]> git.zerfleddert.de Git - proxmark3-svn/blob - common/mbedtls/ecp_internal.h
"hf mf ekeyprn d" doesn't works properly (#904)
[proxmark3-svn] / common / mbedtls / ecp_internal.h
1 /**
2 * \file ecp_internal.h
3 *
4 * \brief Function declarations for alternative implementation of elliptic curve
5 * point arithmetic.
6 */
7 /*
8 * Copyright (C) 2016, ARM Limited, All Rights Reserved
9 * SPDX-License-Identifier: GPL-2.0
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 *
25 * This file is part of mbed TLS (https://tls.mbed.org)
26 */
27
28 /*
29 * References:
30 *
31 * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
32 * <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
33 *
34 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
35 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
36 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
37 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
38 *
39 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
40 * render ECC resistant against Side Channel Attacks. IACR Cryptology
41 * ePrint Archive, 2004, vol. 2004, p. 342.
42 * <http://eprint.iacr.org/2004/342.pdf>
43 *
44 * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
45 * <http://www.secg.org/sec2-v2.pdf>
46 *
47 * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
48 * Curve Cryptography.
49 *
50 * [6] Digital Signature Standard (DSS), FIPS 186-4.
51 * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
52 *
53 * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
54 * Security (TLS), RFC 4492.
55 * <https://tools.ietf.org/search/rfc4492>
56 *
57 * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
58 *
59 * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
60 * Springer Science & Business Media, 1 Aug 2000
61 */
62
63 #ifndef MBEDTLS_ECP_INTERNAL_H
64 #define MBEDTLS_ECP_INTERNAL_H
65
66 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
67
68 /**
69 * \brief Indicate if the Elliptic Curve Point module extension can
70 * handle the group.
71 *
72 * \param grp The pointer to the elliptic curve group that will be the
73 * basis of the cryptographic computations.
74 *
75 * \return Non-zero if successful.
76 */
77 unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );
78
79 /**
80 * \brief Initialise the Elliptic Curve Point module extension.
81 *
82 * If mbedtls_internal_ecp_grp_capable returns true for a
83 * group, this function has to be able to initialise the
84 * module for it.
85 *
86 * This module can be a driver to a crypto hardware
87 * accelerator, for which this could be an initialise function.
88 *
89 * \param grp The pointer to the group the module needs to be
90 * initialised for.
91 *
92 * \return 0 if successful.
93 */
94 int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp );
95
96 /**
97 * \brief Frees and deallocates the Elliptic Curve Point module
98 * extension.
99 *
100 * \param grp The pointer to the group the module was initialised for.
101 */
102 void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );
103
104 #if defined(ECP_SHORTWEIERSTRASS)
105
106 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
107 /**
108 * \brief Randomize jacobian coordinates:
109 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
110 *
111 * \param grp Pointer to the group representing the curve.
112 *
113 * \param pt The point on the curve to be randomised, given with Jacobian
114 * coordinates.
115 *
116 * \param f_rng A function pointer to the random number generator.
117 *
118 * \param p_rng A pointer to the random number generator state.
119 *
120 * \return 0 if successful.
121 */
122 int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,
123 mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t),
124 void *p_rng );
125 #endif
126
127 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
128 /**
129 * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
130 *
131 * The coordinates of Q must be normalized (= affine),
132 * but those of P don't need to. R is not normalized.
133 *
134 * This function is used only as a subrutine of
135 * ecp_mul_comb().
136 *
137 * Special cases: (1) P or Q is zero, (2) R is zero,
138 * (3) P == Q.
139 * None of these cases can happen as intermediate step in
140 * ecp_mul_comb():
141 * - at each step, P, Q and R are multiples of the base
142 * point, the factor being less than its order, so none of
143 * them is zero;
144 * - Q is an odd multiple of the base point, P an even
145 * multiple, due to the choice of precomputed points in the
146 * modified comb method.
147 * So branches for these cases do not leak secret information.
148 *
149 * We accept Q->Z being unset (saving memory in tables) as
150 * meaning 1.
151 *
152 * Cost in field operations if done by [5] 3.22:
153 * 1A := 8M + 3S
154 *
155 * \param grp Pointer to the group representing the curve.
156 *
157 * \param R Pointer to a point structure to hold the result.
158 *
159 * \param P Pointer to the first summand, given with Jacobian
160 * coordinates
161 *
162 * \param Q Pointer to the second summand, given with affine
163 * coordinates.
164 *
165 * \return 0 if successful.
166 */
167 int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp,
168 mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
169 const mbedtls_ecp_point *Q );
170 #endif
171
172 /**
173 * \brief Point doubling R = 2 P, Jacobian coordinates.
174 *
175 * Cost: 1D := 3M + 4S (A == 0)
176 * 4M + 4S (A == -3)
177 * 3M + 6S + 1a otherwise
178 * when the implementation is based on the "dbl-1998-cmo-2"
179 * doubling formulas in [8] and standard optimizations are
180 * applied when curve parameter A is one of { 0, -3 }.
181 *
182 * \param grp Pointer to the group representing the curve.
183 *
184 * \param R Pointer to a point structure to hold the result.
185 *
186 * \param P Pointer to the point that has to be doubled, given with
187 * Jacobian coordinates.
188 *
189 * \return 0 if successful.
190 */
191 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
192 int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp,
193 mbedtls_ecp_point *R, const mbedtls_ecp_point *P );
194 #endif
195
196 /**
197 * \brief Normalize jacobian coordinates of an array of (pointers to)
198 * points.
199 *
200 * Using Montgomery's trick to perform only one inversion mod P
201 * the cost is:
202 * 1N(t) := 1I + (6t - 3)M + 1S
203 * (See for example Algorithm 10.3.4. in [9])
204 *
205 * This function is used only as a subrutine of
206 * ecp_mul_comb().
207 *
208 * Warning: fails (returning an error) if one of the points is
209 * zero!
210 * This should never happen, see choice of w in ecp_mul_comb().
211 *
212 * \param grp Pointer to the group representing the curve.
213 *
214 * \param T Array of pointers to the points to normalise.
215 *
216 * \param t_len Number of elements in the array.
217 *
218 * \return 0 if successful,
219 * an error if one of the points is zero.
220 */
221 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
222 int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
223 mbedtls_ecp_point *T[], size_t t_len );
224 #endif
225
226 /**
227 * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
228 *
229 * Cost in field operations if done by [5] 3.2.1:
230 * 1N := 1I + 3M + 1S
231 *
232 * \param grp Pointer to the group representing the curve.
233 *
234 * \param pt pointer to the point to be normalised. This is an
235 * input/output parameter.
236 *
237 * \return 0 if successful.
238 */
239 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
240 int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp,
241 mbedtls_ecp_point *pt );
242 #endif
243
244 #endif /* ECP_SHORTWEIERSTRASS */
245
246 #if defined(ECP_MONTGOMERY)
247
248 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
249 int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp,
250 mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P,
251 const mbedtls_ecp_point *Q, const mbedtls_mpi *d );
252 #endif
253
254 /**
255 * \brief Randomize projective x/z coordinates:
256 * (X, Z) -> (l X, l Z) for random l
257 *
258 * \param grp pointer to the group representing the curve
259 *
260 * \param P the point on the curve to be randomised given with
261 * projective coordinates. This is an input/output parameter.
262 *
263 * \param f_rng a function pointer to the random number generator
264 *
265 * \param p_rng a pointer to the random number generator state
266 *
267 * \return 0 if successful
268 */
269 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
270 int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp,
271 mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t),
272 void *p_rng );
273 #endif
274
275 /**
276 * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
277 *
278 * \param grp pointer to the group representing the curve
279 *
280 * \param P pointer to the point to be normalised. This is an
281 * input/output parameter.
282 *
283 * \return 0 if successful
284 */
285 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
286 int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp,
287 mbedtls_ecp_point *P );
288 #endif
289
290 #endif /* ECP_MONTGOMERY */
291
292 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
293
294 #endif /* ecp_internal.h */
295
Impressum, Datenschutz