]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
Implemented parameter passing into script, added a minimal getop-parser, added an...
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17
18 void AcquireRawAdcSamples125k(int at134khz)
19 {
20 if (at134khz)
21 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
22 else
23 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
24
25 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
26
27 // Connect the A/D to the peak-detected low-frequency path.
28 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
29
30 // Give it a bit of time for the resonant antenna to settle.
31 SpinDelay(50);
32
33 // Now set up the SSC to get the ADC samples that are now streaming at us.
34 FpgaSetupSsc();
35
36 // Now call the acquisition routine
37 DoAcquisition125k();
38 }
39
40 // split into two routines so we can avoid timing issues after sending commands //
41 void DoAcquisition125k(void)
42 {
43 uint8_t *dest = (uint8_t *)BigBuf;
44 int n = sizeof(BigBuf);
45 int i;
46
47 memset(dest, 0, n);
48 i = 0;
49 for(;;) {
50 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
51 AT91C_BASE_SSC->SSC_THR = 0x43;
52 LED_D_ON();
53 }
54 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
55 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
56 i++;
57 LED_D_OFF();
58 if (i >= n) break;
59 }
60 }
61 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
62 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
63 }
64
65 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
66 {
67 int at134khz;
68
69 /* Make sure the tag is reset */
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
71 SpinDelay(2500);
72
73 // see if 'h' was specified
74 if (command[strlen((char *) command) - 1] == 'h')
75 at134khz = TRUE;
76 else
77 at134khz = FALSE;
78
79 if (at134khz)
80 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
81 else
82 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
83
84 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
85
86 // Give it a bit of time for the resonant antenna to settle.
87 SpinDelay(50);
88 // And a little more time for the tag to fully power up
89 SpinDelay(2000);
90
91 // Now set up the SSC to get the ADC samples that are now streaming at us.
92 FpgaSetupSsc();
93
94 // now modulate the reader field
95 while(*command != '\0' && *command != ' ') {
96 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
97 LED_D_OFF();
98 SpinDelayUs(delay_off);
99 if (at134khz)
100 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
101 else
102 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
103
104 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
105 LED_D_ON();
106 if(*(command++) == '0')
107 SpinDelayUs(period_0);
108 else
109 SpinDelayUs(period_1);
110 }
111 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
112 LED_D_OFF();
113 SpinDelayUs(delay_off);
114 if (at134khz)
115 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
116 else
117 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
118
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
120
121 // now do the read
122 DoAcquisition125k();
123 }
124
125 /* blank r/w tag data stream
126 ...0000000000000000 01111111
127 1010101010101010101010101010101010101010101010101010101010101010
128 0011010010100001
129 01111111
130 101010101010101[0]000...
131
132 [5555fe852c5555555555555555fe0000]
133 */
134 void ReadTItag(void)
135 {
136 // some hardcoded initial params
137 // when we read a TI tag we sample the zerocross line at 2Mhz
138 // TI tags modulate a 1 as 16 cycles of 123.2Khz
139 // TI tags modulate a 0 as 16 cycles of 134.2Khz
140 #define FSAMPLE 2000000
141 #define FREQLO 123200
142 #define FREQHI 134200
143
144 signed char *dest = (signed char *)BigBuf;
145 int n = sizeof(BigBuf);
146 // int *dest = GraphBuffer;
147 // int n = GraphTraceLen;
148
149 // 128 bit shift register [shift3:shift2:shift1:shift0]
150 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
151
152 int i, cycles=0, samples=0;
153 // how many sample points fit in 16 cycles of each frequency
154 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
155 // when to tell if we're close enough to one freq or another
156 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
157
158 // TI tags charge at 134.2Khz
159 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
160
161 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
162 // connects to SSP_DIN and the SSP_DOUT logic level controls
163 // whether we're modulating the antenna (high)
164 // or listening to the antenna (low)
165 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
166
167 // get TI tag data into the buffer
168 AcquireTiType();
169
170 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
171
172 for (i=0; i<n-1; i++) {
173 // count cycles by looking for lo to hi zero crossings
174 if ( (dest[i]<0) && (dest[i+1]>0) ) {
175 cycles++;
176 // after 16 cycles, measure the frequency
177 if (cycles>15) {
178 cycles=0;
179 samples=i-samples; // number of samples in these 16 cycles
180
181 // TI bits are coming to us lsb first so shift them
182 // right through our 128 bit right shift register
183 shift0 = (shift0>>1) | (shift1 << 31);
184 shift1 = (shift1>>1) | (shift2 << 31);
185 shift2 = (shift2>>1) | (shift3 << 31);
186 shift3 >>= 1;
187
188 // check if the cycles fall close to the number
189 // expected for either the low or high frequency
190 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
191 // low frequency represents a 1
192 shift3 |= (1<<31);
193 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
194 // high frequency represents a 0
195 } else {
196 // probably detected a gay waveform or noise
197 // use this as gaydar or discard shift register and start again
198 shift3 = shift2 = shift1 = shift0 = 0;
199 }
200 samples = i;
201
202 // for each bit we receive, test if we've detected a valid tag
203
204 // if we see 17 zeroes followed by 6 ones, we might have a tag
205 // remember the bits are backwards
206 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
207 // if start and end bytes match, we have a tag so break out of the loop
208 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
209 cycles = 0xF0B; //use this as a flag (ugly but whatever)
210 break;
211 }
212 }
213 }
214 }
215 }
216
217 // if flag is set we have a tag
218 if (cycles!=0xF0B) {
219 DbpString("Info: No valid tag detected.");
220 } else {
221 // put 64 bit data into shift1 and shift0
222 shift0 = (shift0>>24) | (shift1 << 8);
223 shift1 = (shift1>>24) | (shift2 << 8);
224
225 // align 16 bit crc into lower half of shift2
226 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
227
228 // if r/w tag, check ident match
229 if ( shift3&(1<<15) ) {
230 DbpString("Info: TI tag is rewriteable");
231 // only 15 bits compare, last bit of ident is not valid
232 if ( ((shift3>>16)^shift0)&0x7fff ) {
233 DbpString("Error: Ident mismatch!");
234 } else {
235 DbpString("Info: TI tag ident is valid");
236 }
237 } else {
238 DbpString("Info: TI tag is readonly");
239 }
240
241 // WARNING the order of the bytes in which we calc crc below needs checking
242 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
243 // bytes in reverse or something
244 // calculate CRC
245 uint32_t crc=0;
246
247 crc = update_crc16(crc, (shift0)&0xff);
248 crc = update_crc16(crc, (shift0>>8)&0xff);
249 crc = update_crc16(crc, (shift0>>16)&0xff);
250 crc = update_crc16(crc, (shift0>>24)&0xff);
251 crc = update_crc16(crc, (shift1)&0xff);
252 crc = update_crc16(crc, (shift1>>8)&0xff);
253 crc = update_crc16(crc, (shift1>>16)&0xff);
254 crc = update_crc16(crc, (shift1>>24)&0xff);
255
256 Dbprintf("Info: Tag data: %x%08x, crc=%x",
257 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
258 if (crc != (shift2&0xffff)) {
259 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
260 } else {
261 DbpString("Info: CRC is good");
262 }
263 }
264 }
265
266 void WriteTIbyte(uint8_t b)
267 {
268 int i = 0;
269
270 // modulate 8 bits out to the antenna
271 for (i=0; i<8; i++)
272 {
273 if (b&(1<<i)) {
274 // stop modulating antenna
275 LOW(GPIO_SSC_DOUT);
276 SpinDelayUs(1000);
277 // modulate antenna
278 HIGH(GPIO_SSC_DOUT);
279 SpinDelayUs(1000);
280 } else {
281 // stop modulating antenna
282 LOW(GPIO_SSC_DOUT);
283 SpinDelayUs(300);
284 // modulate antenna
285 HIGH(GPIO_SSC_DOUT);
286 SpinDelayUs(1700);
287 }
288 }
289 }
290
291 void AcquireTiType(void)
292 {
293 int i, j, n;
294 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
295 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
296 #define TIBUFLEN 1250
297
298 // clear buffer
299 memset(BigBuf,0,sizeof(BigBuf));
300
301 // Set up the synchronous serial port
302 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
303 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
304
305 // steal this pin from the SSP and use it to control the modulation
306 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
307 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
308
309 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
310 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
311
312 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
313 // 48/2 = 24 MHz clock must be divided by 12
314 AT91C_BASE_SSC->SSC_CMR = 12;
315
316 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
317 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
318 AT91C_BASE_SSC->SSC_TCMR = 0;
319 AT91C_BASE_SSC->SSC_TFMR = 0;
320
321 LED_D_ON();
322
323 // modulate antenna
324 HIGH(GPIO_SSC_DOUT);
325
326 // Charge TI tag for 50ms.
327 SpinDelay(50);
328
329 // stop modulating antenna and listen
330 LOW(GPIO_SSC_DOUT);
331
332 LED_D_OFF();
333
334 i = 0;
335 for(;;) {
336 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
337 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
338 i++; if(i >= TIBUFLEN) break;
339 }
340 WDT_HIT();
341 }
342
343 // return stolen pin to SSP
344 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
345 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
346
347 char *dest = (char *)BigBuf;
348 n = TIBUFLEN*32;
349 // unpack buffer
350 for (i=TIBUFLEN-1; i>=0; i--) {
351 for (j=0; j<32; j++) {
352 if(BigBuf[i] & (1 << j)) {
353 dest[--n] = 1;
354 } else {
355 dest[--n] = -1;
356 }
357 }
358 }
359 }
360
361 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
362 // if crc provided, it will be written with the data verbatim (even if bogus)
363 // if not provided a valid crc will be computed from the data and written.
364 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
365 {
366 if(crc == 0) {
367 crc = update_crc16(crc, (idlo)&0xff);
368 crc = update_crc16(crc, (idlo>>8)&0xff);
369 crc = update_crc16(crc, (idlo>>16)&0xff);
370 crc = update_crc16(crc, (idlo>>24)&0xff);
371 crc = update_crc16(crc, (idhi)&0xff);
372 crc = update_crc16(crc, (idhi>>8)&0xff);
373 crc = update_crc16(crc, (idhi>>16)&0xff);
374 crc = update_crc16(crc, (idhi>>24)&0xff);
375 }
376 Dbprintf("Writing to tag: %x%08x, crc=%x",
377 (unsigned int) idhi, (unsigned int) idlo, crc);
378
379 // TI tags charge at 134.2Khz
380 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
381 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
382 // connects to SSP_DIN and the SSP_DOUT logic level controls
383 // whether we're modulating the antenna (high)
384 // or listening to the antenna (low)
385 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
386 LED_A_ON();
387
388 // steal this pin from the SSP and use it to control the modulation
389 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
390 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
391
392 // writing algorithm:
393 // a high bit consists of a field off for 1ms and field on for 1ms
394 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
395 // initiate a charge time of 50ms (field on) then immediately start writing bits
396 // start by writing 0xBB (keyword) and 0xEB (password)
397 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
398 // finally end with 0x0300 (write frame)
399 // all data is sent lsb firts
400 // finish with 15ms programming time
401
402 // modulate antenna
403 HIGH(GPIO_SSC_DOUT);
404 SpinDelay(50); // charge time
405
406 WriteTIbyte(0xbb); // keyword
407 WriteTIbyte(0xeb); // password
408 WriteTIbyte( (idlo )&0xff );
409 WriteTIbyte( (idlo>>8 )&0xff );
410 WriteTIbyte( (idlo>>16)&0xff );
411 WriteTIbyte( (idlo>>24)&0xff );
412 WriteTIbyte( (idhi )&0xff );
413 WriteTIbyte( (idhi>>8 )&0xff );
414 WriteTIbyte( (idhi>>16)&0xff );
415 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
416 WriteTIbyte( (crc )&0xff ); // crc lo
417 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
418 WriteTIbyte(0x00); // write frame lo
419 WriteTIbyte(0x03); // write frame hi
420 HIGH(GPIO_SSC_DOUT);
421 SpinDelay(50); // programming time
422
423 LED_A_OFF();
424
425 // get TI tag data into the buffer
426 AcquireTiType();
427
428 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
429 DbpString("Now use tiread to check");
430 }
431
432 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
433 {
434 int i;
435 uint8_t *tab = (uint8_t *)BigBuf;
436
437 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
438
439 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
440
441 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
442 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
443
444 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
445 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
446
447 i = 0;
448 for(;;) {
449 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
450 if(BUTTON_PRESS()) {
451 DbpString("Stopped");
452 return;
453 }
454 WDT_HIT();
455 }
456
457 if (ledcontrol)
458 LED_D_ON();
459
460 if(tab[i])
461 OPEN_COIL();
462 else
463 SHORT_COIL();
464
465 if (ledcontrol)
466 LED_D_OFF();
467
468 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
469 if(BUTTON_PRESS()) {
470 DbpString("Stopped");
471 return;
472 }
473 WDT_HIT();
474 }
475
476 i++;
477 if(i == period) {
478 i = 0;
479 if (gap) {
480 SHORT_COIL();
481 SpinDelayUs(gap);
482 }
483 }
484 }
485 }
486
487 #define DEBUG_FRAME_CONTENTS 1
488 void SimulateTagLowFrequencyBidir(int divisor, int t0)
489 {
490 }
491
492 // compose fc/8 fc/10 waveform
493 static void fc(int c, int *n) {
494 uint8_t *dest = (uint8_t *)BigBuf;
495 int idx;
496
497 // for when we want an fc8 pattern every 4 logical bits
498 if(c==0) {
499 dest[((*n)++)]=1;
500 dest[((*n)++)]=1;
501 dest[((*n)++)]=0;
502 dest[((*n)++)]=0;
503 dest[((*n)++)]=0;
504 dest[((*n)++)]=0;
505 dest[((*n)++)]=0;
506 dest[((*n)++)]=0;
507 }
508 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
509 if(c==8) {
510 for (idx=0; idx<6; idx++) {
511 dest[((*n)++)]=1;
512 dest[((*n)++)]=1;
513 dest[((*n)++)]=0;
514 dest[((*n)++)]=0;
515 dest[((*n)++)]=0;
516 dest[((*n)++)]=0;
517 dest[((*n)++)]=0;
518 dest[((*n)++)]=0;
519 }
520 }
521
522 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
523 if(c==10) {
524 for (idx=0; idx<5; idx++) {
525 dest[((*n)++)]=1;
526 dest[((*n)++)]=1;
527 dest[((*n)++)]=1;
528 dest[((*n)++)]=0;
529 dest[((*n)++)]=0;
530 dest[((*n)++)]=0;
531 dest[((*n)++)]=0;
532 dest[((*n)++)]=0;
533 dest[((*n)++)]=0;
534 dest[((*n)++)]=0;
535 }
536 }
537 }
538
539 // prepare a waveform pattern in the buffer based on the ID given then
540 // simulate a HID tag until the button is pressed
541 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
542 {
543 int n=0, i=0;
544 /*
545 HID tag bitstream format
546 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
547 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
548 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
549 A fc8 is inserted before every 4 bits
550 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
551 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
552 */
553
554 if (hi>0xFFF) {
555 DbpString("Tags can only have 44 bits.");
556 return;
557 }
558 fc(0,&n);
559 // special start of frame marker containing invalid bit sequences
560 fc(8, &n); fc(8, &n); // invalid
561 fc(8, &n); fc(10, &n); // logical 0
562 fc(10, &n); fc(10, &n); // invalid
563 fc(8, &n); fc(10, &n); // logical 0
564
565 WDT_HIT();
566 // manchester encode bits 43 to 32
567 for (i=11; i>=0; i--) {
568 if ((i%4)==3) fc(0,&n);
569 if ((hi>>i)&1) {
570 fc(10, &n); fc(8, &n); // low-high transition
571 } else {
572 fc(8, &n); fc(10, &n); // high-low transition
573 }
574 }
575
576 WDT_HIT();
577 // manchester encode bits 31 to 0
578 for (i=31; i>=0; i--) {
579 if ((i%4)==3) fc(0,&n);
580 if ((lo>>i)&1) {
581 fc(10, &n); fc(8, &n); // low-high transition
582 } else {
583 fc(8, &n); fc(10, &n); // high-low transition
584 }
585 }
586
587 if (ledcontrol)
588 LED_A_ON();
589 SimulateTagLowFrequency(n, 0, ledcontrol);
590
591 if (ledcontrol)
592 LED_A_OFF();
593 }
594
595
596 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
597 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
598 {
599 uint8_t *dest = (uint8_t *)BigBuf;
600 int m=0, n=0, i=0, idx=0, found=0, lastval=0;
601 uint32_t hi2=0, hi=0, lo=0;
602
603 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
604 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
605
606 // Connect the A/D to the peak-detected low-frequency path.
607 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
608
609 // Give it a bit of time for the resonant antenna to settle.
610 SpinDelay(50);
611
612 // Now set up the SSC to get the ADC samples that are now streaming at us.
613 FpgaSetupSsc();
614
615 for(;;) {
616 WDT_HIT();
617 if (ledcontrol)
618 LED_A_ON();
619 if(BUTTON_PRESS()) {
620 DbpString("Stopped");
621 if (ledcontrol)
622 LED_A_OFF();
623 return;
624 }
625
626 i = 0;
627 m = sizeof(BigBuf);
628 memset(dest,128,m);
629 for(;;) {
630 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
631 AT91C_BASE_SSC->SSC_THR = 0x43;
632 if (ledcontrol)
633 LED_D_ON();
634 }
635 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
636 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
637 // we don't care about actual value, only if it's more or less than a
638 // threshold essentially we capture zero crossings for later analysis
639 if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
640 i++;
641 if (ledcontrol)
642 LED_D_OFF();
643 if(i >= m) {
644 break;
645 }
646 }
647 }
648
649 // FSK demodulator
650
651 // sync to first lo-hi transition
652 for( idx=1; idx<m; idx++) {
653 if (dest[idx-1]<dest[idx])
654 lastval=idx;
655 break;
656 }
657 WDT_HIT();
658
659 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
660 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
661 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
662 for( i=0; idx<m; idx++) {
663 if (dest[idx-1]<dest[idx]) {
664 dest[i]=idx-lastval;
665 if (dest[i] <= 8) {
666 dest[i]=1;
667 } else {
668 dest[i]=0;
669 }
670
671 lastval=idx;
672 i++;
673 }
674 }
675 m=i;
676 WDT_HIT();
677
678 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
679 lastval=dest[0];
680 idx=0;
681 i=0;
682 n=0;
683 for( idx=0; idx<m; idx++) {
684 if (dest[idx]==lastval) {
685 n++;
686 } else {
687 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
688 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
689 // swallowed up by rounding
690 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
691 // special start of frame markers use invalid manchester states (no transitions) by using sequences
692 // like 111000
693 if (dest[idx-1]) {
694 n=(n+1)/6; // fc/8 in sets of 6
695 } else {
696 n=(n+1)/5; // fc/10 in sets of 5
697 }
698 switch (n) { // stuff appropriate bits in buffer
699 case 0:
700 case 1: // one bit
701 dest[i++]=dest[idx-1];
702 break;
703 case 2: // two bits
704 dest[i++]=dest[idx-1];
705 dest[i++]=dest[idx-1];
706 break;
707 case 3: // 3 bit start of frame markers
708 dest[i++]=dest[idx-1];
709 dest[i++]=dest[idx-1];
710 dest[i++]=dest[idx-1];
711 break;
712 // When a logic 0 is immediately followed by the start of the next transmisson
713 // (special pattern) a pattern of 4 bit duration lengths is created.
714 case 4:
715 dest[i++]=dest[idx-1];
716 dest[i++]=dest[idx-1];
717 dest[i++]=dest[idx-1];
718 dest[i++]=dest[idx-1];
719 break;
720 default: // this shouldn't happen, don't stuff any bits
721 break;
722 }
723 n=0;
724 lastval=dest[idx];
725 }
726 }
727 m=i;
728 WDT_HIT();
729
730 // final loop, go over previously decoded manchester data and decode into usable tag ID
731 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
732 for( idx=0; idx<m-6; idx++) {
733 // search for a start of frame marker
734 if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
735 {
736 found=1;
737 idx+=6;
738 if (found && (hi2|hi|lo)) {
739 if (hi2 != 0){
740 Dbprintf("TAG ID: %x%08x%08x (%d)",
741 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
742 }
743 else {
744 Dbprintf("TAG ID: %x%08x (%d)",
745 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
746 }
747 /* if we're only looking for one tag */
748 if (findone)
749 {
750 *high = hi;
751 *low = lo;
752 return;
753 }
754 hi2=0;
755 hi=0;
756 lo=0;
757 found=0;
758 }
759 }
760 if (found) {
761 if (dest[idx] && (!dest[idx+1]) ) {
762 hi2=(hi2<<1)|(hi>>31);
763 hi=(hi<<1)|(lo>>31);
764 lo=(lo<<1)|0;
765 } else if ( (!dest[idx]) && dest[idx+1]) {
766 hi2=(hi2<<1)|(hi>>31);
767 hi=(hi<<1)|(lo>>31);
768 lo=(lo<<1)|1;
769 } else {
770 found=0;
771 hi2=0;
772 hi=0;
773 lo=0;
774 }
775 idx++;
776 }
777 if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
778 {
779 found=1;
780 idx+=6;
781 if (found && (hi|lo)) {
782 if (hi2 != 0){
783 Dbprintf("TAG ID: %x%08x%08x (%d)",
784 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
785 }
786 else {
787 Dbprintf("TAG ID: %x%08x (%d)",
788 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
789 }
790 /* if we're only looking for one tag */
791 if (findone)
792 {
793 *high = hi;
794 *low = lo;
795 return;
796 }
797 hi2=0;
798 hi=0;
799 lo=0;
800 found=0;
801 }
802 }
803 }
804 WDT_HIT();
805 }
806 }
807
808 /*------------------------------
809 * T5555/T5557/T5567 routines
810 *------------------------------
811 */
812
813 /* T55x7 configuration register definitions */
814 #define T55x7_POR_DELAY 0x00000001
815 #define T55x7_ST_TERMINATOR 0x00000008
816 #define T55x7_PWD 0x00000010
817 #define T55x7_MAXBLOCK_SHIFT 5
818 #define T55x7_AOR 0x00000200
819 #define T55x7_PSKCF_RF_2 0
820 #define T55x7_PSKCF_RF_4 0x00000400
821 #define T55x7_PSKCF_RF_8 0x00000800
822 #define T55x7_MODULATION_DIRECT 0
823 #define T55x7_MODULATION_PSK1 0x00001000
824 #define T55x7_MODULATION_PSK2 0x00002000
825 #define T55x7_MODULATION_PSK3 0x00003000
826 #define T55x7_MODULATION_FSK1 0x00004000
827 #define T55x7_MODULATION_FSK2 0x00005000
828 #define T55x7_MODULATION_FSK1a 0x00006000
829 #define T55x7_MODULATION_FSK2a 0x00007000
830 #define T55x7_MODULATION_MANCHESTER 0x00008000
831 #define T55x7_MODULATION_BIPHASE 0x00010000
832 #define T55x7_BITRATE_RF_8 0
833 #define T55x7_BITRATE_RF_16 0x00040000
834 #define T55x7_BITRATE_RF_32 0x00080000
835 #define T55x7_BITRATE_RF_40 0x000C0000
836 #define T55x7_BITRATE_RF_50 0x00100000
837 #define T55x7_BITRATE_RF_64 0x00140000
838 #define T55x7_BITRATE_RF_100 0x00180000
839 #define T55x7_BITRATE_RF_128 0x001C0000
840
841 /* T5555 (Q5) configuration register definitions */
842 #define T5555_ST_TERMINATOR 0x00000001
843 #define T5555_MAXBLOCK_SHIFT 0x00000001
844 #define T5555_MODULATION_MANCHESTER 0
845 #define T5555_MODULATION_PSK1 0x00000010
846 #define T5555_MODULATION_PSK2 0x00000020
847 #define T5555_MODULATION_PSK3 0x00000030
848 #define T5555_MODULATION_FSK1 0x00000040
849 #define T5555_MODULATION_FSK2 0x00000050
850 #define T5555_MODULATION_BIPHASE 0x00000060
851 #define T5555_MODULATION_DIRECT 0x00000070
852 #define T5555_INVERT_OUTPUT 0x00000080
853 #define T5555_PSK_RF_2 0
854 #define T5555_PSK_RF_4 0x00000100
855 #define T5555_PSK_RF_8 0x00000200
856 #define T5555_USE_PWD 0x00000400
857 #define T5555_USE_AOR 0x00000800
858 #define T5555_BITRATE_SHIFT 12
859 #define T5555_FAST_WRITE 0x00004000
860 #define T5555_PAGE_SELECT 0x00008000
861
862 /*
863 * Relevant times in microsecond
864 * To compensate antenna falling times shorten the write times
865 * and enlarge the gap ones.
866 */
867 #define START_GAP 250
868 #define WRITE_GAP 160
869 #define WRITE_0 144 // 192
870 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
871
872 // Write one bit to card
873 void T55xxWriteBit(int bit)
874 {
875 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
876 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
877 if (bit == 0)
878 SpinDelayUs(WRITE_0);
879 else
880 SpinDelayUs(WRITE_1);
881 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
882 SpinDelayUs(WRITE_GAP);
883 }
884
885 // Write one card block in page 0, no lock
886 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
887 {
888 unsigned int i;
889
890 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
891 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
892
893 // Give it a bit of time for the resonant antenna to settle.
894 // And for the tag to fully power up
895 SpinDelay(150);
896
897 // Now start writting
898 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
899 SpinDelayUs(START_GAP);
900
901 // Opcode
902 T55xxWriteBit(1);
903 T55xxWriteBit(0); //Page 0
904 if (PwdMode == 1){
905 // Pwd
906 for (i = 0x80000000; i != 0; i >>= 1)
907 T55xxWriteBit(Pwd & i);
908 }
909 // Lock bit
910 T55xxWriteBit(0);
911
912 // Data
913 for (i = 0x80000000; i != 0; i >>= 1)
914 T55xxWriteBit(Data & i);
915
916 // Block
917 for (i = 0x04; i != 0; i >>= 1)
918 T55xxWriteBit(Block & i);
919
920 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
921 // so wait a little more)
922 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
923 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
924 SpinDelay(20);
925 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
926 }
927
928 // Read one card block in page 0
929 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
930 {
931 uint8_t *dest = (uint8_t *)BigBuf;
932 int m=0, i=0;
933
934 m = sizeof(BigBuf);
935 // Clear destination buffer before sending the command
936 memset(dest, 128, m);
937 // Connect the A/D to the peak-detected low-frequency path.
938 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
939 // Now set up the SSC to get the ADC samples that are now streaming at us.
940 FpgaSetupSsc();
941
942 LED_D_ON();
943 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
944 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
945
946 // Give it a bit of time for the resonant antenna to settle.
947 // And for the tag to fully power up
948 SpinDelay(150);
949
950 // Now start writting
951 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
952 SpinDelayUs(START_GAP);
953
954 // Opcode
955 T55xxWriteBit(1);
956 T55xxWriteBit(0); //Page 0
957 if (PwdMode == 1){
958 // Pwd
959 for (i = 0x80000000; i != 0; i >>= 1)
960 T55xxWriteBit(Pwd & i);
961 }
962 // Lock bit
963 T55xxWriteBit(0);
964 // Block
965 for (i = 0x04; i != 0; i >>= 1)
966 T55xxWriteBit(Block & i);
967
968 // Turn field on to read the response
969 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
970 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
971
972 // Now do the acquisition
973 i = 0;
974 for(;;) {
975 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
976 AT91C_BASE_SSC->SSC_THR = 0x43;
977 }
978 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
979 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
980 // we don't care about actual value, only if it's more or less than a
981 // threshold essentially we capture zero crossings for later analysis
982 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
983 i++;
984 if (i >= m) break;
985 }
986 }
987
988 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
989 LED_D_OFF();
990 DbpString("DONE!");
991 }
992
993 // Read card traceability data (page 1)
994 void T55xxReadTrace(void){
995 uint8_t *dest = (uint8_t *)BigBuf;
996 int m=0, i=0;
997
998 m = sizeof(BigBuf);
999 // Clear destination buffer before sending the command
1000 memset(dest, 128, m);
1001 // Connect the A/D to the peak-detected low-frequency path.
1002 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1003 // Now set up the SSC to get the ADC samples that are now streaming at us.
1004 FpgaSetupSsc();
1005
1006 LED_D_ON();
1007 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1008 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1009
1010 // Give it a bit of time for the resonant antenna to settle.
1011 // And for the tag to fully power up
1012 SpinDelay(150);
1013
1014 // Now start writting
1015 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1016 SpinDelayUs(START_GAP);
1017
1018 // Opcode
1019 T55xxWriteBit(1);
1020 T55xxWriteBit(1); //Page 1
1021
1022 // Turn field on to read the response
1023 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1024 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1025
1026 // Now do the acquisition
1027 i = 0;
1028 for(;;) {
1029 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1030 AT91C_BASE_SSC->SSC_THR = 0x43;
1031 }
1032 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1033 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1034 i++;
1035 if (i >= m) break;
1036 }
1037 }
1038
1039 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1040 LED_D_OFF();
1041 DbpString("DONE!");
1042 }
1043
1044 /*-------------- Cloning routines -----------*/
1045 // Copy HID id to card and setup block 0 config
1046 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1047 {
1048 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1049 int last_block = 0;
1050
1051 if (longFMT){
1052 // Ensure no more than 84 bits supplied
1053 if (hi2>0xFFFFF) {
1054 DbpString("Tags can only have 84 bits.");
1055 return;
1056 }
1057 // Build the 6 data blocks for supplied 84bit ID
1058 last_block = 6;
1059 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1060 for (int i=0;i<4;i++) {
1061 if (hi2 & (1<<(19-i)))
1062 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1063 else
1064 data1 |= (1<<((3-i)*2)); // 0 -> 01
1065 }
1066
1067 data2 = 0;
1068 for (int i=0;i<16;i++) {
1069 if (hi2 & (1<<(15-i)))
1070 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1071 else
1072 data2 |= (1<<((15-i)*2)); // 0 -> 01
1073 }
1074
1075 data3 = 0;
1076 for (int i=0;i<16;i++) {
1077 if (hi & (1<<(31-i)))
1078 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1079 else
1080 data3 |= (1<<((15-i)*2)); // 0 -> 01
1081 }
1082
1083 data4 = 0;
1084 for (int i=0;i<16;i++) {
1085 if (hi & (1<<(15-i)))
1086 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1087 else
1088 data4 |= (1<<((15-i)*2)); // 0 -> 01
1089 }
1090
1091 data5 = 0;
1092 for (int i=0;i<16;i++) {
1093 if (lo & (1<<(31-i)))
1094 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1095 else
1096 data5 |= (1<<((15-i)*2)); // 0 -> 01
1097 }
1098
1099 data6 = 0;
1100 for (int i=0;i<16;i++) {
1101 if (lo & (1<<(15-i)))
1102 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1103 else
1104 data6 |= (1<<((15-i)*2)); // 0 -> 01
1105 }
1106 }
1107 else {
1108 // Ensure no more than 44 bits supplied
1109 if (hi>0xFFF) {
1110 DbpString("Tags can only have 44 bits.");
1111 return;
1112 }
1113
1114 // Build the 3 data blocks for supplied 44bit ID
1115 last_block = 3;
1116
1117 data1 = 0x1D000000; // load preamble
1118
1119 for (int i=0;i<12;i++) {
1120 if (hi & (1<<(11-i)))
1121 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1122 else
1123 data1 |= (1<<((11-i)*2)); // 0 -> 01
1124 }
1125
1126 data2 = 0;
1127 for (int i=0;i<16;i++) {
1128 if (lo & (1<<(31-i)))
1129 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1130 else
1131 data2 |= (1<<((15-i)*2)); // 0 -> 01
1132 }
1133
1134 data3 = 0;
1135 for (int i=0;i<16;i++) {
1136 if (lo & (1<<(15-i)))
1137 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1138 else
1139 data3 |= (1<<((15-i)*2)); // 0 -> 01
1140 }
1141 }
1142
1143 LED_D_ON();
1144 // Program the data blocks for supplied ID
1145 // and the block 0 for HID format
1146 T55xxWriteBlock(data1,1,0,0);
1147 T55xxWriteBlock(data2,2,0,0);
1148 T55xxWriteBlock(data3,3,0,0);
1149
1150 if (longFMT) { // if long format there are 6 blocks
1151 T55xxWriteBlock(data4,4,0,0);
1152 T55xxWriteBlock(data5,5,0,0);
1153 T55xxWriteBlock(data6,6,0,0);
1154 }
1155
1156 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1157 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1158 T55x7_MODULATION_FSK2a |
1159 last_block << T55x7_MAXBLOCK_SHIFT,
1160 0,0,0);
1161
1162 LED_D_OFF();
1163
1164 DbpString("DONE!");
1165 }
1166
1167 // Define 9bit header for EM410x tags
1168 #define EM410X_HEADER 0x1FF
1169 #define EM410X_ID_LENGTH 40
1170
1171 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1172 {
1173 int i, id_bit;
1174 uint64_t id = EM410X_HEADER;
1175 uint64_t rev_id = 0; // reversed ID
1176 int c_parity[4]; // column parity
1177 int r_parity = 0; // row parity
1178 uint32_t clock = 0;
1179
1180 // Reverse ID bits given as parameter (for simpler operations)
1181 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1182 if (i < 32) {
1183 rev_id = (rev_id << 1) | (id_lo & 1);
1184 id_lo >>= 1;
1185 } else {
1186 rev_id = (rev_id << 1) | (id_hi & 1);
1187 id_hi >>= 1;
1188 }
1189 }
1190
1191 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1192 id_bit = rev_id & 1;
1193
1194 if (i % 4 == 0) {
1195 // Don't write row parity bit at start of parsing
1196 if (i)
1197 id = (id << 1) | r_parity;
1198 // Start counting parity for new row
1199 r_parity = id_bit;
1200 } else {
1201 // Count row parity
1202 r_parity ^= id_bit;
1203 }
1204
1205 // First elements in column?
1206 if (i < 4)
1207 // Fill out first elements
1208 c_parity[i] = id_bit;
1209 else
1210 // Count column parity
1211 c_parity[i % 4] ^= id_bit;
1212
1213 // Insert ID bit
1214 id = (id << 1) | id_bit;
1215 rev_id >>= 1;
1216 }
1217
1218 // Insert parity bit of last row
1219 id = (id << 1) | r_parity;
1220
1221 // Fill out column parity at the end of tag
1222 for (i = 0; i < 4; ++i)
1223 id = (id << 1) | c_parity[i];
1224
1225 // Add stop bit
1226 id <<= 1;
1227
1228 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1229 LED_D_ON();
1230
1231 // Write EM410x ID
1232 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1233 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1234
1235 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1236 if (card) {
1237 // Clock rate is stored in bits 8-15 of the card value
1238 clock = (card & 0xFF00) >> 8;
1239 Dbprintf("Clock rate: %d", clock);
1240 switch (clock)
1241 {
1242 case 32:
1243 clock = T55x7_BITRATE_RF_32;
1244 break;
1245 case 16:
1246 clock = T55x7_BITRATE_RF_16;
1247 break;
1248 case 0:
1249 // A value of 0 is assumed to be 64 for backwards-compatibility
1250 // Fall through...
1251 case 64:
1252 clock = T55x7_BITRATE_RF_64;
1253 break;
1254 default:
1255 Dbprintf("Invalid clock rate: %d", clock);
1256 return;
1257 }
1258
1259 // Writing configuration for T55x7 tag
1260 T55xxWriteBlock(clock |
1261 T55x7_MODULATION_MANCHESTER |
1262 2 << T55x7_MAXBLOCK_SHIFT,
1263 0, 0, 0);
1264 }
1265 else
1266 // Writing configuration for T5555(Q5) tag
1267 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1268 T5555_MODULATION_MANCHESTER |
1269 2 << T5555_MAXBLOCK_SHIFT,
1270 0, 0, 0);
1271
1272 LED_D_OFF();
1273 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1274 (uint32_t)(id >> 32), (uint32_t)id);
1275 }
1276
1277 // Clone Indala 64-bit tag by UID to T55x7
1278 void CopyIndala64toT55x7(int hi, int lo)
1279 {
1280
1281 //Program the 2 data blocks for supplied 64bit UID
1282 // and the block 0 for Indala64 format
1283 T55xxWriteBlock(hi,1,0,0);
1284 T55xxWriteBlock(lo,2,0,0);
1285 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1286 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1287 T55x7_MODULATION_PSK1 |
1288 2 << T55x7_MAXBLOCK_SHIFT,
1289 0, 0, 0);
1290 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1291 // T5567WriteBlock(0x603E1042,0);
1292
1293 DbpString("DONE!");
1294
1295 }
1296
1297 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1298 {
1299
1300 //Program the 7 data blocks for supplied 224bit UID
1301 // and the block 0 for Indala224 format
1302 T55xxWriteBlock(uid1,1,0,0);
1303 T55xxWriteBlock(uid2,2,0,0);
1304 T55xxWriteBlock(uid3,3,0,0);
1305 T55xxWriteBlock(uid4,4,0,0);
1306 T55xxWriteBlock(uid5,5,0,0);
1307 T55xxWriteBlock(uid6,6,0,0);
1308 T55xxWriteBlock(uid7,7,0,0);
1309 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1310 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1311 T55x7_MODULATION_PSK1 |
1312 7 << T55x7_MAXBLOCK_SHIFT,
1313 0,0,0);
1314 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1315 // T5567WriteBlock(0x603E10E2,0);
1316
1317 DbpString("DONE!");
1318
1319 }
1320
1321
1322 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1323 #define max(x,y) ( x<y ? y:x)
1324
1325 int DemodPCF7931(uint8_t **outBlocks) {
1326 uint8_t BitStream[256];
1327 uint8_t Blocks[8][16];
1328 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1329 int GraphTraceLen = sizeof(BigBuf);
1330 int i, j, lastval, bitidx, half_switch;
1331 int clock = 64;
1332 int tolerance = clock / 8;
1333 int pmc, block_done;
1334 int lc, warnings = 0;
1335 int num_blocks = 0;
1336 int lmin=128, lmax=128;
1337 uint8_t dir;
1338
1339 AcquireRawAdcSamples125k(0);
1340
1341 lmin = 64;
1342 lmax = 192;
1343
1344 i = 2;
1345
1346 /* Find first local max/min */
1347 if(GraphBuffer[1] > GraphBuffer[0]) {
1348 while(i < GraphTraceLen) {
1349 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1350 break;
1351 i++;
1352 }
1353 dir = 0;
1354 }
1355 else {
1356 while(i < GraphTraceLen) {
1357 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1358 break;
1359 i++;
1360 }
1361 dir = 1;
1362 }
1363
1364 lastval = i++;
1365 half_switch = 0;
1366 pmc = 0;
1367 block_done = 0;
1368
1369 for (bitidx = 0; i < GraphTraceLen; i++)
1370 {
1371 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1372 {
1373 lc = i - lastval;
1374 lastval = i;
1375
1376 // Switch depending on lc length:
1377 // Tolerance is 1/8 of clock rate (arbitrary)
1378 if (abs(lc-clock/4) < tolerance) {
1379 // 16T0
1380 if((i - pmc) == lc) { /* 16T0 was previous one */
1381 /* It's a PMC ! */
1382 i += (128+127+16+32+33+16)-1;
1383 lastval = i;
1384 pmc = 0;
1385 block_done = 1;
1386 }
1387 else {
1388 pmc = i;
1389 }
1390 } else if (abs(lc-clock/2) < tolerance) {
1391 // 32TO
1392 if((i - pmc) == lc) { /* 16T0 was previous one */
1393 /* It's a PMC ! */
1394 i += (128+127+16+32+33)-1;
1395 lastval = i;
1396 pmc = 0;
1397 block_done = 1;
1398 }
1399 else if(half_switch == 1) {
1400 BitStream[bitidx++] = 0;
1401 half_switch = 0;
1402 }
1403 else
1404 half_switch++;
1405 } else if (abs(lc-clock) < tolerance) {
1406 // 64TO
1407 BitStream[bitidx++] = 1;
1408 } else {
1409 // Error
1410 warnings++;
1411 if (warnings > 10)
1412 {
1413 Dbprintf("Error: too many detection errors, aborting.");
1414 return 0;
1415 }
1416 }
1417
1418 if(block_done == 1) {
1419 if(bitidx == 128) {
1420 for(j=0; j<16; j++) {
1421 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1422 64*BitStream[j*8+6]+
1423 32*BitStream[j*8+5]+
1424 16*BitStream[j*8+4]+
1425 8*BitStream[j*8+3]+
1426 4*BitStream[j*8+2]+
1427 2*BitStream[j*8+1]+
1428 BitStream[j*8];
1429 }
1430 num_blocks++;
1431 }
1432 bitidx = 0;
1433 block_done = 0;
1434 half_switch = 0;
1435 }
1436 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1437 else dir = 1;
1438 }
1439 if(bitidx==255)
1440 bitidx=0;
1441 warnings = 0;
1442 if(num_blocks == 4) break;
1443 }
1444 memcpy(outBlocks, Blocks, 16*num_blocks);
1445 return num_blocks;
1446 }
1447
1448 int IsBlock0PCF7931(uint8_t *Block) {
1449 // Assume RFU means 0 :)
1450 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1451 return 1;
1452 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1453 return 1;
1454 return 0;
1455 }
1456
1457 int IsBlock1PCF7931(uint8_t *Block) {
1458 // Assume RFU means 0 :)
1459 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1460 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1461 return 1;
1462
1463 return 0;
1464 }
1465
1466 #define ALLOC 16
1467
1468 void ReadPCF7931() {
1469 uint8_t Blocks[8][17];
1470 uint8_t tmpBlocks[4][16];
1471 int i, j, ind, ind2, n;
1472 int num_blocks = 0;
1473 int max_blocks = 8;
1474 int ident = 0;
1475 int error = 0;
1476 int tries = 0;
1477
1478 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1479
1480 do {
1481 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1482 n = DemodPCF7931((uint8_t**)tmpBlocks);
1483 if(!n)
1484 error++;
1485 if(error==10 && num_blocks == 0) {
1486 Dbprintf("Error, no tag or bad tag");
1487 return;
1488 }
1489 else if (tries==20 || error==10) {
1490 Dbprintf("Error reading the tag");
1491 Dbprintf("Here is the partial content");
1492 goto end;
1493 }
1494
1495 for(i=0; i<n; i++)
1496 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1497 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1498 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1499 if(!ident) {
1500 for(i=0; i<n; i++) {
1501 if(IsBlock0PCF7931(tmpBlocks[i])) {
1502 // Found block 0 ?
1503 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1504 // Found block 1!
1505 // \o/
1506 ident = 1;
1507 memcpy(Blocks[0], tmpBlocks[i], 16);
1508 Blocks[0][ALLOC] = 1;
1509 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1510 Blocks[1][ALLOC] = 1;
1511 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1512 // Debug print
1513 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1514 num_blocks = 2;
1515 // Handle following blocks
1516 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1517 if(j==n) j=0;
1518 if(j==i) break;
1519 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1520 Blocks[ind2][ALLOC] = 1;
1521 }
1522 break;
1523 }
1524 }
1525 }
1526 }
1527 else {
1528 for(i=0; i<n; i++) { // Look for identical block in known blocks
1529 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1530 for(j=0; j<max_blocks; j++) {
1531 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1532 // Found an identical block
1533 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1534 if(ind2 < 0)
1535 ind2 = max_blocks;
1536 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1537 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1538 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1539 Blocks[ind2][ALLOC] = 1;
1540 num_blocks++;
1541 if(num_blocks == max_blocks) goto end;
1542 }
1543 }
1544 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1545 if(ind2 > max_blocks)
1546 ind2 = 0;
1547 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1548 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1549 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1550 Blocks[ind2][ALLOC] = 1;
1551 num_blocks++;
1552 if(num_blocks == max_blocks) goto end;
1553 }
1554 }
1555 }
1556 }
1557 }
1558 }
1559 }
1560 tries++;
1561 if (BUTTON_PRESS()) return;
1562 } while (num_blocks != max_blocks);
1563 end:
1564 Dbprintf("-----------------------------------------");
1565 Dbprintf("Memory content:");
1566 Dbprintf("-----------------------------------------");
1567 for(i=0; i<max_blocks; i++) {
1568 if(Blocks[i][ALLOC]==1)
1569 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1570 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1571 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1572 else
1573 Dbprintf("<missing block %d>", i);
1574 }
1575 Dbprintf("-----------------------------------------");
1576
1577 return ;
1578 }
1579
1580
1581 //-----------------------------------
1582 // EM4469 / EM4305 routines
1583 //-----------------------------------
1584 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1585 #define FWD_CMD_WRITE 0xA
1586 #define FWD_CMD_READ 0x9
1587 #define FWD_CMD_DISABLE 0x5
1588
1589
1590 uint8_t forwardLink_data[64]; //array of forwarded bits
1591 uint8_t * forward_ptr; //ptr for forward message preparation
1592 uint8_t fwd_bit_sz; //forwardlink bit counter
1593 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1594
1595 //====================================================================
1596 // prepares command bits
1597 // see EM4469 spec
1598 //====================================================================
1599 //--------------------------------------------------------------------
1600 uint8_t Prepare_Cmd( uint8_t cmd ) {
1601 //--------------------------------------------------------------------
1602
1603 *forward_ptr++ = 0; //start bit
1604 *forward_ptr++ = 0; //second pause for 4050 code
1605
1606 *forward_ptr++ = cmd;
1607 cmd >>= 1;
1608 *forward_ptr++ = cmd;
1609 cmd >>= 1;
1610 *forward_ptr++ = cmd;
1611 cmd >>= 1;
1612 *forward_ptr++ = cmd;
1613
1614 return 6; //return number of emited bits
1615 }
1616
1617 //====================================================================
1618 // prepares address bits
1619 // see EM4469 spec
1620 //====================================================================
1621
1622 //--------------------------------------------------------------------
1623 uint8_t Prepare_Addr( uint8_t addr ) {
1624 //--------------------------------------------------------------------
1625
1626 register uint8_t line_parity;
1627
1628 uint8_t i;
1629 line_parity = 0;
1630 for(i=0;i<6;i++) {
1631 *forward_ptr++ = addr;
1632 line_parity ^= addr;
1633 addr >>= 1;
1634 }
1635
1636 *forward_ptr++ = (line_parity & 1);
1637
1638 return 7; //return number of emited bits
1639 }
1640
1641 //====================================================================
1642 // prepares data bits intreleaved with parity bits
1643 // see EM4469 spec
1644 //====================================================================
1645
1646 //--------------------------------------------------------------------
1647 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1648 //--------------------------------------------------------------------
1649
1650 register uint8_t line_parity;
1651 register uint8_t column_parity;
1652 register uint8_t i, j;
1653 register uint16_t data;
1654
1655 data = data_low;
1656 column_parity = 0;
1657
1658 for(i=0; i<4; i++) {
1659 line_parity = 0;
1660 for(j=0; j<8; j++) {
1661 line_parity ^= data;
1662 column_parity ^= (data & 1) << j;
1663 *forward_ptr++ = data;
1664 data >>= 1;
1665 }
1666 *forward_ptr++ = line_parity;
1667 if(i == 1)
1668 data = data_hi;
1669 }
1670
1671 for(j=0; j<8; j++) {
1672 *forward_ptr++ = column_parity;
1673 column_parity >>= 1;
1674 }
1675 *forward_ptr = 0;
1676
1677 return 45; //return number of emited bits
1678 }
1679
1680 //====================================================================
1681 // Forward Link send function
1682 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1683 // fwd_bit_count set with number of bits to be sent
1684 //====================================================================
1685 void SendForward(uint8_t fwd_bit_count) {
1686
1687 fwd_write_ptr = forwardLink_data;
1688 fwd_bit_sz = fwd_bit_count;
1689
1690 LED_D_ON();
1691
1692 //Field on
1693 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1694 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1695
1696 // Give it a bit of time for the resonant antenna to settle.
1697 // And for the tag to fully power up
1698 SpinDelay(150);
1699
1700 // force 1st mod pulse (start gap must be longer for 4305)
1701 fwd_bit_sz--; //prepare next bit modulation
1702 fwd_write_ptr++;
1703 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1704 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1705 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1706 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on
1707 SpinDelayUs(16*8); //16 cycles on (8us each)
1708
1709 // now start writting
1710 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1711 if(((*fwd_write_ptr++) & 1) == 1)
1712 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1713 else {
1714 //These timings work for 4469/4269/4305 (with the 55*8 above)
1715 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1716 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1717 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1718 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on
1719 SpinDelayUs(9*8); //16 cycles on (8us each)
1720 }
1721 }
1722 }
1723
1724 void EM4xLogin(uint32_t Password) {
1725
1726 uint8_t fwd_bit_count;
1727
1728 forward_ptr = forwardLink_data;
1729 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1730 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1731
1732 SendForward(fwd_bit_count);
1733
1734 //Wait for command to complete
1735 SpinDelay(20);
1736
1737 }
1738
1739 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1740
1741 uint8_t fwd_bit_count;
1742 uint8_t *dest = (uint8_t *)BigBuf;
1743 int m=0, i=0;
1744
1745 //If password mode do login
1746 if (PwdMode == 1) EM4xLogin(Pwd);
1747
1748 forward_ptr = forwardLink_data;
1749 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1750 fwd_bit_count += Prepare_Addr( Address );
1751
1752 m = sizeof(BigBuf);
1753 // Clear destination buffer before sending the command
1754 memset(dest, 128, m);
1755 // Connect the A/D to the peak-detected low-frequency path.
1756 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1757 // Now set up the SSC to get the ADC samples that are now streaming at us.
1758 FpgaSetupSsc();
1759
1760 SendForward(fwd_bit_count);
1761
1762 // Now do the acquisition
1763 i = 0;
1764 for(;;) {
1765 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1766 AT91C_BASE_SSC->SSC_THR = 0x43;
1767 }
1768 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1769 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1770 i++;
1771 if (i >= m) break;
1772 }
1773 }
1774 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1775 LED_D_OFF();
1776 }
1777
1778 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1779
1780 uint8_t fwd_bit_count;
1781
1782 //If password mode do login
1783 if (PwdMode == 1) EM4xLogin(Pwd);
1784
1785 forward_ptr = forwardLink_data;
1786 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1787 fwd_bit_count += Prepare_Addr( Address );
1788 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1789
1790 SendForward(fwd_bit_count);
1791
1792 //Wait for write to complete
1793 SpinDelay(20);
1794 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1795 LED_D_OFF();
1796 }
Impressum, Datenschutz