]> git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
FIX: moved from lfdemod.c -> graph.c SetGraphClock.
[proxmark3-svn] / common / lfdemod.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
10 #include "lfdemod.h"
11
12 //un_comment to allow debug print calls when used not on device
13 void dummy(char *fmt, ...){}
14
15
16 #ifndef ON_DEVICE
17 # include "ui.h"
18 # include "cmdparser.h"
19 # include "cmddata.h"
20 # define prnt PrintAndLog
21 #else
22 uint8_t g_debugMode=0;
23 # define prnt dummy
24 #endif
25
26 //test samples are not just noise
27 uint8_t justNoise(uint8_t *bits, size_t size) {
28 #define THRESHOLD 123
29 uint8_t val = 1;
30 for(size_t idx=0; idx < size && val ;idx++)
31 val = bits[idx] < THRESHOLD;
32 return val;
33 }
34
35 //by marshmellow
36 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
37 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
38 {
39 *high=0;
40 *low=255;
41 // get high and low thresholds
42 for (size_t i=0; i < size; i++){
43 if (BitStream[i] > *high) *high = BitStream[i];
44 if (BitStream[i] < *low) *low = BitStream[i];
45 }
46 if (*high < 123) return -1; // just noise
47 *high = ((*high-128)*fuzzHi + 12800)/100;
48 *low = ((*low-128)*fuzzLo + 12800)/100;
49 return 1;
50 }
51
52 // by marshmellow
53 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
54 // returns 1 if passed
55 uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
56 {
57 uint8_t ans = 0;
58 for (uint8_t i = 0; i < bitLen; i++){
59 ans ^= ((bits >> i) & 1);
60 }
61 if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits);
62 return (ans == pType);
63 }
64
65 //by marshmellow
66 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
67 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
68 size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
69 {
70 uint32_t parityWd = 0;
71 size_t j = 0, bitCnt = 0;
72 for (int word = 0; word < (bLen); word += pLen){
73 for (int bit=0; bit < pLen; bit++){
74 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
75 BitStream[j++] = (BitStream[startIdx+word+bit]);
76 }
77 if (word+pLen > bLen) break;
78
79 j--; // overwrite parity with next data
80 // if parity fails then return 0
81 switch (pType) {
82 case 3: if (BitStream[j]==1) { return 0; } break; //should be 0 spacer bit
83 case 2: if (BitStream[j]==0) { return 0; } break; //should be 1 spacer bit
84 default: if (parityTest(parityWd, pLen, pType) == 0) { return 0; } break; //test parity
85 }
86 bitCnt += (pLen-1);
87 parityWd = 0;
88 }
89 // if we got here then all the parities passed
90 //return ID start index and size
91 return bitCnt;
92 }
93
94 // by marshmellow
95 // takes a array of binary values, length of bits per parity (includes parity bit),
96 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
97 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
98 size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
99 {
100 uint32_t parityWd = 0;
101 size_t j = 0, bitCnt = 0;
102 for (int word = 0; word < sourceLen; word+=pLen-1) {
103 for (int bit=0; bit < pLen-1; bit++){
104 parityWd = (parityWd << 1) | BitSource[word+bit];
105 dest[j++] = (BitSource[word+bit]);
106 }
107
108 // if parity fails then return 0
109 switch (pType) {
110 case 3: dest[j++]=0; break; // marker bit which should be a 0
111 case 2: dest[j++]=1; break; // marker bit which should be a 1
112 default:
113 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
114 break;
115 }
116 bitCnt += pLen;
117 parityWd = 0;
118 }
119 // if we got here then all the parities passed
120 //return ID start index and size
121 return bitCnt;
122 }
123
124 uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
125 {
126 uint32_t num = 0;
127 for(int i = 0 ; i < numbits ; i++) {
128 num = (num << 1) | (*src);
129 src++;
130 }
131 return num;
132 }
133
134 //least significant bit first
135 uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
136 {
137 uint32_t num = 0;
138 for(int i = 0 ; i < numbits ; i++) {
139 num = (num << 1) | *(src + (numbits-(i+1)));
140 }
141 return num;
142 }
143
144 //by marshmellow
145 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found)
146 bool preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx){
147 return preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false);
148 }
149 //by marshmellow
150 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
151 // param @findone: look for a repeating preamble or only the first.
152 // em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits
153 bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone)
154 {
155 // Sanity check. If preamble length is bigger than bitstream length.
156 if ( *size <= pLen ) return false;
157
158 uint8_t foundCnt = 0;
159 for (int idx = 0; idx < *size - pLen; idx++){
160 if (memcmp(BitStream+idx, preamble, pLen) == 0){
161 if (g_debugMode) prnt("DEBUG: preamble found at %i", idx);
162 //first index found
163 foundCnt++;
164 if (foundCnt == 1){
165 *startIdx = idx;
166 if (findone) return true;
167 }
168 if (foundCnt == 2){
169 *size = idx - *startIdx;
170 return true;
171 }
172 }
173 }
174 return false;
175 }
176
177 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
178 size_t findModStart(uint8_t dest[], size_t size, uint8_t threshold_value, uint8_t expWaveSize) {
179 size_t i = 0;
180 size_t waveSizeCnt = 0;
181 uint8_t thresholdCnt = 0;
182 bool isAboveThreshold = dest[i++] >= threshold_value;
183 for (; i < size-20; i++ ) {
184 if(dest[i] < threshold_value && isAboveThreshold) {
185 thresholdCnt++;
186 if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break;
187 isAboveThreshold = false;
188 waveSizeCnt = 0;
189 } else if (dest[i] >= threshold_value && !isAboveThreshold) {
190 thresholdCnt++;
191 if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break;
192 isAboveThreshold = true;
193 waveSizeCnt = 0;
194 } else {
195 waveSizeCnt++;
196 }
197 if (thresholdCnt > 10) break;
198 }
199 if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt);
200 return i;
201 }
202
203 //by marshmellow
204 //takes 1s and 0s and searches for EM410x format - output EM ID
205 // actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
206 int Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
207 {
208 // sanity check
209 if (*size < 64) return -3;
210 if (BitStream[1] > 1) return -1;
211
212 uint8_t fmtlen;
213 *startIdx = 0;
214
215 // preamble 0111111111
216 // include 0 in front to help get start pos
217 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
218 if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx))
219 return -2;
220
221 //XL and normal size.
222 if (*size != 64 && *size != 128) return -3;
223
224 fmtlen = (*size == 128) ? 22 : 10;
225
226 //skip last 4bit parity row for simplicity
227 *size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, fmtlen * 5);
228
229 switch (*size) {
230 case 40: {
231 // std em410x format
232 *hi = 0;
233 *lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32));
234 break;
235 }
236 case 88: {
237 // long em format
238 *hi = (bytebits_to_byte(BitStream, 24));
239 *lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32));
240 break;
241 }
242 default: return -4;
243 }
244 return 1;
245 }
246
247 //by marshmellow
248 //demodulates strong heavily clipped samples
249 //RETURN: num of errors. if 0, is ok.
250 int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
251 {
252 size_t bitCnt=0, smplCnt=0, errCnt=0;
253 uint8_t waveHigh = 0;
254 for (size_t i=0; i < *size; i++){
255 if (BinStream[i] >= high && waveHigh){
256 smplCnt++;
257 } else if (BinStream[i] <= low && !waveHigh){
258 smplCnt++;
259 } else { //transition
260 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
261
262 if (smplCnt > clk-(clk/4)-1) { //full clock
263 if (smplCnt > clk + (clk/4)+1) { //too many samples
264 errCnt++;
265 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
266 BinStream[bitCnt++] = 7;
267 } else if (waveHigh) {
268 BinStream[bitCnt++] = invert;
269 BinStream[bitCnt++] = invert;
270 } else if (!waveHigh) {
271 BinStream[bitCnt++] = invert ^ 1;
272 BinStream[bitCnt++] = invert ^ 1;
273 }
274 waveHigh ^= 1;
275 smplCnt = 0;
276 } else if (smplCnt > (clk/2) - (clk/4)-1) {
277 if (waveHigh) {
278 BinStream[bitCnt++] = invert;
279 } else if (!waveHigh) {
280 BinStream[bitCnt++] = invert ^ 1;
281 }
282 waveHigh ^= 1;
283 smplCnt = 0;
284 } else if (!bitCnt) {
285 //first bit
286 waveHigh = (BinStream[i] >= high);
287 smplCnt = 1;
288 } else {
289 smplCnt++;
290 //transition bit oops
291 }
292 } else { //haven't hit new high or new low yet
293 smplCnt++;
294 }
295 }
296 }
297 *size = bitCnt;
298 return errCnt;
299 }
300
301 //by marshmellow
302 void askAmp(uint8_t *BitStream, size_t size)
303 {
304 uint8_t last = 128;
305 for(size_t i = 1; i < size; ++i){
306 if (BitStream[i]-BitStream[i-1] >= 30) //large jump up
307 last = 255;
308 else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down
309 last = 0;
310
311 BitStream[i] = last;
312 }
313 }
314
315 //by marshmellow
316 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
317 int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
318 {
319 if (*size==0) return -1;
320 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
321
322 if (*clk==0 || start < 0) return -3;
323 if (*invert != 1) *invert = 0;
324 if (amp==1) askAmp(BinStream, *size);
325 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
326
327 uint8_t initLoopMax = 255;
328 if (initLoopMax > *size) initLoopMax = *size;
329 // Detect high and lows
330 //25% clip in case highs and lows aren't clipped [marshmellow]
331 int high, low;
332 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
333 return -2; //just noise
334
335 size_t errCnt = 0;
336 // if clean clipped waves detected run alternate demod
337 if (DetectCleanAskWave(BinStream, *size, high, low)) {
338 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
339 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
340 if (askType) //askman
341 return manrawdecode(BinStream, size, 0);
342 //askraw
343 return errCnt;
344 }
345 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
346
347 int lastBit; //set first clock check - can go negative
348 size_t i, bitnum = 0; //output counter
349 uint8_t midBit = 0;
350 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
351 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
352 size_t MaxBits = 3072; //max bits to collect
353 lastBit = start - *clk;
354
355 for (i = start; i < *size; ++i) {
356 if (i-lastBit >= *clk-tol){
357 if (BinStream[i] >= high) {
358 BinStream[bitnum++] = *invert;
359 } else if (BinStream[i] <= low) {
360 BinStream[bitnum++] = *invert ^ 1;
361 } else if (i-lastBit >= *clk+tol) {
362 if (bitnum > 0) {
363 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
364 BinStream[bitnum++]=7;
365 errCnt++;
366 }
367 } else { //in tolerance - looking for peak
368 continue;
369 }
370 midBit = 0;
371 lastBit += *clk;
372 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
373 if (BinStream[i] >= high) {
374 BinStream[bitnum++] = *invert;
375 } else if (BinStream[i] <= low) {
376 BinStream[bitnum++] = *invert ^ 1;
377 } else if (i-lastBit >= *clk/2+tol) {
378 BinStream[bitnum] = BinStream[bitnum-1];
379 bitnum++;
380 } else { //in tolerance - looking for peak
381 continue;
382 }
383 midBit = 1;
384 }
385 if (bitnum >= MaxBits) break;
386 }
387 *size = bitnum;
388 return errCnt;
389 }
390 //by marshmellow
391 //take 10 and 01 and manchester decode
392 //run through 2 times and take least errCnt
393 int manrawdecode(uint8_t *BitStream, size_t *size, uint8_t invert){
394
395 // sanity check
396 if (*size < 16) return -1;
397
398 int errCnt = 0, bestErr = 1000;
399 uint16_t bitnum = 0, MaxBits = 512, bestRun = 0;
400 size_t i, k;
401
402 //find correct start position [alignment]
403 for (k = 0; k < 2; ++k){
404 for (i = k; i < *size-3; i += 2) {
405 if (BitStream[i] == BitStream[i+1])
406 errCnt++;
407 }
408 if (bestErr > errCnt){
409 bestErr = errCnt;
410 bestRun = k;
411 }
412 errCnt = 0;
413 }
414
415 //decode
416 for (i = bestRun; i < *size-3; i += 2){
417 if (BitStream[i] == 1 && (BitStream[i+1] == 0)){
418 BitStream[bitnum++] = invert;
419 } else if ((BitStream[i] == 0) && BitStream[i+1] == 1){
420 BitStream[bitnum++] = invert^1;
421 } else {
422 BitStream[bitnum++] = 7;
423 }
424 if (bitnum > MaxBits) break;
425 }
426 *size = bitnum;
427 return bestErr;
428 }
429
430 uint32_t manchesterEncode2Bytes(uint16_t datain) {
431 uint32_t output = 0;
432 uint8_t curBit = 0;
433 for (uint8_t i=0; i<16; i++) {
434 curBit = (datain >> (15-i) & 1);
435 output |= (1<<(((15-i)*2)+curBit));
436 }
437 return output;
438 }
439
440 //by marshmellow
441 //encode binary data into binary manchester
442 int ManchesterEncode(uint8_t *BitStream, size_t size)
443 {
444 size_t modIdx=20000, i=0;
445 if (size>modIdx) return -1;
446 for (size_t idx=0; idx < size; idx++){
447 BitStream[idx+modIdx++] = BitStream[idx];
448 BitStream[idx+modIdx++] = BitStream[idx]^1;
449 }
450 for (; i<(size*2); i++){
451 BitStream[i] = BitStream[i+20000];
452 }
453 return i;
454 }
455
456 //by marshmellow
457 //take 01 or 10 = 1 and 11 or 00 = 0
458 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
459 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
460 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
461 {
462 uint16_t bitnum = 0;
463 uint16_t errCnt = 0;
464 size_t i = offset;
465 uint16_t MaxBits=512;
466 //if not enough samples - error
467 if (*size < 51) return -1;
468 //check for phase change faults - skip one sample if faulty
469 uint8_t offsetA = 1, offsetB = 1;
470 for (; i<48; i+=2){
471 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
472 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
473 }
474 if (!offsetA && offsetB) offset++;
475 for (i=offset; i<*size-3; i+=2){
476 //check for phase error
477 if (BitStream[i+1]==BitStream[i+2]) {
478 BitStream[bitnum++]=7;
479 errCnt++;
480 }
481 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
482 BitStream[bitnum++]=1^invert;
483 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
484 BitStream[bitnum++]=invert;
485 } else {
486 BitStream[bitnum++]=7;
487 errCnt++;
488 }
489 if(bitnum>MaxBits) break;
490 }
491 *size=bitnum;
492 return errCnt;
493 }
494
495 // by marshmellow
496 // demod gProxIIDemod
497 // error returns as -x
498 // success returns start position in BitStream
499 // BitStream must contain previously askrawdemod and biphasedemoded data
500 int gProxII_Demod(uint8_t BitStream[], size_t *size)
501 {
502 size_t startIdx=0;
503 uint8_t preamble[] = {1,1,1,1,1,0};
504
505 if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx))
506 return -3; //preamble not found
507
508 if (*size != 96) return -2; //should have found 96 bits
509
510 //check first 6 spacer bits to verify format
511 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
512 //confirmed proper separator bits found
513 //return start position
514 return (int) startIdx;
515 }
516 return -5; //spacer bits not found - not a valid gproxII
517 }
518
519 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
520 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
521 {
522 size_t last_transition = 0;
523 size_t idx = 1;
524 if (fchigh==0) fchigh=10;
525 if (fclow==0) fclow=8;
526 //set the threshold close to 0 (graph) or 128 std to avoid static
527 uint8_t threshold_value = 123;
528 size_t preLastSample = 0;
529 size_t LastSample = 0;
530 size_t currSample = 0;
531 if ( size < 1024 ) return 0; // not enough samples
532
533 //find start of modulating data in trace
534 idx = findModStart(dest, size, threshold_value, fchigh);
535
536 // Need to threshold first sample
537 if(dest[idx] < threshold_value) dest[0] = 0;
538 else dest[0] = 1;
539 idx++;
540
541 size_t numBits = 0;
542 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
543 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
544 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
545 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
546 for(; idx < size-20; idx++) {
547 // threshold current value
548
549 if (dest[idx] < threshold_value) dest[idx] = 0;
550 else dest[idx] = 1;
551
552 // Check for 0->1 transition
553 if (dest[idx-1] < dest[idx]) {
554 preLastSample = LastSample;
555 LastSample = currSample;
556 currSample = idx-last_transition;
557 if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
558 //do nothing with extra garbage
559 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
560 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
561 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){
562 dest[numBits-1]=1;
563 }
564 dest[numBits++]=1;
565
566 } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage
567 //do nothing with beginning garbage and reset.. should be rare..
568 numBits = 0;
569 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
570 dest[numBits++]=1;
571 } else { //9+ = 10 sample waves (or 6+ = 7)
572 dest[numBits++]=0;
573 }
574 last_transition = idx;
575 }
576 }
577 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
578 }
579
580 //translate 11111100000 to 10
581 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
582 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
583 uint8_t invert, uint8_t fchigh, uint8_t fclow)
584 {
585 uint8_t lastval=dest[0];
586 size_t idx=0;
587 size_t numBits=0;
588 uint32_t n=1;
589 for( idx=1; idx < size; idx++) {
590 n++;
591 if (dest[idx]==lastval) continue; //skip until we hit a transition
592
593 //find out how many bits (n) we collected
594 //if lastval was 1, we have a 1->0 crossing
595 if (dest[idx-1]==1) {
596 n = (n * fclow + rfLen/2) / rfLen;
597 } else {// 0->1 crossing
598 n = (n * fchigh + rfLen/2) / rfLen;
599 }
600 if (n == 0) n = 1;
601
602 //add to our destination the bits we collected
603 memset(dest+numBits, dest[idx-1]^invert , n);
604 numBits += n;
605 n=0;
606 lastval=dest[idx];
607 }//end for
608 // if valid extra bits at the end were all the same frequency - add them in
609 if (n > rfLen/fchigh) {
610 if (dest[idx-2]==1) {
611 n = (n * fclow + rfLen/2) / rfLen;
612 } else {
613 n = (n * fchigh + rfLen/2) / rfLen;
614 }
615 memset(dest+numBits, dest[idx-1]^invert , n);
616 numBits += n;
617 }
618 return numBits;
619 }
620
621 //by marshmellow (from holiman's base)
622 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
623 int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
624 {
625 // FSK demodulator
626 size = fsk_wave_demod(dest, size, fchigh, fclow);
627 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
628 return size;
629 }
630
631 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
632 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
633 {
634 if (justNoise(dest, *size)) return -1;
635
636 size_t numStart=0, size2 = *size, startIdx=0;
637 // FSK demodulator
638 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
639 if (*size < 96*2) return -2;
640 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
641 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
642 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
643 return -3; //preamble not found
644
645 numStart = startIdx + sizeof(preamble);
646 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
647 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
648 if (dest[idx] == dest[idx+1]){
649 return -4; //not manchester data
650 }
651 *hi2 = (*hi2<<1)|(*hi>>31);
652 *hi = (*hi<<1)|(*lo>>31);
653 //Then, shift in a 0 or one into low
654 *lo <<= 1;
655 if (dest[idx] && !dest[idx+1]) // 1 0
656 *lo |= 1;
657 else // 0 1
658 *lo |= 0;
659 }
660 return (int)startIdx;
661 }
662
663 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
664 int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
665 {
666 if (justNoise(dest, *size)) return -1;
667
668 size_t numStart=0, size2 = *size, startIdx=0;
669 // FSK demodulator
670 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
671 if (*size < 96) return -2;
672
673 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
674 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
675 if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
676 return -3; //preamble not found
677
678 numStart = startIdx + sizeof(preamble);
679 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
680 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
681 if (dest[idx] == dest[idx+1])
682 return -4; //not manchester data
683 *hi2 = (*hi2<<1)|(*hi>>31);
684 *hi = (*hi<<1)|(*lo>>31);
685 //Then, shift in a 0 or one into low
686 if (dest[idx] && !dest[idx+1]) // 1 0
687 *lo=(*lo<<1)|1;
688 else // 0 1
689 *lo=(*lo<<1)|0;
690 }
691 return (int)startIdx;
692 }
693
694 int IOdemodFSK(uint8_t *dest, size_t size)
695 {
696 if (justNoise(dest, size)) return -1;
697 //make sure buffer has data
698 if (size < 66*64) return -2;
699 // FSK demodulator
700 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
701 if (size < 65) return -3; //did we get a good demod?
702 //Index map
703 //0 10 20 30 40 50 60
704 //| | | | | | |
705 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
706 //-----------------------------------------------------------------------------
707 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
708 //
709 //XSF(version)facility:codeone+codetwo
710 //Handle the data
711 size_t startIdx = 0;
712 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
713 if (! preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx))
714 return -4; //preamble not found
715
716 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
717 //confirmed proper separator bits found
718 //return start position
719 return (int) startIdx;
720 }
721 return -5;
722 }
723
724 // by marshmellow
725 // find viking preamble 0xF200 in already demoded data
726 int VikingDemod_AM(uint8_t *dest, size_t *size) {
727 //make sure buffer has data
728 if (*size < 64*2) return -2;
729 size_t startIdx = 0;
730 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
731 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
732 return -4; //preamble not found
733
734 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^
735 bytebits_to_byte(dest+startIdx+8,8) ^
736 bytebits_to_byte(dest+startIdx+16,8) ^
737 bytebits_to_byte(dest+startIdx+24,8) ^
738 bytebits_to_byte(dest+startIdx+32,8) ^
739 bytebits_to_byte(dest+startIdx+40,8) ^
740 bytebits_to_byte(dest+startIdx+48,8) ^
741 bytebits_to_byte(dest+startIdx+56,8);
742 if ( checkCalc != 0xA8 ) return -5;
743 if (*size != 64) return -6;
744 //return start position
745 return (int)startIdx;
746 }
747
748 // by iceman
749 // find Visa2000 preamble in already demoded data
750 int Visa2kDemod_AM(uint8_t *dest, size_t *size) {
751 if (*size < 96) return -1; //make sure buffer has data
752 size_t startIdx = 0;
753 uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0};
754 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
755 return -2; //preamble not found
756 if (*size != 96) return -3; //wrong demoded size
757 //return start position
758 return (int)startIdx;
759 }
760 // by iceman
761 // find Noralsy preamble in already demoded data
762 int NoralsyDemod_AM(uint8_t *dest, size_t *size) {
763 if (*size < 96) return -1; //make sure buffer has data
764 size_t startIdx = 0;
765 uint8_t preamble[] = {1,0,1,1,1,0,1,1,0,0,0,0};
766 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
767 return -2; //preamble not found
768 if (*size != 96) return -3; //wrong demoded size
769 //return start position
770 return (int)startIdx;
771 }
772 // find presco preamble 0x10D in already demoded data
773 int PrescoDemod(uint8_t *dest, size_t *size) {
774 if (*size < 128*2) return -1; //make sure buffer has data
775 size_t startIdx = 0;
776 uint8_t preamble[] = {0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
777 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
778 return -2; //preamble not found
779 if (*size != 128) return -3; //wrong demoded size
780 //return start position
781 return (int)startIdx;
782 }
783
784 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
785 // BitStream must contain previously askrawdemod and biphasedemoded data
786 int FDXBdemodBI(uint8_t *dest, size_t *size) {
787 if (*size < 128*2) return -1; //make sure buffer has enough data
788 size_t startIdx = 0;
789 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
790 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
791 return -2; //preamble not found
792 if (*size != 128) return -3; //wrong demoded size
793 //return start position
794 return (int)startIdx;
795 }
796
797 // ASK/Diphase fc/64 (inverted Biphase)
798 // Note: this i s not a demod, this is only a detection
799 // the parameter *dest needs to be demoded before call
800 // 0xFFFF preamble, 64bits
801 int JablotronDemod(uint8_t *dest, size_t *size){
802 if (*size < 64*2) return -1; //make sure buffer has enough data
803 size_t startIdx = 0;
804 uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
805 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
806 return -2; //preamble not found
807 if (*size != 64) return -3; // wrong demoded size
808
809 uint8_t checkchksum = 0;
810 for (int i=16; i < 56; i += 8) {
811 checkchksum += bytebits_to_byte(dest+startIdx+i,8);
812 }
813 checkchksum ^= 0x3A;
814 uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8);
815 if ( checkchksum != crc ) return -5;
816 return (int)startIdx;
817 }
818
819 // by marshmellow
820 // FSK Demod then try to locate an AWID ID
821 int AWIDdemodFSK(uint8_t *dest, size_t *size)
822 {
823 //make sure buffer has enough data
824 if (*size < 96*50) return -1;
825
826 if (justNoise(dest, *size)) return -2;
827
828 // FSK demodulator
829 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
830 if (*size < 96) return -3; //did we get a good demod?
831
832 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
833 size_t startIdx = 0;
834 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
835 return -4; //preamble not found
836 if (*size != 96) return -5;
837 return (int)startIdx;
838 }
839
840 // by marshmellow
841 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
842 int PyramiddemodFSK(uint8_t *dest, size_t *size)
843 {
844 //make sure buffer has data
845 if (*size < 128*50) return -5;
846
847 //test samples are not just noise
848 if (justNoise(dest, *size)) return -1;
849
850 // FSK demodulator
851 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
852 if (*size < 128) return -2; //did we get a good demod?
853 size_t startIdx = 0;
854 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1};
855 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
856 return -4; //preamble not found
857 if (*size != 128) return -3;
858 return (int)startIdx;
859 }
860
861 // find nedap preamble in already demoded data
862 int NedapDemod(uint8_t *dest, size_t *size) {
863 //make sure buffer has data
864 if (*size < 128) return -3;
865
866 size_t startIdx = 0;
867 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
868 uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0};
869 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
870 return -4; //preamble not found
871 return (int) startIdx;
872 }
873
874 // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits
875 // by iceman
876 int IdteckDemodPSK(uint8_t *dest, size_t *size) {
877 //make sure buffer has data
878 if (*size < 64*2) return -1;
879 size_t startIdx = 0;
880 uint8_t preamble[] = {0,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,0,1,1};
881 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
882 return -2; //preamble not found
883 if (*size != 64) return -3; // wrong demoded size
884 return (int) startIdx;
885 }
886
887 // by marshmellow
888 // to detect a wave that has heavily clipped (clean) samples
889 uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
890 {
891 bool allArePeaks = true;
892 uint16_t cntPeaks=0;
893 size_t loopEnd = 512+160;
894 if (loopEnd > size) loopEnd = size;
895 for (size_t i=160; i<loopEnd; i++){
896 if (dest[i]>low && dest[i]<high)
897 allArePeaks = false;
898 else
899 cntPeaks++;
900 }
901 if (!allArePeaks){
902 if (cntPeaks > 300) return true;
903 }
904 return allArePeaks;
905 }
906 // by marshmellow
907 // to help detect clocks on heavily clipped samples
908 // based on count of low to low
909 int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
910 {
911 uint8_t fndClk[] = {8,16,32,40,50,64,128};
912 size_t startwave;
913 size_t i = 100;
914 size_t minClk = 255;
915 // get to first full low to prime loop and skip incomplete first pulse
916 while ((dest[i] < high) && (i < size))
917 ++i;
918 while ((dest[i] > low) && (i < size))
919 ++i;
920
921 // loop through all samples
922 while (i < size) {
923 // measure from low to low
924 while ((dest[i] > low) && (i < size))
925 ++i;
926 startwave= i;
927 while ((dest[i] < high) && (i < size))
928 ++i;
929 while ((dest[i] > low) && (i < size))
930 ++i;
931 //get minimum measured distance
932 if (i-startwave < minClk && i < size)
933 minClk = i - startwave;
934 }
935 // set clock
936 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
937 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
938 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
939 return fndClk[clkCnt];
940 }
941 return 0;
942 }
943
944 // by marshmellow
945 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
946 // maybe somehow adjust peak trimming value based on samples to fix?
947 // return start index of best starting position for that clock and return clock (by reference)
948 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
949 {
950 size_t i = 1;
951 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
952 uint8_t clkEnd = 9;
953 uint8_t loopCnt = 255; //don't need to loop through entire array...
954 if (size <= loopCnt + 60) return -1; //not enough samples
955 size -= 60; //sometimes there is a strange end wave - filter out this....
956 //if we already have a valid clock
957 uint8_t clockFnd = 0;
958 for (; i < clkEnd; ++i)
959 if (clk[i] == *clock) clockFnd = i;
960 //clock found but continue to find best startpos
961
962 //get high and low peak
963 int peak, low;
964 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
965
966 //test for large clean peaks
967 if (!clockFnd){
968 if (DetectCleanAskWave(dest, size, peak, low)==1){
969 int ans = DetectStrongAskClock(dest, size, peak, low);
970 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
971 for (i=clkEnd-1; i>0; i--){
972 if (clk[i] == ans) {
973 *clock = ans;
974 //clockFnd = i;
975 return 0; // for strong waves i don't use the 'best start position' yet...
976 //break; //clock found but continue to find best startpos [not yet]
977 }
978 }
979 }
980 }
981 uint8_t ii;
982 uint8_t clkCnt, tol = 0;
983 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
984 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
985 size_t errCnt = 0;
986 size_t arrLoc, loopEnd;
987
988 if (clockFnd > 0) {
989 clkCnt = clockFnd;
990 clkEnd = clockFnd+1;
991 } else {
992 clkCnt = 1;
993 }
994
995 //test each valid clock from smallest to greatest to see which lines up
996 for (; clkCnt < clkEnd; clkCnt++) {
997 if (clk[clkCnt] <= 32) {
998 tol=1;
999 } else {
1000 tol=0;
1001 }
1002 //if no errors allowed - keep start within the first clock
1003 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128)
1004 loopCnt = clk[clkCnt] * 2;
1005
1006 bestErr[clkCnt] = 1000;
1007
1008 //try lining up the peaks by moving starting point (try first few clocks)
1009 for (ii=0; ii < loopCnt; ii++){
1010 if (dest[ii] < peak && dest[ii] > low) continue;
1011
1012 errCnt = 0;
1013 // now that we have the first one lined up test rest of wave array
1014 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
1015 for (i=0; i < loopEnd; ++i){
1016 arrLoc = ii + (i * clk[clkCnt]);
1017 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
1018 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
1019 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
1020 }else{ //error no peak detected
1021 errCnt++;
1022 }
1023 }
1024 //if we found no errors then we can stop here and a low clock (common clocks)
1025 // this is correct one - return this clock
1026 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d", clk[clkCnt], errCnt, ii, i);
1027 if (errCnt==0 && clkCnt<7) {
1028 if (!clockFnd) *clock = clk[clkCnt];
1029 return ii;
1030 }
1031 //if we found errors see if it is lowest so far and save it as best run
1032 if (errCnt < bestErr[clkCnt]) {
1033 bestErr[clkCnt] = errCnt;
1034 bestStart[clkCnt] = ii;
1035 }
1036 }
1037 }
1038 uint8_t k;
1039 uint8_t best = 0;
1040 for (k=1; k < clkEnd; ++k){
1041 if (bestErr[k] < bestErr[best]){
1042 if (bestErr[k] == 0) bestErr[k]=1;
1043 // current best bit to error ratio vs new bit to error ratio
1044 if ( (size/clk[best])/bestErr[best] < (size/clk[k])/bestErr[k] ){
1045 best = k;
1046 }
1047 }
1048 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d", clk[k], bestErr[k], clk[best], bestStart[best]);
1049 }
1050 if (!clockFnd) *clock = clk[best];
1051
1052 return bestStart[best];
1053 }
1054
1055 //by marshmellow
1056 //detect psk clock by reading each phase shift
1057 // a phase shift is determined by measuring the sample length of each wave
1058 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
1059 {
1060 uint8_t clk[] = {255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
1061 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1062
1063 //if we already have a valid clock quit
1064 size_t i=1;
1065 for (; i < 8; ++i)
1066 if (clk[i] == clock) return clock;
1067
1068 if (size < 160+20) return 0;
1069
1070 // size must be larger than 20 here, and 160 later on.
1071 if (size < loopCnt) loopCnt = size-20;
1072
1073 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
1074 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
1075 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
1076 uint16_t bestErr[] = {1000,1000,1000,1000,1000,1000,1000,1000,1000};
1077 uint16_t peaksdet[] = {0,0,0,0,0,0,0,0,0};
1078 fc = countFC(dest, size, 0);
1079 if (fc!=2 && fc!=4 && fc!=8) return -1;
1080 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
1081
1082 //find first full wave
1083 for (i=160; i < loopCnt; i++){
1084 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1085 if (waveStart == 0) {
1086 waveStart = i+1;
1087 //prnt("DEBUG: waveStart: %d",waveStart);
1088 } else {
1089 waveEnd = i+1;
1090 //prnt("DEBUG: waveEnd: %d",waveEnd);
1091 waveLenCnt = waveEnd-waveStart;
1092 if (waveLenCnt > fc){
1093 firstFullWave = waveStart;
1094 fullWaveLen=waveLenCnt;
1095 break;
1096 }
1097 waveStart=0;
1098 }
1099 }
1100 }
1101 if (g_debugMode == 2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1102
1103 //test each valid clock from greatest to smallest to see which lines up
1104 for (clkCnt=7; clkCnt >= 1 ; clkCnt--){
1105 lastClkBit = firstFullWave; //set end of wave as clock align
1106 waveStart = 0;
1107 errCnt=0;
1108 peakcnt=0;
1109 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
1110
1111 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
1112 //top edge of wave = start of new wave
1113 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1114 if (waveStart == 0) {
1115 waveStart = i+1;
1116 waveLenCnt=0;
1117 } else { //waveEnd
1118 waveEnd = i+1;
1119 waveLenCnt = waveEnd-waveStart;
1120 if (waveLenCnt > fc){
1121 //if this wave is a phase shift
1122 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
1123 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
1124 peakcnt++;
1125 lastClkBit+=clk[clkCnt];
1126 } else if (i<lastClkBit+8){
1127 //noise after a phase shift - ignore
1128 } else { //phase shift before supposed to based on clock
1129 errCnt++;
1130 }
1131 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
1132 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
1133 }
1134 waveStart=i+1;
1135 }
1136 }
1137 }
1138 if (errCnt == 0) return clk[clkCnt];
1139 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt] = errCnt;
1140 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt] = peakcnt;
1141 }
1142 //all tested with errors
1143 //return the highest clk with the most peaks found
1144 uint8_t best = 7;
1145 for (i=7; i >= 1; i--){
1146 if (peaksdet[i] > peaksdet[best])
1147 best = i;
1148
1149 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
1150 }
1151 return clk[best];
1152 }
1153
1154 int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1155 //find shortest transition from high to low
1156 size_t i = 0;
1157 size_t transition1 = 0;
1158 int lowestTransition = 255;
1159 bool lastWasHigh = false;
1160
1161 //find first valid beginning of a high or low wave
1162 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1163 ++i;
1164 while ((dest[i] < peak && dest[i] > low) && (i < size))
1165 ++i;
1166 lastWasHigh = (dest[i] >= peak);
1167
1168 if (i==size) return 0;
1169 transition1 = i;
1170
1171 for (;i < size; i++) {
1172 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1173 lastWasHigh = (dest[i] >= peak);
1174 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1175 transition1 = i;
1176 }
1177 }
1178 if (lowestTransition == 255) lowestTransition = 0;
1179 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1180 return lowestTransition;
1181 }
1182
1183 //by marshmellow
1184 //detect nrz clock by reading #peaks vs no peaks(or errors)
1185 //iceman: shouldn't param clock be reference? like DetectASKClock
1186 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1187 {
1188 size_t i = 0;
1189 uint8_t clk[] = {8,16,32,40,50,64,100,128,255};
1190 size_t loopCnt = 4096; //don't need to loop through entire array...
1191
1192 //if we already have a valid clock quit
1193 for (; i < 8; ++i)
1194 if (clk[i] == clock) return clock;
1195
1196 if (size < 20) return 0;
1197 // size must be larger than 20 here
1198 if (size < loopCnt) loopCnt = size-20;
1199
1200 //get high and low peak
1201 int peak, low;
1202 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1203
1204 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1205 size_t ii;
1206 uint8_t clkCnt;
1207 uint8_t tol = 0;
1208 uint16_t smplCnt = 0;
1209 int16_t peakcnt = 0;
1210 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1211 uint16_t maxPeak = 255;
1212 bool firstpeak = false;
1213 //test for large clipped waves
1214 for (i=0; i<loopCnt; i++){
1215 if (dest[i] >= peak || dest[i] <= low){
1216 if (!firstpeak) continue;
1217 smplCnt++;
1218 } else {
1219 firstpeak = true;
1220 if (smplCnt > 6 ){
1221 if (maxPeak > smplCnt){
1222 maxPeak = smplCnt;
1223 //prnt("maxPk: %d",maxPeak);
1224 }
1225 peakcnt++;
1226 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1227 smplCnt = 0;
1228 }
1229 }
1230 }
1231 bool errBitHigh = 0;
1232 bool bitHigh = 0;
1233 uint8_t ignoreCnt = 0;
1234 uint8_t ignoreWindow = 4;
1235 bool lastPeakHigh = 0;
1236 int lastBit = 0;
1237 peakcnt = 0;
1238 //test each valid clock from smallest to greatest to see which lines up
1239 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1240 //ignore clocks smaller than smallest peak
1241 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1242 //try lining up the peaks by moving starting point (try first 256)
1243 for (ii=20; ii < loopCnt; ++ii){
1244 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1245 peakcnt=0;
1246 bitHigh = false;
1247 ignoreCnt = 0;
1248 lastBit = ii-clk[clkCnt];
1249 //loop through to see if this start location works
1250 for (i = ii; i < size-20; ++i) {
1251 //if we are at a clock bit
1252 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1253 //test high/low
1254 if (dest[i] >= peak || dest[i] <= low) {
1255 //if same peak don't count it
1256 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1257 peakcnt++;
1258 }
1259 lastPeakHigh = (dest[i] >= peak);
1260 bitHigh = true;
1261 errBitHigh = false;
1262 ignoreCnt = ignoreWindow;
1263 lastBit += clk[clkCnt];
1264 } else if (i == lastBit + clk[clkCnt] + tol) {
1265 lastBit += clk[clkCnt];
1266 }
1267 //else if not a clock bit and no peaks
1268 } else if (dest[i] < peak && dest[i] > low){
1269 if (ignoreCnt == 0){
1270 bitHigh=false;
1271 if (errBitHigh==true)
1272 peakcnt--;
1273 errBitHigh=false;
1274 } else {
1275 ignoreCnt--;
1276 }
1277 // else if not a clock bit but we have a peak
1278 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1279 //error bar found no clock...
1280 errBitHigh=true;
1281 }
1282 }
1283 if (peakcnt > peaksdet[clkCnt]) {
1284 peaksdet[clkCnt] = peakcnt;
1285 }
1286 }
1287 }
1288 }
1289
1290 uint8_t best = 0;
1291 for (int m = 7; m > 0; m--){
1292 if ((peaksdet[m] >= (peaksdet[best]-1)) && (peaksdet[m] <= peaksdet[best]+1) && lowestTransition) {
1293 if (clk[m] > (lowestTransition - (clk[m]/8)) && clk[m] < (lowestTransition + (clk[m]/8))) {
1294 best = m;
1295 }
1296 } else if (peaksdet[m] > peaksdet[best]){
1297 best = m;
1298 }
1299 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d", clk[m], peaksdet[m], maxPeak, clk[best], lowestTransition);
1300 }
1301
1302 return clk[best];
1303 }
1304
1305 // by marshmellow
1306 // convert psk1 demod to psk2 demod
1307 // only transition waves are 1s
1308 void psk1TOpsk2(uint8_t *bits, size_t size) {
1309 uint8_t lastBit = bits[0];
1310 for (size_t i = 1; i < size; i++){
1311 //ignore errors
1312 if (bits[i] == 7) continue;
1313
1314 if (lastBit != bits[i]){
1315 lastBit = bits[i];
1316 bits[i] = 1;
1317 } else {
1318 bits[i] = 0;
1319 }
1320 }
1321 }
1322
1323 // by marshmellow
1324 // convert psk2 demod to psk1 demod
1325 // from only transition waves are 1s to phase shifts change bit
1326 void psk2TOpsk1(uint8_t *bits, size_t size) {
1327 uint8_t phase = 0;
1328 for (size_t i = 0; i < size; i++){
1329 if (bits[i] == 1){
1330 phase ^= 1;
1331 }
1332 bits[i] = phase;
1333 }
1334 }
1335
1336 // redesigned by marshmellow adjusted from existing decode functions
1337 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1338 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1339 {
1340 //26 bit 40134 format (don't know other formats)
1341 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1342 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1343 size_t startidx = 0;
1344 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1345 // if didn't find preamble try again inverting
1346 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1347 *invert ^= 1;
1348 }
1349 if (*size != 64 && *size != 224) return -2;
1350 if (*invert==1)
1351 for (size_t i = startidx; i < *size; i++)
1352 bitStream[i] ^= 1;
1353
1354 return (int) startidx;
1355 }
1356
1357 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1358 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1359 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1360 if (justNoise(dest, *size)) return -1;
1361 *clk = DetectNRZClock(dest, *size, *clk);
1362 if (*clk==0) return -2;
1363 size_t i, gLen = 4096;
1364 if (gLen>*size) gLen = *size-20;
1365 int high, low;
1366 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1367
1368 uint8_t bit=0;
1369 //convert wave samples to 1's and 0's
1370 for(i=20; i < *size-20; i++){
1371 if (dest[i] >= high) bit = 1;
1372 if (dest[i] <= low) bit = 0;
1373 dest[i] = bit;
1374 }
1375 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1376 size_t lastBit = 0;
1377 size_t numBits = 0;
1378 for(i=21; i < *size-20; i++) {
1379 //if transition detected or large number of same bits - store the passed bits
1380 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1381 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1382 numBits += (i - lastBit + (*clk/4)) / *clk;
1383 lastBit = i-1;
1384 }
1385 }
1386 *size = numBits;
1387 return 0;
1388 }
1389
1390 //by marshmellow
1391 //detects the bit clock for FSK given the high and low Field Clocks
1392 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1393 {
1394 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1395 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1396 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1397 uint8_t rfLensFnd = 0;
1398 uint8_t lastFCcnt = 0;
1399 uint16_t fcCounter = 0;
1400 uint16_t rfCounter = 0;
1401 uint8_t firstBitFnd = 0;
1402 size_t i;
1403 if (size == 0) return 0;
1404
1405 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1406 rfLensFnd=0;
1407 fcCounter=0;
1408 rfCounter=0;
1409 firstBitFnd=0;
1410 //prnt("DEBUG: fcTol: %d",fcTol);
1411 // prime i to first peak / up transition
1412 for (i = 160; i < size-20; i++)
1413 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1414 break;
1415
1416 for (; i < size-20; i++){
1417 fcCounter++;
1418 rfCounter++;
1419
1420 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1421 continue;
1422 // else new peak
1423 // if we got less than the small fc + tolerance then set it to the small fc
1424 // if it is inbetween set it to the last counter
1425 if (fcCounter < fcHigh && fcCounter > fcLow)
1426 fcCounter = lastFCcnt;
1427 else if (fcCounter < fcLow+fcTol)
1428 fcCounter = fcLow;
1429 else //set it to the large fc
1430 fcCounter = fcHigh;
1431
1432 //look for bit clock (rf/xx)
1433 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1434 //not the same size as the last wave - start of new bit sequence
1435 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1436 for (int ii=0; ii<15; ii++){
1437 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1438 rfCnts[ii]++;
1439 rfCounter = 0;
1440 break;
1441 }
1442 }
1443 if (rfCounter > 0 && rfLensFnd < 15){
1444 //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1445 rfCnts[rfLensFnd]++;
1446 rfLens[rfLensFnd++] = rfCounter;
1447 }
1448 } else {
1449 firstBitFnd++;
1450 }
1451 rfCounter=0;
1452 lastFCcnt=fcCounter;
1453 }
1454 fcCounter=0;
1455 }
1456 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1457
1458 for (i=0; i<15; i++){
1459 //get highest 2 RF values (might need to get more values to compare or compare all?)
1460 if (rfCnts[i]>rfCnts[rfHighest]){
1461 rfHighest3=rfHighest2;
1462 rfHighest2=rfHighest;
1463 rfHighest=i;
1464 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1465 rfHighest3=rfHighest2;
1466 rfHighest2=i;
1467 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1468 rfHighest3=i;
1469 }
1470 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1471 }
1472 // set allowed clock remainder tolerance to be 1 large field clock length+1
1473 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1474 uint8_t tol1 = fcHigh+1;
1475
1476 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1477
1478 // loop to find the highest clock that has a remainder less than the tolerance
1479 // compare samples counted divided by
1480 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1481 int ii=7;
1482 for (; ii>=2; ii--){
1483 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1484 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1485 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1486 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1487 break;
1488 }
1489 }
1490 }
1491 }
1492
1493 if (ii<2) return 0; // oops we went too far
1494
1495 return clk[ii];
1496 }
1497
1498 //by marshmellow
1499 //countFC is to detect the field clock lengths.
1500 //counts and returns the 2 most common wave lengths
1501 //mainly used for FSK field clock detection
1502 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1503 {
1504 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1505 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1506 uint8_t fcLensFnd = 0;
1507 uint8_t lastFCcnt = 0;
1508 uint8_t fcCounter = 0;
1509 size_t i;
1510 if (size < 180) return 0;
1511
1512 // prime i to first up transition
1513 for (i = 160; i < size-20; i++)
1514 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1515 break;
1516
1517 for (; i < size-20; i++){
1518 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1519 // new up transition
1520 fcCounter++;
1521 if (fskAdj){
1522 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1523 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1524 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1525 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1526 // save last field clock count (fc/xx)
1527 lastFCcnt = fcCounter;
1528 }
1529 // find which fcLens to save it to:
1530 for (int ii=0; ii<15; ii++){
1531 if (fcLens[ii]==fcCounter){
1532 fcCnts[ii]++;
1533 fcCounter=0;
1534 break;
1535 }
1536 }
1537 if (fcCounter>0 && fcLensFnd<15){
1538 //add new fc length
1539 fcCnts[fcLensFnd]++;
1540 fcLens[fcLensFnd++]=fcCounter;
1541 }
1542 fcCounter=0;
1543 } else {
1544 // count sample
1545 fcCounter++;
1546 }
1547 }
1548
1549 uint8_t best1=14, best2=14, best3=14;
1550 uint16_t maxCnt1=0;
1551 // go through fclens and find which ones are bigest 2
1552 for (i=0; i<15; i++){
1553 // get the 3 best FC values
1554 if (fcCnts[i]>maxCnt1) {
1555 best3=best2;
1556 best2=best1;
1557 maxCnt1=fcCnts[i];
1558 best1=i;
1559 } else if(fcCnts[i]>fcCnts[best2]){
1560 best3=best2;
1561 best2=i;
1562 } else if(fcCnts[i]>fcCnts[best3]){
1563 best3=i;
1564 }
1565 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1566 }
1567 if (fcLens[best1]==0) return 0;
1568 uint8_t fcH=0, fcL=0;
1569 if (fcLens[best1]>fcLens[best2]){
1570 fcH=fcLens[best1];
1571 fcL=fcLens[best2];
1572 } else{
1573 fcH=fcLens[best2];
1574 fcL=fcLens[best1];
1575 }
1576 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1577 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1578 return 0; //lots of waves not psk or fsk
1579 }
1580 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1581
1582 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1583 if (fskAdj) return fcs;
1584 return fcLens[best1];
1585 }
1586
1587 //by marshmellow - demodulate PSK1 wave
1588 //uses wave lengths (# Samples)
1589 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1590 {
1591 if (size == 0) return -1;
1592 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1593 if (*size<loopCnt) loopCnt = *size;
1594
1595 size_t numBits=0;
1596 uint8_t curPhase = *invert;
1597 size_t i=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1598 uint16_t fc=0, fullWaveLen=0, tol=1;
1599 uint16_t errCnt=0, waveLenCnt=0, errCnt2=0;
1600 fc = countFC(dest, *size, 1);
1601 uint8_t fc2 = fc >> 8;
1602 if (fc2 == 10) return -1; //fsk found - quit
1603 fc = fc & 0xFF;
1604 if (fc!=2 && fc!=4 && fc!=8) return -1;
1605 //prnt("DEBUG: FC: %d",fc);
1606 *clock = DetectPSKClock(dest, *size, *clock);
1607 if (*clock == 0) return -1;
1608
1609 //find start of modulating data in trace
1610 uint8_t threshold_value = 123; //-5
1611 i = findModStart(dest, *size, threshold_value, fc);
1612
1613 //find first phase shift
1614 int avgWaveVal=0, lastAvgWaveVal=0;
1615 waveStart = i;
1616 for (; i<loopCnt; i++){
1617 // find peak
1618 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1619 waveEnd = i+1;
1620 if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd, waveStart);
1621 waveLenCnt = waveEnd-waveStart;
1622 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+3)){ //not first peak and is a large wave but not out of whack
1623 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1624 firstFullWave = waveStart;
1625 fullWaveLen=waveLenCnt;
1626 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1627 if (lastAvgWaveVal > threshold_value) curPhase ^= 1;
1628 break;
1629 }
1630 waveStart = i+1;
1631 avgWaveVal = 0;
1632 }
1633 avgWaveVal += dest[i+2];
1634 }
1635 if (firstFullWave == 0) {
1636 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1637 // so skip a little to ensure we are past any Start Signal
1638 firstFullWave = 160;
1639 memset(dest, curPhase, firstFullWave / *clock);
1640 } else {
1641 memset(dest, curPhase^1, firstFullWave / *clock);
1642 }
1643 //advance bits
1644 numBits += (firstFullWave / *clock);
1645 //set start of wave as clock align
1646 lastClkBit = firstFullWave;
1647 if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
1648 if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
1649 waveStart = 0;
1650 dest[numBits++] = curPhase; //set first read bit
1651 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1652 //top edge of wave = start of new wave
1653 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1654 if (waveStart == 0) {
1655 waveStart = i+1;
1656 waveLenCnt = 0;
1657 avgWaveVal = dest[i+1];
1658 } else { //waveEnd
1659 waveEnd = i+1;
1660 waveLenCnt = waveEnd-waveStart;
1661 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1662 if (waveLenCnt > fc){
1663 //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1664 //this wave is a phase shift
1665 //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1666 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1667 curPhase ^= 1;
1668 dest[numBits++] = curPhase;
1669 lastClkBit += *clock;
1670 } else if (i < lastClkBit+10+fc){
1671 //noise after a phase shift - ignore
1672 } else { //phase shift before supposed to based on clock
1673 errCnt++;
1674 dest[numBits++] = 7;
1675 }
1676 } else if (i+1 > lastClkBit + *clock + tol + fc){
1677 lastClkBit += *clock; //no phase shift but clock bit
1678 dest[numBits++] = curPhase;
1679 } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often)
1680 errCnt2++;
1681 if(errCnt2 > 101) return errCnt2;
1682 }
1683 avgWaveVal = 0;
1684 waveStart = i+1;
1685 }
1686 }
1687 avgWaveVal += dest[i+1];
1688 }
1689 *size = numBits;
1690 return errCnt;
1691 }
1692
1693 bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1694 size_t ststart = 0, stend = 0;
1695 return DetectST_ext(buffer, size, foundclock, &ststart, &stend);
1696 }
1697
1698 //by marshmellow
1699 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1700 bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststart, size_t *stend) {
1701 size_t bufsize = *size;
1702 //need to loop through all samples and identify our clock, look for the ST pattern
1703 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1704 int clk = 0;
1705 int tol = 0;
1706 int i, j, skip, start, end, low, high, minClk, waveStart;
1707 bool complete = false;
1708 int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1709 int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed...
1710 size_t testsize = (bufsize < 512) ? bufsize : 512;
1711 int phaseoff = 0;
1712 high = low = 128;
1713 memset(tmpbuff, 0, sizeof(tmpbuff));
1714 memset(waveLen, 0, sizeof(waveLen));
1715
1716
1717 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1718 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1719 return false; //just noise
1720 }
1721 i = 0;
1722 j = 0;
1723 minClk = 255;
1724 // get to first full low to prime loop and skip incomplete first pulse
1725 while ((buffer[i] < high) && (i < bufsize))
1726 ++i;
1727 while ((buffer[i] > low) && (i < bufsize))
1728 ++i;
1729 skip = i;
1730
1731 // populate tmpbuff buffer with pulse lengths
1732 while (i < bufsize) {
1733 // measure from low to low
1734 while ((buffer[i] > low) && (i < bufsize))
1735 ++i;
1736 start= i;
1737 while ((buffer[i] < high) && (i < bufsize))
1738 ++i;
1739 //first high point for this wave
1740 waveStart = i;
1741 while ((buffer[i] > low) && (i < bufsize))
1742 ++i;
1743 if (j >= (bufsize/32)) {
1744 break;
1745 }
1746 waveLen[j] = i - waveStart; //first high to first low
1747 tmpbuff[j++] = i - start;
1748 if (i-start < minClk && i < bufsize) {
1749 minClk = i - start;
1750 }
1751 }
1752 // set clock - might be able to get this externally and remove this work...
1753 if (!clk) {
1754 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1755 tol = fndClk[clkCnt]/8;
1756 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1757 clk=fndClk[clkCnt];
1758 break;
1759 }
1760 }
1761 // clock not found - ERROR
1762 if (!clk) {
1763 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1764 return false;
1765 }
1766 } else tol = clk/8;
1767
1768 *foundclock = clk;
1769
1770 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1771 start = -1;
1772 for (i = 0; i < j - 4; ++i) {
1773 skip += tmpbuff[i];
1774 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1775 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1776 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1777 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1778 start = i + 3;
1779 break;
1780 }
1781 }
1782 }
1783 }
1784 }
1785 // first ST not found - ERROR
1786 if (start < 0) {
1787 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1788 return false;
1789 } else {
1790 if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j);
1791 }
1792 if (waveLen[i+2] > clk*1+tol)
1793 phaseoff = 0;
1794 else
1795 phaseoff = clk/2;
1796
1797 // skip over the remainder of ST
1798 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1799
1800 // now do it again to find the end
1801 end = skip;
1802 for (i += 3; i < j - 4; ++i) {
1803 end += tmpbuff[i];
1804 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1805 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1806 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1807 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1808 complete = true;
1809 break;
1810 }
1811 }
1812 }
1813 }
1814 }
1815 end -= phaseoff;
1816 //didn't find second ST - ERROR
1817 if (!complete) {
1818 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1819 return false;
1820 }
1821 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1822 //now begin to trim out ST so we can use normal demod cmds
1823 start = skip;
1824 size_t datalen = end - start;
1825 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1826 if ( clk - (datalen % clk) <= clk/8) {
1827 // padd the amount off - could be problematic... but shouldn't happen often
1828 datalen += clk - (datalen % clk);
1829 } else if ( (datalen % clk) <= clk/8 ) {
1830 // padd the amount off - could be problematic... but shouldn't happen often
1831 datalen -= datalen % clk;
1832 } else {
1833 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1834 return false;
1835 }
1836 // if datalen is less than one t55xx block - ERROR
1837 if (datalen/clk < 8*4) {
1838 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1839 return false;
1840 }
1841 size_t dataloc = start;
1842 if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) {
1843 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1844 for ( i=0; i <= (clk/8); ++i ) {
1845 if ( buffer[dataloc - (clk*4) - i] <= low ) {
1846 dataloc -= i;
1847 break;
1848 }
1849 }
1850 }
1851
1852 size_t newloc = 0;
1853 i=0;
1854 if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen);
1855 bool firstrun = true;
1856 // warning - overwriting buffer given with raw wave data with ST removed...
1857 while ( dataloc < bufsize-(clk/2) ) {
1858 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1859 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1860 for(i=0; i < clk/2-tol; ++i) {
1861 buffer[dataloc+i] = high+5;
1862 }
1863 } //test for single sample outlier (high between two lows) in the case of very strong waves
1864 if (buffer[dataloc] >= high && buffer[dataloc+2] <= low) {
1865 buffer[dataloc] = buffer[dataloc+2];
1866 buffer[dataloc+1] = buffer[dataloc+2];
1867 }
1868 if (firstrun) {
1869 *stend = dataloc;
1870 *ststart = dataloc-(clk*4);
1871 firstrun=false;
1872 }
1873 for (i=0; i<datalen; ++i) {
1874 if (i+newloc < bufsize) {
1875 if (i+newloc < dataloc)
1876 buffer[i+newloc] = buffer[dataloc];
1877
1878 dataloc++;
1879 }
1880 }
1881 newloc += i;
1882 //skip next ST - we just assume it will be there from now on...
1883 if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4));
1884 dataloc += clk*4;
1885 }
1886 *size = newloc;
1887 return true;
1888 }
Impressum, Datenschutz