy preamble in already demoded data
710 int NoralsyDemod_AM ( uint8_t * dest
, size_t * size
) {
711 if (* size
< 96 ) return - 1 ; //make sure buffer has data
713 uint8_t preamble
[] = { 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 };
714 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
715 if ( errChk
== 0 ) return - 2 ; //preamble not found
716 if (* size
!= 96 ) return - 3 ; //wrong demoded size
717 //return start position
718 return ( int ) startIdx
;
720 // find presco preamble 0x10D in already demoded data
721 int PrescoDemod ( uint8_t * dest
, size_t * size
) {
722 if (* size
< 128 * 2 ) return - 1 ; //make sure buffer has data
724 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
725 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
726 if ( errChk
== 0 ) return - 2 ; //preamble not found
727 if (* size
!= 128 ) return - 3 ; //wrong demoded size
728 //return start position
729 return ( int ) startIdx
;
732 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
733 // BitStream must contain previously askrawdemod and biphasedemoded data
734 int FDXBdemodBI ( uint8_t * dest
, size_t * size
) {
735 if (* size
< 128 * 2 ) return - 1 ; //make sure buffer has enough data
737 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
738 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
739 if ( errChk
== 0 ) return - 2 ; //preamble not found
740 if (* size
!= 128 ) return - 3 ; //wrong demoded size
741 //return start position
742 return ( int ) startIdx
;
745 // ASK/Diphase fc/64 (inverted Biphase)
746 // Note: this i s not a demod, this is only a detection
747 // the parameter *dest needs to be demoded before call
748 // 0xFFFF preamble, 64bits
749 int JablotronDemod ( uint8_t * dest
, size_t * size
){
750 if (* size
< 64 * 2 ) return - 1 ; //make sure buffer has enough data
752 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
753 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
754 if ( errChk
== 0 ) return - 2 ; //preamble not found
755 if (* size
!= 64 ) return - 3 ; // wrong demoded size
757 uint8_t checkchksum
= 0 ;
758 for ( int i
= 16 ; i
< 56 ; i
+= 8 ) {
759 checkchksum
+= bytebits_to_byte ( dest
+ startIdx
+ i
, 8 );
762 uint8_t crc
= bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
763 if ( checkchksum
!= crc
) return - 5 ;
764 return ( int ) startIdx
;
768 // FSK Demod then try to locate an AWID ID
769 int AWIDdemodFSK ( uint8_t * dest
, size_t * size
)
771 //make sure buffer has enough data
772 if (* size
< 96 * 50 ) return - 1 ;
774 if ( justNoise ( dest
, * size
)) return - 2 ;
777 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
778 if (* size
< 96 ) return - 3 ; //did we get a good demod?
780 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
782 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
783 if ( errChk
== 0 ) return - 4 ; //preamble not found
784 if (* size
!= 96 ) return - 5 ;
785 return ( int ) startIdx
;
789 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
790 int PyramiddemodFSK ( uint8_t * dest
, size_t * size
)
792 //make sure buffer has data
793 if (* size
< 128 * 50 ) return - 5 ;
795 //test samples are not just noise
796 if ( justNoise ( dest
, * size
)) return - 1 ;
799 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
800 if (* size
< 128 ) return - 2 ; //did we get a good demod?
802 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
804 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
805 if ( errChk
== 0 ) return - 4 ; //preamble not found
806 if (* size
!= 128 ) return - 3 ;
807 return ( int ) startIdx
;
810 // find nedap preamble in already demoded data
811 int NedapDemod ( uint8_t * dest
, size_t * size
) {
812 //make sure buffer has data
813 if (* size
< 128 ) return - 3 ;
816 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
817 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
818 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
819 if ( errChk
== 0 ) return - 4 ; //preamble not found
820 return ( int ) startIdx
;
823 // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits
825 int IdteckDemodPSK ( uint8_t * dest
, size_t * size
) {
826 //make sure buffer has data
827 if (* size
< 64 * 2 ) return - 1 ;
829 uint8_t preamble
[] = { 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 };
830 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
831 if ( errChk
== 0 ) return - 2 ; //preamble not found
832 if (* size
!= 64 ) return - 3 ; // wrong demoded size
833 return ( int ) startIdx
;
837 // to detect a wave that has heavily clipped (clean) samples
838 uint8_t DetectCleanAskWave ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
840 bool allArePeaks
= true ;
842 size_t loopEnd
= 512 + 160 ;
843 if ( loopEnd
> size
) loopEnd
= size
;
844 for ( size_t i
= 160 ; i
< loopEnd
; i
++){
845 if ( dest
[ i
]> low
&& dest
[ i
]< high
)
851 if ( cntPeaks
> 300 ) return true ;
856 // to help detect clocks on heavily clipped samples
857 // based on count of low to low
858 int DetectStrongAskClock ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
860 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
864 // get to first full low to prime loop and skip incomplete first pulse
865 while (( dest
[ i
] < high
) && ( i
< size
))
867 while (( dest
[ i
] > low
) && ( i
< size
))
870 // loop through all samples
872 // measure from low to low
873 while (( dest
[ i
] > low
) && ( i
< size
))
876 while (( dest
[ i
] < high
) && ( i
< size
))
878 while (( dest
[ i
] > low
) && ( i
< size
))
880 //get minimum measured distance
881 if ( i
- startwave
< minClk
&& i
< size
)
882 minClk
= i
- startwave
;
885 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectstrongASKclk smallest wave: %d" , minClk
);
886 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
887 if ( minClk
>= fndClk
[ clkCnt
]-( fndClk
[ clkCnt
]/ 8 ) && minClk
<= fndClk
[ clkCnt
]+ 1 )
888 return fndClk
[ clkCnt
];
894 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
895 // maybe somehow adjust peak trimming value based on samples to fix?
896 // return start index of best starting position for that clock and return clock (by reference)
897 int DetectASKClock ( uint8_t dest
[], size_t size
, int * clock
, int maxErr
)
900 uint8_t clk
[] = { 255 , 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
902 uint8_t loopCnt
= 255 ; //don't need to loop through entire array...
903 if ( size
<= loopCnt
+ 60 ) return - 1 ; //not enough samples
904 size
-= 60 ; //sometimes there is a strange end wave - filter out this....
905 //if we already have a valid clock
908 if ( clk
[ i
] == * clock
) clockFnd
= i
;
909 //clock found but continue to find best startpos
911 //get high and low peak
913 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return - 1 ;
915 //test for large clean peaks
917 if ( DetectCleanAskWave ( dest
, size
, peak
, low
)== 1 ){
918 int ans
= DetectStrongAskClock ( dest
, size
, peak
, low
);
919 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d" , ans
);
920 for ( i
= clkEnd
- 1 ; i
> 0 ; i
--){
924 return 0 ; // for strong waves i don't use the 'best start position' yet...
925 //break; //clock found but continue to find best startpos [not yet]
931 uint8_t clkCnt
, tol
= 0 ;
932 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
933 uint8_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
935 size_t arrLoc
, loopEnd
;
944 //test each valid clock from smallest to greatest to see which lines up
945 for (; clkCnt
< clkEnd
; clkCnt
++) {
946 if ( clk
[ clkCnt
] <= 32 ) {
951 //if no errors allowed - keep start within the first clock
952 if (! maxErr
&& size
> clk
[ clkCnt
]* 2 + tol
&& clk
[ clkCnt
]< 128 )
953 loopCnt
= clk
[ clkCnt
] * 2 ;
955 bestErr
[ clkCnt
] = 1000 ;
957 //try lining up the peaks by moving starting point (try first few clocks)
958 for ( ii
= 0 ; ii
< loopCnt
; ii
++){
959 if ( dest
[ ii
] < peak
&& dest
[ ii
] > low
) continue ;
962 // now that we have the first one lined up test rest of wave array
963 loopEnd
= (( size
- ii
- tol
) / clk
[ clkCnt
]) - 1 ;
964 for ( i
= 0 ; i
< loopEnd
; ++ i
){
965 arrLoc
= ii
+ ( i
* clk
[ clkCnt
]);
966 if ( dest
[ arrLoc
] >= peak
|| dest
[ arrLoc
] <= low
){
967 } else if ( dest
[ arrLoc
- tol
] >= peak
|| dest
[ arrLoc
- tol
] <= low
){
968 } else if ( dest
[ arrLoc
+ tol
] >= peak
|| dest
[ arrLoc
+ tol
] <= low
){
969 } else { //error no peak detected
973 //if we found no errors then we can stop here and a low clock (common clocks)
974 // this is correct one - return this clock
975 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, err %d, startpos %d, endpos %d" , clk
[ clkCnt
], errCnt
, ii
, i
);
976 if ( errCnt
== 0 && clkCnt
< 7 ) {
977 if (! clockFnd
) * clock
= clk
[ clkCnt
];
980 //if we found errors see if it is lowest so far and save it as best run
981 if ( errCnt
< bestErr
[ clkCnt
]) {
982 bestErr
[ clkCnt
] = errCnt
;
983 bestStart
[ clkCnt
] = ii
;
989 for ( k
= 1 ; k
< clkEnd
; ++ k
){
990 if ( bestErr
[ k
] < bestErr
[ best
]){
991 if ( bestErr
[ k
] == 0 ) bestErr
[ k
]= 1 ;
992 // current best bit to error ratio vs new bit to error ratio
993 if ( ( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ k
])/ bestErr
[ k
] ){
997 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d" , clk
[ k
], bestErr
[ k
], clk
[ best
], bestStart
[ best
]);
999 if (! clockFnd
) * clock
= clk
[ best
];
1000 return bestStart
[ best
];
1004 //detect psk clock by reading each phase shift
1005 // a phase shift is determined by measuring the sample length of each wave
1006 int DetectPSKClock ( uint8_t dest
[], size_t size
, int clock
)
1008 uint8_t clk
[]={ 255 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 }; //255 is not a valid clock
1009 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1010 if ( size
== 0 ) return 0 ;
1011 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1013 //if we already have a valid clock quit
1016 if ( clk
[ i
] == clock
) return clock
;
1018 size_t waveStart
= 0 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1019 uint8_t clkCnt
, fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1020 uint16_t peakcnt
= 0 , errCnt
= 0 , waveLenCnt
= 0 ;
1021 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
1022 uint16_t peaksdet
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1023 fc
= countFC ( dest
, size
, 0 );
1024 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1025 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: FC: %d" , fc
);
1027 //find first full wave
1028 for ( i
= 160 ; i
< loopCnt
; i
++){
1029 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1030 if ( waveStart
== 0 ) {
1032 //prnt("DEBUG: waveStart: %d",waveStart);
1035 //prnt("DEBUG: waveEnd: %d",waveEnd);
1036 waveLenCnt
= waveEnd
- waveStart
;
1037 if ( waveLenCnt
> fc
){
1038 firstFullWave
= waveStart
;
1039 fullWaveLen
= waveLenCnt
;
1046 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %d, waveLen: %d" , firstFullWave
, fullWaveLen
);
1048 //test each valid clock from greatest to smallest to see which lines up
1049 for ( clkCnt
= 7 ; clkCnt
>= 1 ; clkCnt
--){
1050 lastClkBit
= firstFullWave
; //set end of wave as clock align
1054 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %d" , clk
[ clkCnt
], lastClkBit
);
1056 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< loopCnt
- 2 ; i
++){
1057 //top edge of wave = start of new wave
1058 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1059 if ( waveStart
== 0 ) {
1064 waveLenCnt
= waveEnd
- waveStart
;
1065 if ( waveLenCnt
> fc
){
1066 //if this wave is a phase shift
1067 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d" , waveStart
, waveLenCnt
, lastClkBit
+ clk
[ clkCnt
]- tol
, i
+ 1 , fc
);
1068 if ( i
+ 1 >= lastClkBit
+ clk
[ clkCnt
] - tol
){ //should be a clock bit
1070 lastClkBit
+= clk
[ clkCnt
];
1071 } else if ( i
< lastClkBit
+ 8 ){
1072 //noise after a phase shift - ignore
1073 } else { //phase shift before supposed to based on clock
1076 } else if ( i
+ 1 > lastClkBit
+ clk
[ clkCnt
] + tol
+ fc
){
1077 lastClkBit
+= clk
[ clkCnt
]; //no phase shift but clock bit
1086 if ( errCnt
<= bestErr
[ clkCnt
]) bestErr
[ clkCnt
]= errCnt
;
1087 if ( peakcnt
> peaksdet
[ clkCnt
]) peaksdet
[ clkCnt
]= peakcnt
;
1089 //all tested with errors
1090 //return the highest clk with the most peaks found
1092 for ( i
= 7 ; i
>= 1 ; i
--){
1093 if ( peaksdet
[ i
] > peaksdet
[ best
]) {
1096 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d" , clk
[ i
], peaksdet
[ i
], bestErr
[ i
], clk
[ best
]);
1101 int DetectStrongNRZClk ( uint8_t * dest
, size_t size
, int peak
, int low
){
1102 //find shortest transition from high to low
1104 size_t transition1
= 0 ;
1105 int lowestTransition
= 255 ;
1106 bool lastWasHigh
= false ;
1108 //find first valid beginning of a high or low wave
1109 while (( dest
[ i
] >= peak
|| dest
[ i
] <= low
) && ( i
< size
))
1111 while (( dest
[ i
] < peak
&& dest
[ i
] > low
) && ( i
< size
))
1113 lastWasHigh
= ( dest
[ i
] >= peak
);
1115 if ( i
== size
) return 0 ;
1118 for (; i
< size
; i
++) {
1119 if (( dest
[ i
] >= peak
&& ! lastWasHigh
) || ( dest
[ i
] <= low
&& lastWasHigh
)) {
1120 lastWasHigh
= ( dest
[ i
] >= peak
);
1121 if ( i
- transition1
< lowestTransition
) lowestTransition
= i
- transition1
;
1125 if ( lowestTransition
== 255 ) lowestTransition
= 0 ;
1126 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: detectstrongNRZclk smallest wave: %d" , lowestTransition
);
1127 return lowestTransition
;
1131 //detect nrz clock by reading #peaks vs no peaks(or errors)
1132 int DetectNRZClock ( uint8_t dest
[], size_t size
, int clock
)
1135 uint8_t clk
[]={ 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
1136 size_t loopCnt
= 4096 ; //don't need to loop through entire array...
1137 if ( size
== 0 ) return 0 ;
1138 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1139 //if we already have a valid clock quit
1141 if ( clk
[ i
] == clock
) return clock
;
1143 //get high and low peak
1145 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return 0 ;
1147 int lowestTransition
= DetectStrongNRZClk ( dest
, size
- 20 , peak
, low
);
1151 uint16_t smplCnt
= 0 ;
1152 int16_t peakcnt
= 0 ;
1153 int16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1154 uint16_t maxPeak
= 255 ;
1155 bool firstpeak
= false ;
1156 //test for large clipped waves
1157 for ( i
= 0 ; i
< loopCnt
; i
++){
1158 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
){
1159 if (! firstpeak
) continue ;
1164 if ( maxPeak
> smplCnt
){
1166 //prnt("maxPk: %d",maxPeak);
1169 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1174 bool errBitHigh
= 0 ;
1176 uint8_t ignoreCnt
= 0 ;
1177 uint8_t ignoreWindow
= 4 ;
1178 bool lastPeakHigh
= 0 ;
1181 //test each valid clock from smallest to greatest to see which lines up
1182 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
1183 //ignore clocks smaller than smallest peak
1184 if ( clk
[ clkCnt
] < maxPeak
- ( clk
[ clkCnt
]/ 4 )) continue ;
1185 //try lining up the peaks by moving starting point (try first 256)
1186 for ( ii
= 20 ; ii
< loopCnt
; ++ ii
){
1187 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
1191 lastBit
= ii
- clk
[ clkCnt
];
1192 //loop through to see if this start location works
1193 for ( i
= ii
; i
< size
- 20 ; ++ i
) {
1194 //if we are at a clock bit
1195 if (( i
>= lastBit
+ clk
[ clkCnt
] - tol
) && ( i
<= lastBit
+ clk
[ clkCnt
] + tol
)) {
1197 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
) {
1198 //if same peak don't count it
1199 if (( dest
[ i
] >= peak
&& ! lastPeakHigh
) || ( dest
[ i
] <= low
&& lastPeakHigh
)) {
1202 lastPeakHigh
= ( dest
[ i
] >= peak
);
1205 ignoreCnt
= ignoreWindow
;
1206 lastBit
+= clk
[ clkCnt
];
1207 } else if ( i
== lastBit
+ clk
[ clkCnt
] + tol
) {
1208 lastBit
+= clk
[ clkCnt
];
1210 //else if not a clock bit and no peaks
1211 } else if ( dest
[ i
] < peak
&& dest
[ i
] > low
){
1214 if ( errBitHigh
== true ) peakcnt
--;
1219 // else if not a clock bit but we have a peak
1220 } else if (( dest
[ i
]>= peak
|| dest
[ i
]<= low
) && (! bitHigh
)) {
1221 //error bar found no clock...
1225 if ( peakcnt
> peaksdet
[ clkCnt
]) {
1226 peaksdet
[ clkCnt
]= peakcnt
;
1233 for ( iii
= 7 ; iii
> 0 ; iii
--){
1234 if (( peaksdet
[ iii
] >= ( peaksdet
[ best
]- 1 )) && ( peaksdet
[ iii
] <= peaksdet
[ best
]+ 1 ) && lowestTransition
) {
1235 if ( clk
[ iii
] > ( lowestTransition
- ( clk
[ iii
]/ 8 )) && clk
[ iii
] < ( lowestTransition
+ ( clk
[ iii
]/ 8 ))) {
1238 } else if ( peaksdet
[ iii
] > peaksdet
[ best
]){
1241 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d" , clk
[ iii
], peaksdet
[ iii
], maxPeak
, clk
[ best
], lowestTransition
);
1248 // convert psk1 demod to psk2 demod
1249 // only transition waves are 1s
1250 void psk1TOpsk2 ( uint8_t * BitStream
, size_t size
)
1253 uint8_t lastBit
= BitStream
[ 0 ];
1254 for (; i
< size
; i
++){
1255 if ( BitStream
[ i
]== 7 ){
1257 } else if ( lastBit
!= BitStream
[ i
]){
1258 lastBit
= BitStream
[ i
];
1268 // convert psk2 demod to psk1 demod
1269 // from only transition waves are 1s to phase shifts change bit
1270 void psk2TOpsk1 ( uint8_t * BitStream
, size_t size
)
1273 for ( size_t i
= 0 ; i
< size
; i
++){
1274 if ( BitStream
[ i
]== 1 ){
1282 // redesigned by marshmellow adjusted from existing decode functions
1283 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1284 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
)
1286 //26 bit 40134 format (don't know other formats)
1287 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1288 uint8_t preamble_i
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
1289 size_t startidx
= 0 ;
1290 if (! preambleSearch ( bitStream
, preamble
, sizeof ( preamble
), size
, & startidx
)){
1291 // if didn't find preamble try again inverting
1292 if (! preambleSearch ( bitStream
, preamble_i
, sizeof ( preamble_i
), size
, & startidx
)) return - 1 ;
1295 if (* size
!= 64 && * size
!= 224 ) return - 2 ;
1297 for ( size_t i
= startidx
; i
< * size
; i
++)
1300 return ( int ) startidx
;
1303 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1304 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1305 int nrzRawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
){
1306 if ( justNoise ( dest
, * size
)) return - 1 ;
1307 * clk
= DetectNRZClock ( dest
, * size
, * clk
);
1308 if (* clk
== 0 ) return - 2 ;
1309 size_t i
, gLen
= 4096 ;
1310 if ( gLen
>* size
) gLen
= * size
- 20 ;
1312 if ( getHiLo ( dest
, gLen
, & high
, & low
, 75 , 75 ) < 1 ) return - 3 ; //25% fuzz on high 25% fuzz on low
1315 //convert wave samples to 1's and 0's
1316 for ( i
= 20 ; i
< * size
- 20 ; i
++){
1317 if ( dest
[ i
] >= high
) bit
= 1 ;
1318 if ( dest
[ i
] <= low
) bit
= 0 ;
1321 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1324 for ( i
= 21 ; i
< * size
- 20 ; i
++) {
1325 //if transition detected or large number of same bits - store the passed bits
1326 if ( dest
[ i
] != dest
[ i
- 1 ] || ( i
- lastBit
) == ( 10 * * clk
)) {
1327 memset ( dest
+ numBits
, dest
[ i
- 1 ] ^ * invert
, ( i
- lastBit
+ (* clk
/ 4 )) / * clk
);
1328 numBits
+= ( i
- lastBit
+ (* clk
/ 4 )) / * clk
;
1337 //detects the bit clock for FSK given the high and low Field Clocks
1338 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1340 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
1341 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1342 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1343 uint8_t rfLensFnd
= 0 ;
1344 uint8_t lastFCcnt
= 0 ;
1345 uint16_t fcCounter
= 0 ;
1346 uint16_t rfCounter
= 0 ;
1347 uint8_t firstBitFnd
= 0 ;
1349 if ( size
== 0 ) return 0 ;
1351 uint8_t fcTol
= (( fcHigh
* 100 - fcLow
* 100 )/ 2 + 50 )/ 100 ; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1356 //prnt("DEBUG: fcTol: %d",fcTol);
1357 // prime i to first peak / up transition
1358 for ( i
= 160 ; i
< size
- 20 ; i
++)
1359 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
1362 for (; i
< size
- 20 ; i
++){
1366 if ( BitStream
[ i
] <= BitStream
[ i
- 1 ] || BitStream
[ i
] < BitStream
[ i
+ 1 ])
1369 // if we got less than the small fc + tolerance then set it to the small fc
1370 if ( fcCounter
< fcLow
+ fcTol
)
1372 else //set it to the large fc
1375 //look for bit clock (rf/xx)
1376 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1377 //not the same size as the last wave - start of new bit sequence
1378 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
1379 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1380 if ( rfLens
[ ii
] >= ( rfCounter
- 4 ) && rfLens
[ ii
] <= ( rfCounter
+ 4 )){
1386 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
1387 //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1388 rfCnts
[ rfLensFnd
]++;
1389 rfLens
[ rfLensFnd
++] = rfCounter
;
1395 lastFCcnt
= fcCounter
;
1399 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
1401 for ( i
= 0 ; i
< 15 ; i
++){
1402 //get highest 2 RF values (might need to get more values to compare or compare all?)
1403 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
1404 rfHighest3
= rfHighest2
;
1405 rfHighest2
= rfHighest
;
1407 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
1408 rfHighest3
= rfHighest2
;
1410 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
1413 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: RF %d, cnts %d" , rfLens
[ i
], rfCnts
[ i
]);
1415 // set allowed clock remainder tolerance to be 1 large field clock length+1
1416 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1417 uint8_t tol1
= fcHigh
+ 1 ;
1419 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d" , rfLens
[ rfHighest
], rfLens
[ rfHighest2
], rfLens
[ rfHighest3
]);
1421 // loop to find the highest clock that has a remainder less than the tolerance
1422 // compare samples counted divided by
1423 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1425 for (; ii
>= 2 ; ii
--){
1426 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1427 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1428 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1429 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: clk %d divides into the 3 most rf values within tolerance" , clk
[ ii
]);
1436 if ( ii
< 0 ) return 0 ; // oops we went too far
1442 //countFC is to detect the field clock lengths.
1443 //counts and returns the 2 most common wave lengths
1444 //mainly used for FSK field clock detection
1445 uint16_t countFC ( uint8_t * BitStream
, size_t size
, uint8_t fskAdj
)
1447 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1448 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1449 uint8_t fcLensFnd
= 0 ;
1450 uint8_t lastFCcnt
= 0 ;
1451 uint8_t fcCounter
= 0 ;
1453 if ( size
== 0 ) return 0 ;
1455 // prime i to first up transition
1456 for ( i
= 160 ; i
< size
- 20 ; i
++)
1457 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
1460 for (; i
< size
- 20 ; i
++){
1461 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
1462 // new up transition
1465 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1466 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
1467 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1468 if (( fcCounter
== 9 ) || fcCounter
== 4 ) fcCounter
++;
1469 // save last field clock count (fc/xx)
1470 lastFCcnt
= fcCounter
;
1472 // find which fcLens to save it to:
1473 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1474 if ( fcLens
[ ii
]== fcCounter
){
1480 if ( fcCounter
> 0 && fcLensFnd
< 15 ){
1482 fcCnts
[ fcLensFnd
]++;
1483 fcLens
[ fcLensFnd
++]= fcCounter
;
1492 uint8_t best1
= 14 , best2
= 14 , best3
= 14 ;
1494 // go through fclens and find which ones are bigest 2
1495 for ( i
= 0 ; i
< 15 ; i
++){
1496 // get the 3 best FC values
1497 if ( fcCnts
[ i
]> maxCnt1
) {
1502 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
1505 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
1508 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u" , fcLens
[ i
], fcCnts
[ i
], fcLens
[ best1
], fcLens
[ best2
]);
1510 if ( fcLens
[ best1
]== 0 ) return 0 ;
1511 uint8_t fcH
= 0 , fcL
= 0 ;
1512 if ( fcLens
[ best1
]> fcLens
[ best2
]){
1519 if (( size
- 180 )/ fcH
/ 3 > fcCnts
[ best1
]+ fcCnts
[ best2
]) {
1520 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: fc is too large: %u > %u. Not psk or fsk" ,( size
- 180 )/ fcH
/ 3 , fcCnts
[ best1
]+ fcCnts
[ best2
]);
1521 return 0 ; //lots of waves not psk or fsk
1523 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1525 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
1526 if ( fskAdj
) return fcs
;
1527 return fcLens
[ best1
];
1530 //by marshmellow - demodulate PSK1 wave
1531 //uses wave lengths (# Samples)
1532 int pskRawDemod ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
)
1534 if ( size
== 0 ) return - 1 ;
1535 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1536 if (* size
< loopCnt
) loopCnt
= * size
;
1539 uint8_t curPhase
= * invert
;
1540 size_t i
, waveStart
= 1 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1541 uint8_t fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1542 uint16_t errCnt
= 0 , waveLenCnt
= 0 ;
1543 fc
= countFC ( dest
, * size
, 0 );
1544 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1545 //prnt("DEBUG: FC: %d",fc);
1546 * clock
= DetectPSKClock ( dest
, * size
, * clock
);
1547 if (* clock
== 0 ) return - 1 ;
1548 int avgWaveVal
= 0 , lastAvgWaveVal
= 0 ;
1549 //find first phase shift
1550 for ( i
= 0 ; i
< loopCnt
; i
++){
1551 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1553 //prnt("DEBUG: waveEnd: %d",waveEnd);
1554 waveLenCnt
= waveEnd
- waveStart
;
1555 if ( waveLenCnt
> fc
&& waveStart
> fc
&& !( waveLenCnt
> fc
+ 2 )){ //not first peak and is a large wave but not out of whack
1556 lastAvgWaveVal
= avgWaveVal
/( waveLenCnt
);
1557 firstFullWave
= waveStart
;
1558 fullWaveLen
= waveLenCnt
;
1559 //if average wave value is > graph 0 then it is an up wave or a 1
1560 if ( lastAvgWaveVal
> 123 ) curPhase
^= 1 ; //fudge graph 0 a little 123 vs 128
1566 avgWaveVal
+= dest
[ i
+ 2 ];
1568 if ( firstFullWave
== 0 ) {
1569 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1570 // so skip a little to ensure we are past any Start Signal
1571 firstFullWave
= 160 ;
1572 memset ( dest
, curPhase
, firstFullWave
/ * clock
);
1574 memset ( dest
, curPhase
^ 1 , firstFullWave
/ * clock
);
1577 numBits
+= ( firstFullWave
/ * clock
);
1578 //set start of wave as clock align
1579 lastClkBit
= firstFullWave
;
1580 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %u, waveLen: %u" , firstFullWave
, fullWaveLen
);
1581 if ( g_debugMode
== 2 ) prnt ( "DEBUG: clk: %d, lastClkBit: %u, fc: %u" , * clock
, lastClkBit
,( unsigned int ) fc
);
1583 dest
[ numBits
++] = curPhase
; //set first read bit
1584 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< * size
- 3 ; i
++){
1585 //top edge of wave = start of new wave
1586 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1587 if ( waveStart
== 0 ) {
1590 avgWaveVal
= dest
[ i
+ 1 ];
1593 waveLenCnt
= waveEnd
- waveStart
;
1594 lastAvgWaveVal
= avgWaveVal
/ waveLenCnt
;
1595 if ( waveLenCnt
> fc
){
1596 //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1597 //this wave is a phase shift
1598 //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1599 if ( i
+ 1 >= lastClkBit
+ * clock
- tol
){ //should be a clock bit
1601 dest
[ numBits
++] = curPhase
;
1602 lastClkBit
+= * clock
;
1603 } else if ( i
< lastClkBit
+ 10 + fc
){
1604 //noise after a phase shift - ignore
1605 } else { //phase shift before supposed to based on clock
1607 dest
[ numBits
++] = 7 ;
1609 } else if ( i
+ 1 > lastClkBit
+ * clock
+ tol
+ fc
){
1610 lastClkBit
+= * clock
; //no phase shift but clock bit
1611 dest
[ numBits
++] = curPhase
;
1617 avgWaveVal
+= dest
[ i
+ 1 ];
1624 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1625 bool DetectST ( uint8_t buffer
[], size_t * size
, int * foundclock
) {
1626 size_t bufsize
= * size
;
1627 //need to loop through all samples and identify our clock, look for the ST pattern
1628 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
1631 int i
, j
, skip
, start
, end
, low
, high
, minClk
, waveStart
;
1632 bool complete
= false ;
1633 int tmpbuff
[ bufsize
/ 32 ]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1634 int waveLen
[ bufsize
/ 32 ]; // if clock is larger then we waste memory in array size that is not needed...
1635 size_t testsize
= ( bufsize
< 512 ) ? bufsize
: 512 ;
1638 memset ( tmpbuff
, 0 , sizeof ( tmpbuff
));
1639 memset ( waveLen
, 0 , sizeof ( waveLen
));
1642 if ( getHiLo ( buffer
, testsize
, & high
, & low
, 80 , 80 ) == - 1 ) {
1643 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: just noise detected - quitting" );
1644 return false ; //just noise
1649 // get to first full low to prime loop and skip incomplete first pulse
1650 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1652 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1656 // populate tmpbuff buffer with pulse lengths
1657 while ( i
< bufsize
) {
1658 // measure from low to low
1659 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1662 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1664 //first high point for this wave
1666 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1668 if ( j
>= ( bufsize
/ 32 )) {
1671 waveLen
[ j
] = i
- waveStart
; //first high to first low
1672 tmpbuff
[ j
++] = i
- start
;
1673 if ( i
- start
< minClk
&& i
< bufsize
) {
1677 // set clock - might be able to get this externally and remove this work...
1679 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
1680 tol
= fndClk
[ clkCnt
]/ 8 ;
1681 if ( minClk
>= fndClk
[ clkCnt
]- tol
&& minClk
<= fndClk
[ clkCnt
]+ 1 ) {
1686 // clock not found - ERROR
1688 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: clock not found - quitting" );
1695 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1697 for ( i
= 0 ; i
< j
- 4 ; ++ i
) {
1699 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1700 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1701 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1702 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1710 // first ST not found - ERROR
1712 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT not found - quitting" );
1715 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT found at: %d, j=%d" , start
, j
);
1717 if ( waveLen
[ i
+ 2 ] > clk
* 1 + tol
)
1722 // skip over the remainder of ST
1723 skip
+= clk
* 7 / 2 ; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1725 // now do it again to find the end
1727 for ( i
+= 3 ; i
< j
- 4 ; ++ i
) {
1729 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1730 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1731 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1732 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1741 //didn't find second ST - ERROR
1743 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: second STT not found - quitting" );
1746 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d" , skip
, end
, end
- skip
, clk
, ( end
- skip
)/ clk
, phaseoff
);
1747 //now begin to trim out ST so we can use normal demod cmds
1749 size_t datalen
= end
- start
;
1750 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1751 if ( clk
- ( datalen
% clk
) <= clk
/ 8 ) {
1752 // padd the amount off - could be problematic... but shouldn't happen often
1753 datalen
+= clk
- ( datalen
% clk
);
1754 } else if ( ( datalen
% clk
) <= clk
/ 8 ) {
1755 // padd the amount off - could be problematic... but shouldn't happen often
1756 datalen
-= datalen
% clk
;
1758 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting" , datalen
, clk
, datalen
% clk
);
1761 // if datalen is less than one t55xx block - ERROR
1762 if ( datalen
/ clk
< 8 * 4 ) {
1763 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen is less than 1 full t55xx block - quitting" );
1766 size_t dataloc
= start
;
1767 if ( buffer
[ dataloc
-( clk
* 4 )-( clk
/ 8 )] <= low
&& buffer
[ dataloc
] <= low
&& buffer
[ dataloc
-( clk
* 4 )] >= high
) {
1768 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1769 for ( i
= 0 ; i
<= ( clk
/ 8 ); ++ i
) {
1770 if ( buffer
[ dataloc
- ( clk
* 4 ) - i
] <= low
) {
1779 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: Starting STT trim - start: %d, datalen: %d " , dataloc
, datalen
);
1781 // warning - overwriting buffer given with raw wave data with ST removed...
1782 while ( dataloc
< bufsize
-( clk
/ 2 ) ) {
1783 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1784 if ( buffer
[ dataloc
]< high
&& buffer
[ dataloc
]> low
&& buffer
[ dataloc
+ 3 ]< high
&& buffer
[ dataloc
+ 3 ]> low
) {
1785 for ( i
= 0 ; i
< clk
/ 2 - tol
; ++ i
) {
1786 buffer
[ dataloc
+ i
] = high
+ 5 ;
1789 for ( i
= 0 ; i
< datalen
; ++ i
) {
1790 if ( i
+ newloc
< bufsize
) {
1791 if ( i
+ newloc
< dataloc
)
1792 buffer
[ i
+ newloc
] = buffer
[ dataloc
];
1798 //skip next ST - we just assume it will be there from now on...
1799 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: skipping STT at %d to %d" , dataloc
, dataloc
+( clk
* 4 ));