1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "iso14443a.h"
17 #include "proxmark3.h"
21 #include "iso14443crc.h"
22 #include "crapto1/crapto1.h"
23 #include "mifareutil.h"
24 #include "mifaresniff.h"
26 #include "protocols.h"
33 // DEMOD_MOD_FIRST_HALF,
34 // DEMOD_NOMOD_FIRST_HALF,
40 uint16_t collisionPos
;
47 uint32_t startTime
, endTime
;
62 STATE_START_OF_COMMUNICATION
,
78 uint32_t startTime
, endTime
;
83 static uint32_t iso14a_timeout
;
86 // the block number for the ISO14443-4 PCB
87 static uint8_t iso14_pcb_blocknum
= 0;
92 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
93 #define REQUEST_GUARD_TIME (7000/16 + 1)
94 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
95 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
96 // bool LastCommandWasRequest = false;
99 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
101 // When the PM acts as reader and is receiving tag data, it takes
102 // 3 ticks delay in the AD converter
103 // 16 ticks until the modulation detector completes and sets curbit
104 // 8 ticks until bit_to_arm is assigned from curbit
105 // 8*16 ticks for the transfer from FPGA to ARM
106 // 4*16 ticks until we measure the time
107 // - 8*16 ticks because we measure the time of the previous transfer
108 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
110 // When the PM acts as a reader and is sending, it takes
111 // 4*16 ticks until we can write data to the sending hold register
112 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
113 // 8 ticks until the first transfer starts
114 // 8 ticks later the FPGA samples the data
115 // 1 tick to assign mod_sig_coil
116 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
118 // When the PM acts as tag and is receiving it takes
119 // 2 ticks delay in the RF part (for the first falling edge),
120 // 3 ticks for the A/D conversion,
121 // 8 ticks on average until the start of the SSC transfer,
122 // 8 ticks until the SSC samples the first data
123 // 7*16 ticks to complete the transfer from FPGA to ARM
124 // 8 ticks until the next ssp_clk rising edge
125 // 4*16 ticks until we measure the time
126 // - 8*16 ticks because we measure the time of the previous transfer
127 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
129 // The FPGA will report its internal sending delay in
130 uint16_t FpgaSendQueueDelay
;
131 // the 5 first bits are the number of bits buffered in mod_sig_buf
132 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
133 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
135 // When the PM acts as tag and is sending, it takes
136 // 4*16 + 8 ticks until we can write data to the sending hold register
137 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
138 // 8 ticks later the FPGA samples the first data
139 // + 16 ticks until assigned to mod_sig
140 // + 1 tick to assign mod_sig_coil
141 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
142 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE)
144 // When the PM acts as sniffer and is receiving tag data, it takes
145 // 3 ticks A/D conversion
146 // 14 ticks to complete the modulation detection
147 // 8 ticks (on average) until the result is stored in to_arm
148 // + the delays in transferring data - which is the same for
149 // sniffing reader and tag data and therefore not relevant
150 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
152 // When the PM acts as sniffer and is receiving reader data, it takes
153 // 2 ticks delay in analogue RF receiver (for the falling edge of the
154 // start bit, which marks the start of the communication)
155 // 3 ticks A/D conversion
156 // 8 ticks on average until the data is stored in to_arm.
157 // + the delays in transferring data - which is the same for
158 // sniffing reader and tag data and therefore not relevant
159 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
161 //variables used for timing purposes:
162 //these are in ssp_clk cycles:
163 static uint32_t NextTransferTime
;
164 static uint32_t LastTimeProxToAirStart
;
165 static uint32_t LastProxToAirDuration
;
169 // CARD TO READER - manchester
170 // Sequence D: 11110000 modulation with subcarrier during first half
171 // Sequence E: 00001111 modulation with subcarrier during second half
172 // Sequence F: 00000000 no modulation with subcarrier
173 // READER TO CARD - miller
174 // Sequence X: 00001100 drop after half a period
175 // Sequence Y: 00000000 no drop
176 // Sequence Z: 11000000 drop at start
184 void iso14a_set_trigger(bool enable
) {
189 void iso14a_set_timeout(uint32_t timeout
) {
190 iso14a_timeout
= timeout
;
191 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
195 static void iso14a_set_ATS_timeout(uint8_t *ats
) {
201 if (ats
[0] > 1) { // there is a format byte T0
202 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
203 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
208 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
209 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
211 iso14a_set_timeout(fwt
/(8*16));
217 //-----------------------------------------------------------------------------
218 // Generate the parity value for a byte sequence
220 //-----------------------------------------------------------------------------
221 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
223 uint16_t paritybit_cnt
= 0;
224 uint16_t paritybyte_cnt
= 0;
225 uint8_t parityBits
= 0;
227 for (uint16_t i
= 0; i
< iLen
; i
++) {
228 // Generate the parity bits
229 parityBits
|= ((oddparity8(pbtCmd
[i
])) << (7-paritybit_cnt
));
230 if (paritybit_cnt
== 7) {
231 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
232 parityBits
= 0; // and advance to next Parity Byte
240 // save remaining parity bits
241 par
[paritybyte_cnt
] = parityBits
;
245 void AppendCrc14443a(uint8_t* data
, int len
)
247 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
250 static void AppendCrc14443b(uint8_t* data
, int len
)
252 ComputeCrc14443(CRC_14443_B
,data
,len
,data
+len
,data
+len
+1);
256 //=============================================================================
257 // ISO 14443 Type A - Miller decoder
258 //=============================================================================
260 // This decoder is used when the PM3 acts as a tag.
261 // The reader will generate "pauses" by temporarily switching of the field.
262 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
263 // The FPGA does a comparison with a threshold and would deliver e.g.:
264 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
265 // The Miller decoder needs to identify the following sequences:
266 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
267 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
268 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
269 // Note 1: the bitstream may start at any time. We therefore need to sync.
270 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
271 //-----------------------------------------------------------------------------
274 // Lookup-Table to decide if 4 raw bits are a modulation.
275 // We accept the following:
276 // 0001 - a 3 tick wide pause
277 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
278 // 0111 - a 2 tick wide pause shifted left
279 // 1001 - a 2 tick wide pause shifted right
280 const bool Mod_Miller_LUT
[] = {
281 false, true, false, true, false, false, false, true,
282 false, true, false, false, false, false, false, false
284 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
285 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
287 static void UartReset()
289 Uart
.state
= STATE_UNSYNCD
;
291 Uart
.len
= 0; // number of decoded data bytes
292 Uart
.parityLen
= 0; // number of decoded parity bytes
293 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
294 Uart
.parityBits
= 0; // holds 8 parity bits
299 static void UartInit(uint8_t *data
, uint8_t *parity
)
302 Uart
.parity
= parity
;
303 Uart
.fourBits
= 0x00000000; // clear the buffer for 4 Bits
307 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
308 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
311 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
313 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
315 Uart
.syncBit
= 9999; // not set
316 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
317 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
318 // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
319 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
320 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
321 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
322 if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 0)) == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
323 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 1)) == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
324 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 2)) == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
325 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 3)) == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
326 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 4)) == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
327 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 5)) == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
328 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 6)) == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
329 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 7)) == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
331 if (Uart
.syncBit
!= 9999) { // found a sync bit
332 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
333 Uart
.startTime
-= Uart
.syncBit
;
334 Uart
.endTime
= Uart
.startTime
;
335 Uart
.state
= STATE_START_OF_COMMUNICATION
;
340 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
341 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
343 } else { // Modulation in first half = Sequence Z = logic "0"
344 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
348 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
349 Uart
.state
= STATE_MILLER_Z
;
350 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
351 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
352 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
353 Uart
.parityBits
<<= 1; // make room for the parity bit
354 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
357 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
358 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
365 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
367 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
368 Uart
.state
= STATE_MILLER_X
;
369 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
370 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
371 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
372 Uart
.parityBits
<<= 1; // make room for the new parity bit
373 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
376 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
377 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
381 } else { // no modulation in both halves - Sequence Y
382 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
383 Uart
.state
= STATE_UNSYNCD
;
384 Uart
.bitCount
--; // last "0" was part of EOC sequence
385 Uart
.shiftReg
<<= 1; // drop it
386 if(Uart
.bitCount
> 0) { // if we decoded some bits
387 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
388 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
389 Uart
.parityBits
<<= 1; // add a (void) parity bit
390 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
391 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
393 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
394 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
395 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
398 return true; // we are finished with decoding the raw data sequence
400 UartReset(); // Nothing received - start over
403 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
405 } else { // a logic "0"
407 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
408 Uart
.state
= STATE_MILLER_Y
;
409 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
410 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
411 Uart
.parityBits
<<= 1; // make room for the parity bit
412 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
415 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
416 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
426 return false; // not finished yet, need more data
431 //=============================================================================
432 // ISO 14443 Type A - Manchester decoder
433 //=============================================================================
435 // This decoder is used when the PM3 acts as a reader.
436 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
437 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
438 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
439 // The Manchester decoder needs to identify the following sequences:
440 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
441 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
442 // 8 ticks unmodulated: Sequence F = end of communication
443 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
444 // Note 1: the bitstream may start at any time. We therefore need to sync.
445 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
448 // Lookup-Table to decide if 4 raw bits are a modulation.
449 // We accept three or four "1" in any position
450 const bool Mod_Manchester_LUT
[] = {
451 false, false, false, false, false, false, false, true,
452 false, false, false, true, false, true, true, true
455 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
456 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
459 static void DemodReset()
461 Demod
.state
= DEMOD_UNSYNCD
;
462 Demod
.len
= 0; // number of decoded data bytes
464 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
465 Demod
.parityBits
= 0; //
466 Demod
.collisionPos
= 0; // Position of collision bit
467 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
473 static void DemodInit(uint8_t *data
, uint8_t *parity
)
476 Demod
.parity
= parity
;
480 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
481 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
484 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
486 if (Demod
.state
== DEMOD_UNSYNCD
) {
488 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
489 if (Demod
.twoBits
== 0x0000) {
495 Demod
.syncBit
= 0xFFFF; // not set
496 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
497 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
498 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
499 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
500 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
501 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
502 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
503 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
504 if (Demod
.syncBit
!= 0xFFFF) {
505 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
506 Demod
.startTime
-= Demod
.syncBit
;
507 Demod
.bitCount
= offset
; // number of decoded data bits
508 Demod
.state
= DEMOD_MANCHESTER_DATA
;
514 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
515 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
516 if (!Demod
.collisionPos
) {
517 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
519 } // modulation in first half only - Sequence D = 1
521 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
522 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
523 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
524 Demod
.parityBits
<<= 1; // make room for the parity bit
525 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
528 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
529 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
530 Demod
.parityBits
= 0;
533 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
534 } else { // no modulation in first half
535 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
537 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
538 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
539 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
540 Demod
.parityBits
<<= 1; // make room for the new parity bit
541 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
544 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
545 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
546 Demod
.parityBits
= 0;
549 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
550 } else { // no modulation in both halves - End of communication
551 if(Demod
.bitCount
> 0) { // there are some remaining data bits
552 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
553 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
554 Demod
.parityBits
<<= 1; // add a (void) parity bit
555 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
556 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
558 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
559 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
560 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
563 return true; // we are finished with decoding the raw data sequence
564 } else { // nothing received. Start over
572 return false; // not finished yet, need more data
575 //=============================================================================
576 // Finally, a `sniffer' for ISO 14443 Type A
577 // Both sides of communication!
578 //=============================================================================
580 //-----------------------------------------------------------------------------
581 // Record the sequence of commands sent by the reader to the tag, with
582 // triggering so that we start recording at the point that the tag is moved
584 //-----------------------------------------------------------------------------
585 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
587 // bit 0 - trigger from first card answer
588 // bit 1 - trigger from first reader 7-bit request
592 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
594 // Allocate memory from BigBuf for some buffers
595 // free all previous allocations first
598 // The command (reader -> tag) that we're receiving.
599 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
600 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
602 // The response (tag -> reader) that we're receiving.
603 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
604 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
606 // The DMA buffer, used to stream samples from the FPGA
607 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
613 uint8_t *data
= dmaBuf
;
614 uint8_t previous_data
= 0;
617 bool TagIsActive
= false;
618 bool ReaderIsActive
= false;
620 // Set up the demodulator for tag -> reader responses.
621 DemodInit(receivedResponse
, receivedResponsePar
);
623 // Set up the demodulator for the reader -> tag commands
624 UartInit(receivedCmd
, receivedCmdPar
);
626 // Setup and start DMA.
627 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
629 // We won't start recording the frames that we acquire until we trigger;
630 // a good trigger condition to get started is probably when we see a
631 // response from the tag.
632 // triggered == false -- to wait first for card
633 bool triggered
= !(param
& 0x03);
635 // And now we loop, receiving samples.
636 for(uint32_t rsamples
= 0; true; ) {
639 DbpString("cancelled by button");
646 int register readBufDataP
= data
- dmaBuf
;
647 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
648 if (readBufDataP
<= dmaBufDataP
){
649 dataLen
= dmaBufDataP
- readBufDataP
;
651 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
653 // test for length of buffer
654 if(dataLen
> maxDataLen
) {
655 maxDataLen
= dataLen
;
656 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
657 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
661 if(dataLen
< 1) continue;
663 // primary buffer was stopped( <-- we lost data!
664 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
665 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
666 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
667 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
669 // secondary buffer sets as primary, secondary buffer was stopped
670 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
671 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
672 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
677 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
679 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
680 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
681 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
684 // check - if there is a short 7bit request from reader
685 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= true;
688 if (!LogTrace(receivedCmd
,
690 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
691 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
695 /* And ready to receive another command. */
697 /* And also reset the demod code, which might have been */
698 /* false-triggered by the commands from the reader. */
702 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
705 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
706 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
707 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
710 if (!LogTrace(receivedResponse
,
712 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
713 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
717 if ((!triggered
) && (param
& 0x01)) triggered
= true;
719 // And ready to receive another response.
721 // And reset the Miller decoder including itS (now outdated) input buffer
722 UartInit(receivedCmd
, receivedCmdPar
);
726 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
730 previous_data
= *data
;
733 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
738 DbpString("COMMAND FINISHED");
741 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
742 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
746 //-----------------------------------------------------------------------------
747 // Prepare tag messages
748 //-----------------------------------------------------------------------------
749 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
753 // Correction bit, might be removed when not needed
758 ToSendStuffBit(1); // 1
764 ToSend
[++ToSendMax
] = SEC_D
;
765 LastProxToAirDuration
= 8 * ToSendMax
- 4;
767 for(uint16_t i
= 0; i
< len
; i
++) {
771 for(uint16_t j
= 0; j
< 8; j
++) {
773 ToSend
[++ToSendMax
] = SEC_D
;
775 ToSend
[++ToSendMax
] = SEC_E
;
780 // Get the parity bit
781 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
782 ToSend
[++ToSendMax
] = SEC_D
;
783 LastProxToAirDuration
= 8 * ToSendMax
- 4;
785 ToSend
[++ToSendMax
] = SEC_E
;
786 LastProxToAirDuration
= 8 * ToSendMax
;
791 ToSend
[++ToSendMax
] = SEC_F
;
793 // Convert from last byte pos to length
798 static void Code4bitAnswerAsTag(uint8_t cmd
)
804 // Correction bit, might be removed when not needed
809 ToSendStuffBit(1); // 1
815 ToSend
[++ToSendMax
] = SEC_D
;
818 for(i
= 0; i
< 4; i
++) {
820 ToSend
[++ToSendMax
] = SEC_D
;
821 LastProxToAirDuration
= 8 * ToSendMax
- 4;
823 ToSend
[++ToSendMax
] = SEC_E
;
824 LastProxToAirDuration
= 8 * ToSendMax
;
830 ToSend
[++ToSendMax
] = SEC_F
;
832 // Convert from last byte pos to length
837 static uint8_t *LastReaderTraceTime
= NULL
;
839 static void EmLogTraceReader(void) {
840 // remember last reader trace start to fix timing info later
841 LastReaderTraceTime
= BigBuf_get_addr() + BigBuf_get_traceLen();
842 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, true);
846 static void FixLastReaderTraceTime(uint32_t tag_StartTime
) {
847 uint32_t reader_EndTime
= Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
;
848 uint32_t reader_StartTime
= Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
;
849 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
850 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
851 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
852 reader_StartTime
= tag_StartTime
- exact_fdt
- reader_modlen
;
853 LastReaderTraceTime
[0] = (reader_StartTime
>> 0) & 0xff;
854 LastReaderTraceTime
[1] = (reader_StartTime
>> 8) & 0xff;
855 LastReaderTraceTime
[2] = (reader_StartTime
>> 16) & 0xff;
856 LastReaderTraceTime
[3] = (reader_StartTime
>> 24) & 0xff;
860 static void EmLogTraceTag(uint8_t *tag_data
, uint16_t tag_len
, uint8_t *tag_Parity
, uint32_t ProxToAirDuration
) {
861 uint32_t tag_StartTime
= LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
;
862 uint32_t tag_EndTime
= (LastTimeProxToAirStart
+ ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
;
863 LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, false);
864 FixLastReaderTraceTime(tag_StartTime
);
868 //-----------------------------------------------------------------------------
869 // Wait for commands from reader
870 // Stop when button is pressed
871 // Or return true when command is captured
872 //-----------------------------------------------------------------------------
873 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
875 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
876 // only, since we are receiving, not transmitting).
877 // Signal field is off with the appropriate LED
879 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
881 // Now run a `software UART' on the stream of incoming samples.
882 UartInit(received
, parity
);
885 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
890 if(BUTTON_PRESS()) return false;
892 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
893 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
894 if(MillerDecoding(b
, 0)) {
904 static int EmSend4bitEx(uint8_t resp
);
905 int EmSend4bit(uint8_t resp
);
906 static int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
907 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
);
908 int EmSendPrecompiledCmd(tag_response_info_t
*response_info
);
911 static bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
912 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
913 // This will need the following byte array for a modulation sequence
914 // 144 data bits (18 * 8)
917 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
918 // 1 just for the case
920 // 166 bytes, since every bit that needs to be send costs us a byte
924 // Prepare the tag modulation bits from the message
925 GetParity(response_info
->response
, response_info
->response_n
, &(response_info
->par
));
926 CodeIso14443aAsTagPar(response_info
->response
,response_info
->response_n
, &(response_info
->par
));
928 // Make sure we do not exceed the free buffer space
929 if (ToSendMax
> max_buffer_size
) {
930 Dbprintf("Out of memory, when modulating bits for tag answer:");
931 Dbhexdump(response_info
->response_n
, response_info
->response
, false);
935 // Copy the byte array, used for this modulation to the buffer position
936 memcpy(response_info
->modulation
, ToSend
, ToSendMax
);
938 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
939 response_info
->modulation_n
= ToSendMax
;
940 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
946 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
947 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
948 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation
949 // -> need 273 bytes buffer
950 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
952 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
, uint8_t **buffer
, size_t *max_buffer_size
) {
954 // Retrieve and store the current buffer index
955 response_info
->modulation
= *buffer
;
957 // Forward the prepare tag modulation function to the inner function
958 if (prepare_tag_modulation(response_info
, *max_buffer_size
)) {
959 // Update the free buffer offset and the remaining buffer size
960 *buffer
+= ToSendMax
;
961 *max_buffer_size
-= ToSendMax
;
968 //-----------------------------------------------------------------------------
969 // Main loop of simulated tag: receive commands from reader, decide what
970 // response to send, and send it.
971 //-----------------------------------------------------------------------------
972 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
976 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
977 uint8_t response1
[2];
980 case 1: { // MIFARE Classic
981 // Says: I am Mifare 1k - original line
986 case 2: { // MIFARE Ultralight
987 // Says: I am a stupid memory tag, no crypto
992 case 3: { // MIFARE DESFire
993 // Says: I am a DESFire tag, ph33r me
998 case 4: { // ISO/IEC 14443-4
999 // Says: I am a javacard (JCOP)
1000 response1
[0] = 0x04;
1001 response1
[1] = 0x00;
1004 case 5: { // MIFARE TNP3XXX
1006 response1
[0] = 0x01;
1007 response1
[1] = 0x0f;
1011 Dbprintf("Error: unkown tagtype (%d)",tagType
);
1016 // The second response contains the (mandatory) first 24 bits of the UID
1017 uint8_t response2
[5] = {0x00};
1019 // Check if the uid uses the (optional) part
1020 uint8_t response2a
[5] = {0x00};
1023 response2
[0] = 0x88;
1024 num_to_bytes(uid_1st
,3,response2
+1);
1025 num_to_bytes(uid_2nd
,4,response2a
);
1026 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
1028 // Configure the ATQA and SAK accordingly
1029 response1
[0] |= 0x40;
1032 num_to_bytes(uid_1st
,4,response2
);
1033 // Configure the ATQA and SAK accordingly
1034 response1
[0] &= 0xBF;
1038 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1039 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
1041 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1042 uint8_t response3
[3] = {0x00};
1044 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
1046 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1047 uint8_t response3a
[3] = {0x00};
1048 response3a
[0] = sak
& 0xFB;
1049 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1051 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1052 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1053 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1054 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1055 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1056 // TC(1) = 0x02: CID supported, NAD not supported
1057 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1059 #define TAG_RESPONSE_COUNT 7
1060 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1061 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1062 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1063 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1064 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1065 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1066 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1067 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1070 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1071 // Such a response is less time critical, so we can prepare them on the fly
1072 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1073 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1074 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1075 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1076 tag_response_info_t dynamic_response_info
= {
1077 .response
= dynamic_response_buffer
,
1079 .modulation
= dynamic_modulation_buffer
,
1083 // We need to listen to the high-frequency, peak-detected path.
1084 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1086 BigBuf_free_keep_EM();
1088 // allocate buffers:
1089 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1090 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1091 uint8_t *free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1092 size_t free_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
1097 // Prepare the responses of the anticollision phase
1098 // there will be not enough time to do this at the moment the reader sends it REQA
1099 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1100 prepare_allocated_tag_modulation(&responses
[i
], &free_buffer_pointer
, &free_buffer_size
);
1105 // To control where we are in the protocol
1109 // Just to allow some checks
1115 tag_response_info_t
* p_response
;
1119 // Clean receive command buffer
1120 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1121 DbpString("Button press");
1127 // Okay, look at the command now.
1129 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1130 p_response
= &responses
[0]; order
= 1;
1131 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1132 p_response
= &responses
[0]; order
= 6;
1133 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1134 p_response
= &responses
[1]; order
= 2;
1135 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1136 p_response
= &responses
[2]; order
= 20;
1137 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1138 p_response
= &responses
[3]; order
= 3;
1139 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1140 p_response
= &responses
[4]; order
= 30;
1141 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1142 EmSendCmdEx(data
+(4*receivedCmd
[1]),16);
1143 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1144 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1146 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1148 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1149 p_response
= &responses
[5]; order
= 7;
1150 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1151 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1152 EmSend4bit(CARD_NACK_NA
);
1155 p_response
= &responses
[6]; order
= 70;
1157 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1158 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1159 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1160 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1162 // Check for ISO 14443A-4 compliant commands, look at left nibble
1163 switch (receivedCmd
[0]) {
1166 case 0x0A: { // IBlock (command)
1167 dynamic_response_info
.response
[0] = receivedCmd
[0];
1168 dynamic_response_info
.response
[1] = 0x00;
1169 dynamic_response_info
.response
[2] = 0x90;
1170 dynamic_response_info
.response
[3] = 0x00;
1171 dynamic_response_info
.response_n
= 4;
1175 case 0x1B: { // Chaining command
1176 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1177 dynamic_response_info
.response_n
= 2;
1182 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1183 dynamic_response_info
.response_n
= 2;
1187 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1188 dynamic_response_info
.response_n
= 2;
1192 case 0xC2: { // Readers sends deselect command
1193 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1194 dynamic_response_info
.response_n
= 2;
1198 // Never seen this command before
1199 Dbprintf("Received unknown command (len=%d):",len
);
1200 Dbhexdump(len
,receivedCmd
,false);
1202 dynamic_response_info
.response_n
= 0;
1206 if (dynamic_response_info
.response_n
> 0) {
1207 // Copy the CID from the reader query
1208 dynamic_response_info
.response
[1] = receivedCmd
[1];
1210 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1211 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1212 dynamic_response_info
.response_n
+= 2;
1214 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1215 Dbprintf("Error preparing tag response");
1218 p_response
= &dynamic_response_info
;
1222 // Count number of wakeups received after a halt
1223 if(order
== 6 && lastorder
== 5) { happened
++; }
1225 // Count number of other messages after a halt
1226 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1228 if(cmdsRecvd
> 999) {
1229 DbpString("1000 commands later...");
1234 if (p_response
!= NULL
) {
1235 EmSendPrecompiledCmd(p_response
);
1239 Dbprintf("Trace Full. Simulation stopped.");
1244 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1246 BigBuf_free_keep_EM();
1250 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1251 // of bits specified in the delay parameter.
1252 static void PrepareDelayedTransfer(uint16_t delay
)
1254 uint8_t bitmask
= 0;
1255 uint8_t bits_to_shift
= 0;
1256 uint8_t bits_shifted
= 0;
1260 for (uint16_t i
= 0; i
< delay
; i
++) {
1261 bitmask
|= (0x01 << i
);
1263 ToSend
[ToSendMax
++] = 0x00;
1264 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1265 bits_to_shift
= ToSend
[i
] & bitmask
;
1266 ToSend
[i
] = ToSend
[i
] >> delay
;
1267 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1268 bits_shifted
= bits_to_shift
;
1274 //-------------------------------------------------------------------------------------
1275 // Transmit the command (to the tag) that was placed in ToSend[].
1276 // Parameter timing:
1277 // if NULL: transfer at next possible time, taking into account
1278 // request guard time and frame delay time
1279 // if == 0: transfer immediately and return time of transfer
1280 // if != 0: delay transfer until time specified
1281 //-------------------------------------------------------------------------------------
1282 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1285 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1287 uint32_t ThisTransferTime
= 0;
1290 if(*timing
== 0) { // Measure time
1291 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1293 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1295 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1296 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1297 LastTimeProxToAirStart
= *timing
;
1299 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1300 while(GetCountSspClk() < ThisTransferTime
);
1301 LastTimeProxToAirStart
= ThisTransferTime
;
1305 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1309 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1310 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1318 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1322 //-----------------------------------------------------------------------------
1323 // Prepare reader command (in bits, support short frames) to send to FPGA
1324 //-----------------------------------------------------------------------------
1325 static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1333 // Start of Communication (Seq. Z)
1334 ToSend
[++ToSendMax
] = SEC_Z
;
1335 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1338 size_t bytecount
= nbytes(bits
);
1339 // Generate send structure for the data bits
1340 for (i
= 0; i
< bytecount
; i
++) {
1341 // Get the current byte to send
1343 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1345 for (j
= 0; j
< bitsleft
; j
++) {
1348 ToSend
[++ToSendMax
] = SEC_X
;
1349 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1354 ToSend
[++ToSendMax
] = SEC_Z
;
1355 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1358 ToSend
[++ToSendMax
] = SEC_Y
;
1365 // Only transmit parity bit if we transmitted a complete byte
1366 if (j
== 8 && parity
!= NULL
) {
1367 // Get the parity bit
1368 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1370 ToSend
[++ToSendMax
] = SEC_X
;
1371 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1376 ToSend
[++ToSendMax
] = SEC_Z
;
1377 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1380 ToSend
[++ToSendMax
] = SEC_Y
;
1387 // End of Communication: Logic 0 followed by Sequence Y
1390 ToSend
[++ToSendMax
] = SEC_Z
;
1391 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1394 ToSend
[++ToSendMax
] = SEC_Y
;
1397 ToSend
[++ToSendMax
] = SEC_Y
;
1399 // Convert to length of command:
1404 //-----------------------------------------------------------------------------
1405 // Wait for commands from reader
1406 // Stop when button is pressed (return 1) or field was gone (return 2)
1407 // Or return 0 when command is captured
1408 //-----------------------------------------------------------------------------
1409 int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1413 uint32_t timer
= 0, vtime
= 0;
1417 // Set ADC to read field strength
1418 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1419 AT91C_BASE_ADC
->ADC_MR
=
1420 ADC_MODE_PRESCALE(63) |
1421 ADC_MODE_STARTUP_TIME(1) |
1422 ADC_MODE_SAMPLE_HOLD_TIME(15);
1423 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1425 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1427 // Run a 'software UART' on the stream of incoming samples.
1428 UartInit(received
, parity
);
1430 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
1432 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1433 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1434 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1436 } while (GetCountSspClk() < LastTimeProxToAirStart
+ LastProxToAirDuration
+ (FpgaSendQueueDelay
>>3));
1438 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1439 // only, since we are receiving, not transmitting).
1440 // Signal field is off with the appropriate LED
1442 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1447 if (BUTTON_PRESS()) return 1;
1449 // test if the field exists
1450 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1452 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1453 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1454 if (analogCnt
>= 32) {
1455 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1456 vtime
= GetTickCount();
1457 if (!timer
) timer
= vtime
;
1458 // 50ms no field --> card to idle state
1459 if (vtime
- timer
> 50) return 2;
1461 if (timer
) timer
= 0;
1467 // receive and test the miller decoding
1468 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1469 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1470 if(MillerDecoding(b
, 0)) {
1481 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
)
1485 bool correctionNeeded
;
1487 // Modulate Manchester
1488 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1490 // include correction bit if necessary
1491 if (Uart
.bitCount
== 7)
1493 // Short tags (7 bits) don't have parity, determine the correct value from MSB
1494 correctionNeeded
= Uart
.output
[0] & 0x40;
1498 // Look at the last parity bit
1499 correctionNeeded
= Uart
.parity
[(Uart
.len
-1)/8] & (0x80 >> ((Uart
.len
-1) & 7));
1502 if(correctionNeeded
) {
1503 // 1236, so correction bit needed
1509 // clear receiving shift register and holding register
1510 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1511 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1512 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1513 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1515 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1516 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1517 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1518 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1521 LastTimeProxToAirStart
= (GetCountSspClk() & 0xfffffff8) + (correctionNeeded
?8:0);
1524 for(; i
< respLen
; ) {
1525 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1526 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1527 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1530 if(BUTTON_PRESS()) {
1539 static int EmSend4bitEx(uint8_t resp
){
1540 Code4bitAnswerAsTag(resp
);
1541 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
);
1542 // do the tracing for the previous reader request and this tag answer:
1543 EmLogTraceTag(&resp
, 1, NULL
, LastProxToAirDuration
);
1548 int EmSend4bit(uint8_t resp
){
1549 return EmSend4bitEx(resp
);
1553 static int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1554 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1555 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
);
1556 // do the tracing for the previous reader request and this tag answer:
1557 EmLogTraceTag(resp
, respLen
, par
, LastProxToAirDuration
);
1562 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
){
1563 uint8_t par
[MAX_PARITY_SIZE
];
1564 GetParity(resp
, respLen
, par
);
1565 return EmSendCmdExPar(resp
, respLen
, par
);
1569 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1570 uint8_t par
[MAX_PARITY_SIZE
];
1571 GetParity(resp
, respLen
, par
);
1572 return EmSendCmdExPar(resp
, respLen
, par
);
1576 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1577 return EmSendCmdExPar(resp
, respLen
, par
);
1581 int EmSendPrecompiledCmd(tag_response_info_t
*response_info
) {
1582 int ret
= EmSendCmd14443aRaw(response_info
->modulation
, response_info
->modulation_n
);
1583 // do the tracing for the previous reader request and this tag answer:
1584 EmLogTraceTag(response_info
->response
, response_info
->response_n
, &(response_info
->par
), response_info
->ProxToAirDuration
);
1589 //-----------------------------------------------------------------------------
1590 // Wait a certain time for tag response
1591 // If a response is captured return true
1592 // If it takes too long return false
1593 //-----------------------------------------------------------------------------
1594 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1598 // Set FPGA mode to "reader listen mode", no modulation (listen
1599 // only, since we are receiving, not transmitting).
1600 // Signal field is on with the appropriate LED
1602 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1604 // Now get the answer from the card
1605 DemodInit(receivedResponse
, receivedResponsePar
);
1608 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1614 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1615 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1616 if(ManchesterDecoding(b
, offset
, 0)) {
1617 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1619 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1627 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1629 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1631 // Send command to tag
1632 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1636 // Log reader command in trace buffer
1638 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, true);
1643 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1645 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1649 static void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1651 // Generate parity and redirect
1652 uint8_t par
[MAX_PARITY_SIZE
];
1653 GetParity(frame
, len
/8, par
);
1654 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1658 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1660 // Generate parity and redirect
1661 uint8_t par
[MAX_PARITY_SIZE
];
1662 GetParity(frame
, len
, par
);
1663 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1667 static int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1669 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return false;
1671 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, false);
1677 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1679 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return false;
1681 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, false);
1686 // performs iso14443a anticollision (optional) and card select procedure
1687 // fills the uid and cuid pointer unless NULL
1688 // fills the card info record unless NULL
1689 // if anticollision is false, then the UID must be provided in uid_ptr[]
1690 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1691 // requests ATS unless no_rats is true
1692 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
, bool anticollision
, uint8_t num_cascades
, bool no_rats
) {
1693 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1694 uint8_t sel_all
[] = { 0x93,0x20 };
1695 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1696 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1697 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1698 uint8_t resp_par
[MAX_PARITY_SIZE
];
1700 size_t uid_resp_len
;
1702 uint8_t sak
= 0x04; // cascade uid
1703 int cascade_level
= 0;
1708 p_hi14a_card
->uidlen
= 0;
1709 memset(p_hi14a_card
->uid
, 0, 10);
1710 p_hi14a_card
->ats_len
= 0;
1713 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1714 ReaderTransmitBitsPar(wupa
, 7, NULL
, NULL
);
1717 if(!ReaderReceive(resp
, resp_par
)) return 0;
1720 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1723 if (anticollision
) {
1726 memset(uid_ptr
,0,10);
1730 // check for proprietary anticollision:
1731 if ((resp
[0] & 0x1F) == 0) {
1735 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1736 // which case we need to make a cascade 2 request and select - this is a long UID
1737 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1738 for(; sak
& 0x04; cascade_level
++) {
1739 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1740 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1742 if (anticollision
) {
1744 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1745 if (!ReaderReceive(resp
, resp_par
)) return 0;
1747 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1748 memset(uid_resp
, 0, 4);
1749 uint16_t uid_resp_bits
= 0;
1750 uint16_t collision_answer_offset
= 0;
1751 // anti-collision-loop:
1752 while (Demod
.collisionPos
) {
1753 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1754 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1755 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1756 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1758 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1760 // construct anticollosion command:
1761 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1762 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1763 sel_uid
[2+i
] = uid_resp
[i
];
1765 collision_answer_offset
= uid_resp_bits
%8;
1766 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1767 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1769 // finally, add the last bits and BCC of the UID
1770 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1771 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1772 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1775 } else { // no collision, use the response to SELECT_ALL as current uid
1776 memcpy(uid_resp
, resp
, 4);
1779 if (cascade_level
< num_cascades
- 1) {
1781 memcpy(uid_resp
+1, uid_ptr
+cascade_level
*3, 3);
1783 memcpy(uid_resp
, uid_ptr
+cascade_level
*3, 4);
1788 // calculate crypto UID. Always use last 4 Bytes.
1790 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1793 // Construct SELECT UID command
1794 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1795 memcpy(sel_uid
+2, uid_resp
, 4); // the UID received during anticollision, or the provided UID
1796 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1797 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1798 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1801 if (!ReaderReceive(resp
, resp_par
)) return 0;
1804 // Test if more parts of the uid are coming
1805 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1806 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1807 // http://www.nxp.com/documents/application_note/AN10927.pdf
1808 uid_resp
[0] = uid_resp
[1];
1809 uid_resp
[1] = uid_resp
[2];
1810 uid_resp
[2] = uid_resp
[3];
1814 if(uid_ptr
&& anticollision
) {
1815 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1819 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1820 p_hi14a_card
->uidlen
+= uid_resp_len
;
1825 p_hi14a_card
->sak
= sak
;
1828 // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0)
1829 if( (sak
& 0x20) == 0) return 2;
1832 // Request for answer to select
1833 AppendCrc14443a(rats
, 2);
1834 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1836 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1839 memcpy(p_hi14a_card
->ats
, resp
, len
);
1840 p_hi14a_card
->ats_len
= len
;
1843 // reset the PCB block number
1844 iso14_pcb_blocknum
= 0;
1846 // set default timeout based on ATS
1847 iso14a_set_ATS_timeout(resp
);
1853 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1854 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1855 // Set up the synchronous serial port
1857 // connect Demodulated Signal to ADC:
1858 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1860 // Signal field is on with the appropriate LED
1861 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1862 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1867 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1874 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1875 iso14a_set_timeout(1060); // 10ms default
1879 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1880 uint8_t parity
[MAX_PARITY_SIZE
];
1881 uint8_t real_cmd
[cmd_len
+ 4];
1883 // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
1884 real_cmd
[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00)
1885 // put block number into the PCB
1886 real_cmd
[0] |= iso14_pcb_blocknum
;
1887 memcpy(real_cmd
+ 1, cmd
, cmd_len
);
1888 AppendCrc14443a(real_cmd
, cmd_len
+ 1);
1890 ReaderTransmit(real_cmd
, cmd_len
+ 3, NULL
);
1892 size_t len
= ReaderReceive(data
, parity
);
1893 uint8_t *data_bytes
= (uint8_t *) data
;
1896 return 0; //DATA LINK ERROR
1898 // if we received an I- or R(ACK)-Block with a block number equal to the
1899 // current block number, toggle the current block number
1901 if (len
>= 3 // PCB+CRC = 3 bytes
1902 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1903 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1904 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1906 iso14_pcb_blocknum
^= 1;
1910 if (len
>=3 && !CheckCrc14443(CRC_14443_A
, data_bytes
, len
)) {
1918 // memmove(data_bytes, data_bytes + 1, len);
1919 for (int i
= 0; i
< len
; i
++)
1920 data_bytes
[i
] = data_bytes
[i
+ 1];
1926 //-----------------------------------------------------------------------------
1927 // Read an ISO 14443a tag. Send out commands and store answers.
1929 //-----------------------------------------------------------------------------
1930 void ReaderIso14443a(UsbCommand
*c
)
1932 iso14a_command_t param
= c
->arg
[0];
1933 uint8_t *cmd
= c
->d
.asBytes
;
1934 size_t len
= c
->arg
[1] & 0xffff;
1935 size_t lenbits
= c
->arg
[1] >> 16;
1936 uint32_t timeout
= c
->arg
[2];
1938 byte_t buf
[USB_CMD_DATA_SIZE
] = {0};
1939 uint8_t par
[MAX_PARITY_SIZE
];
1940 bool cantSELECT
= false;
1944 if(param
& ISO14A_CLEAR_TRACE
) {
1948 if(param
& ISO14A_REQUEST_TRIGGER
) {
1949 iso14a_set_trigger(true);
1952 if(param
& ISO14A_CONNECT
) {
1954 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1955 if(!(param
& ISO14A_NO_SELECT
)) {
1956 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1957 arg0
= iso14443a_select_card(NULL
, card
, NULL
, true, 0, param
& ISO14A_NO_RATS
);
1959 // if we cant select then we cant send data
1960 if (arg0
!= 1 && arg0
!= 2) {
1961 // 1 - all is OK with ATS, 2 - without ATS
1966 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1971 if(param
& ISO14A_SET_TIMEOUT
) {
1972 iso14a_set_timeout(timeout
);
1975 if(param
& ISO14A_APDU
&& !cantSELECT
) {
1976 arg0
= iso14_apdu(cmd
, len
, buf
);
1978 cmd_send(CMD_ACK
, arg0
, 0, 0, buf
, sizeof(buf
));
1982 if(param
& ISO14A_RAW
&& !cantSELECT
) {
1983 if(param
& ISO14A_APPEND_CRC
) {
1984 if(param
& ISO14A_TOPAZMODE
) {
1985 AppendCrc14443b(cmd
,len
);
1987 AppendCrc14443a(cmd
,len
);
1990 if (lenbits
) lenbits
+= 16;
1992 if(lenbits
>0) { // want to send a specific number of bits (e.g. short commands)
1993 if(param
& ISO14A_TOPAZMODE
) {
1994 int bits_to_send
= lenbits
;
1996 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 7), NULL
, NULL
); // first byte is always short (7bits) and no parity
1998 while (bits_to_send
> 0) {
1999 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 8), NULL
, NULL
); // following bytes are 8 bit and no parity
2003 GetParity(cmd
, lenbits
/8, par
);
2004 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
); // bytes are 8 bit with odd parity
2006 } else { // want to send complete bytes only
2007 if(param
& ISO14A_TOPAZMODE
) {
2009 ReaderTransmitBitsPar(&cmd
[i
++], 7, NULL
, NULL
); // first byte: 7 bits, no paritiy
2011 ReaderTransmitBitsPar(&cmd
[i
++], 8, NULL
, NULL
); // following bytes: 8 bits, no paritiy
2014 ReaderTransmit(cmd
,len
, NULL
); // 8 bits, odd parity
2017 arg0
= ReaderReceive(buf
, par
);
2020 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2024 if(param
& ISO14A_REQUEST_TRIGGER
) {
2025 iso14a_set_trigger(false);
2028 if(param
& ISO14A_NO_DISCONNECT
) {
2032 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2037 // Determine the distance between two nonces.
2038 // Assume that the difference is small, but we don't know which is first.
2039 // Therefore try in alternating directions.
2040 static int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
2043 uint32_t nttmp1
, nttmp2
;
2045 if (nt1
== nt2
) return 0;
2050 for (i
= 1; i
< 32768; i
++) {
2051 nttmp1
= prng_successor(nttmp1
, 1);
2052 if (nttmp1
== nt2
) return i
;
2053 nttmp2
= prng_successor(nttmp2
, 1);
2054 if (nttmp2
== nt1
) return -i
;
2057 return(-99999); // either nt1 or nt2 are invalid nonces
2061 //-----------------------------------------------------------------------------
2062 // Recover several bits of the cypher stream. This implements (first stages of)
2063 // the algorithm described in "The Dark Side of Security by Obscurity and
2064 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2065 // (article by Nicolas T. Courtois, 2009)
2066 //-----------------------------------------------------------------------------
2067 void ReaderMifare(bool first_try
)
2070 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
2071 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2072 static uint8_t mf_nr_ar3
;
2074 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
];
2075 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
];
2078 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2081 // free eventually allocated BigBuf memory. We want all for tracing.
2088 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2089 static byte_t par_low
= 0;
2091 uint8_t uid
[10] ={0};
2095 uint32_t previous_nt
= 0;
2096 static uint32_t nt_attacked
= 0;
2097 byte_t par_list
[8] = {0x00};
2098 byte_t ks_list
[8] = {0x00};
2100 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2101 static uint32_t sync_time
;
2102 static int32_t sync_cycles
;
2103 int catch_up_cycles
= 0;
2104 int last_catch_up
= 0;
2105 uint16_t elapsed_prng_sequences
;
2106 uint16_t consecutive_resyncs
= 0;
2111 sync_time
= GetCountSspClk() & 0xfffffff8;
2112 sync_cycles
= PRNG_SEQUENCE_LENGTH
; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
2117 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2119 mf_nr_ar
[3] = mf_nr_ar3
;
2128 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2129 #define MAX_SYNC_TRIES 32
2130 #define NUM_DEBUG_INFOS 8 // per strategy
2131 #define MAX_STRATEGY 3
2132 uint16_t unexpected_random
= 0;
2133 uint16_t sync_tries
= 0;
2134 int16_t debug_info_nr
= -1;
2135 uint16_t strategy
= 0;
2136 int32_t debug_info
[MAX_STRATEGY
][NUM_DEBUG_INFOS
];
2137 uint32_t select_time
;
2140 for(uint16_t i
= 0; true; i
++) {
2145 // Test if the action was cancelled
2146 if(BUTTON_PRESS()) {
2151 if (strategy
== 2) {
2152 // test with additional hlt command
2154 int len
= mifare_sendcmd_short(NULL
, false, 0x50, 0x00, receivedAnswer
, receivedAnswerPar
, &halt_time
);
2155 if (len
&& MF_DBGLEVEL
>= 3) {
2156 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len
);
2160 if (strategy
== 3) {
2161 // test with FPGA power off/on
2162 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2164 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2168 if(!iso14443a_select_card(uid
, NULL
, &cuid
, true, 0, true)) {
2169 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2172 select_time
= GetCountSspClk();
2174 elapsed_prng_sequences
= 1;
2175 if (debug_info_nr
== -1) {
2176 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2177 catch_up_cycles
= 0;
2179 // if we missed the sync time already, advance to the next nonce repeat
2180 while(GetCountSspClk() > sync_time
) {
2181 elapsed_prng_sequences
++;
2182 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2185 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2186 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2188 // collect some information on tag nonces for debugging:
2189 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2190 if (strategy
== 0) {
2191 // nonce distances at fixed time after card select:
2192 sync_time
= select_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2193 } else if (strategy
== 1) {
2194 // nonce distances at fixed time between authentications:
2195 sync_time
= sync_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2196 } else if (strategy
== 2) {
2197 // nonce distances at fixed time after halt:
2198 sync_time
= halt_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2200 // nonce_distances at fixed time after power on
2201 sync_time
= DEBUG_FIXED_SYNC_CYCLES
;
2203 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2206 // Receive the (4 Byte) "random" nonce
2207 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2208 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2213 nt
= bytes_to_num(receivedAnswer
, 4);
2215 // Transmit reader nonce with fake par
2216 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2218 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2219 int nt_distance
= dist_nt(previous_nt
, nt
);
2220 if (nt_distance
== 0) {
2223 if (nt_distance
== -99999) { // invalid nonce received
2224 unexpected_random
++;
2225 if (unexpected_random
> MAX_UNEXPECTED_RANDOM
) {
2226 isOK
= -3; // Card has an unpredictable PRNG. Give up
2229 continue; // continue trying...
2232 if (++sync_tries
> MAX_SYNC_TRIES
) {
2233 if (strategy
> MAX_STRATEGY
|| MF_DBGLEVEL
< 3) {
2234 isOK
= -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2236 } else { // continue for a while, just to collect some debug info
2237 debug_info
[strategy
][debug_info_nr
] = nt_distance
;
2239 if (debug_info_nr
== NUM_DEBUG_INFOS
) {
2246 sync_cycles
= (sync_cycles
- nt_distance
/elapsed_prng_sequences
);
2247 if (sync_cycles
<= 0) {
2248 sync_cycles
+= PRNG_SEQUENCE_LENGTH
;
2250 if (MF_DBGLEVEL
>= 3) {
2251 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i
, nt_distance
, elapsed_prng_sequences
, sync_cycles
);
2257 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2258 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2259 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2260 catch_up_cycles
= 0;
2263 catch_up_cycles
/= elapsed_prng_sequences
;
2264 if (catch_up_cycles
== last_catch_up
) {
2265 consecutive_resyncs
++;
2268 last_catch_up
= catch_up_cycles
;
2269 consecutive_resyncs
= 0;
2271 if (consecutive_resyncs
< 3) {
2272 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2275 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2276 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2278 catch_up_cycles
= 0;
2279 consecutive_resyncs
= 0;
2284 consecutive_resyncs
= 0;
2286 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2287 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2288 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2291 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2295 if(led_on
) LED_B_ON(); else LED_B_OFF();
2297 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2298 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2300 // Test if the information is complete
2301 if (nt_diff
== 0x07) {
2306 nt_diff
= (nt_diff
+ 1) & 0x07;
2307 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2310 if (nt_diff
== 0 && first_try
)
2313 if (par
[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2318 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2324 mf_nr_ar
[3] &= 0x1F;
2327 if (MF_DBGLEVEL
>= 3) {
2328 for (uint16_t i
= 0; i
<= MAX_STRATEGY
; i
++) {
2329 for(uint16_t j
= 0; j
< NUM_DEBUG_INFOS
; j
++) {
2330 Dbprintf("collected debug info[%d][%d] = %d", i
, j
, debug_info
[i
][j
]);
2337 memcpy(buf
+ 0, uid
, 4);
2338 num_to_bytes(nt
, 4, buf
+ 4);
2339 memcpy(buf
+ 8, par_list
, 8);
2340 memcpy(buf
+ 16, ks_list
, 8);
2341 memcpy(buf
+ 24, mf_nr_ar
, 4);
2343 cmd_send(CMD_ACK
, isOK
, 0, 0, buf
, 28);
2346 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2353 //-----------------------------------------------------------------------------
2356 //-----------------------------------------------------------------------------
2357 void RAMFUNC
SniffMifare(uint8_t param
) {
2359 // bit 0 - trigger from first card answer
2360 // bit 1 - trigger from first reader 7-bit request
2362 // C(red) A(yellow) B(green)
2364 // init trace buffer
2368 // The command (reader -> tag) that we're receiving.
2369 // The length of a received command will in most cases be no more than 18 bytes.
2370 // So 32 should be enough!
2371 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2372 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
2373 // The response (tag -> reader) that we're receiving.
2374 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
2375 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
2377 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2379 // free eventually allocated BigBuf memory
2381 // allocate the DMA buffer, used to stream samples from the FPGA
2382 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
2383 uint8_t *data
= dmaBuf
;
2384 uint8_t previous_data
= 0;
2387 bool ReaderIsActive
= false;
2388 bool TagIsActive
= false;
2390 // Set up the demodulator for tag -> reader responses.
2391 DemodInit(receivedResponse
, receivedResponsePar
);
2393 // Set up the demodulator for the reader -> tag commands
2394 UartInit(receivedCmd
, receivedCmdPar
);
2396 // Setup for the DMA.
2397 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2404 // And now we loop, receiving samples.
2405 for(uint32_t sniffCounter
= 0; true; ) {
2407 if(BUTTON_PRESS()) {
2408 DbpString("cancelled by button");
2415 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2416 // check if a transaction is completed (timeout after 2000ms).
2417 // if yes, stop the DMA transfer and send what we have so far to the client
2418 if (MfSniffSend(2000)) {
2419 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2423 ReaderIsActive
= false;
2424 TagIsActive
= false;
2425 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2429 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2430 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2431 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2432 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2434 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2436 // test for length of buffer
2437 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2438 maxDataLen
= dataLen
;
2439 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
2440 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2444 if(dataLen
< 1) continue;
2446 // primary buffer was stopped ( <-- we lost data!
2447 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2448 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2449 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2450 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2452 // secondary buffer sets as primary, secondary buffer was stopped
2453 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2454 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2455 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2460 if (sniffCounter
& 0x01) {
2462 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2463 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2464 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2466 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, true)) break;
2468 /* And ready to receive another command. */
2469 UartInit(receivedCmd
, receivedCmdPar
);
2471 /* And also reset the demod code */
2474 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2477 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2478 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2479 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2482 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, false)) break;
2484 // And ready to receive another response.
2486 // And reset the Miller decoder including its (now outdated) input buffer
2487 UartInit(receivedCmd
, receivedCmdPar
);
2489 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2493 previous_data
= *data
;
2496 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2502 DbpString("COMMAND FINISHED");
2504 FpgaDisableSscDma();
2507 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);