1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "../include/proxmark3.h"
14 #include "../include/hitag2.h"
15 #include "../common/crc16.h"
18 #include "mifareutil.h"
20 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
22 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
23 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
24 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
25 else if (divisor
== 0)
26 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
28 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
30 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
32 // Connect the A/D to the peak-detected low-frequency path.
33 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
34 // Give it a bit of time for the resonant antenna to settle.
36 // Now set up the SSC to get the ADC samples that are now streaming at us.
40 void AcquireRawAdcSamples125k(int divisor
)
42 LFSetupFPGAForADC(divisor
, true);
43 DoAcquisition125k(-1);
46 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
48 LFSetupFPGAForADC(divisor
, false);
49 DoAcquisition125k(trigger_threshold
);
52 // split into two routines so we can avoid timing issues after sending commands //
53 void DoAcquisition125k(int trigger_threshold
)
55 uint8_t *dest
= (uint8_t *)BigBuf
;
56 int n
= sizeof(BigBuf
);
62 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
63 AT91C_BASE_SSC
->SSC_THR
= 0x43;
66 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
67 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
69 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
72 trigger_threshold
= -1;
76 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
77 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
80 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
84 /* Make sure the tag is reset */
85 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
86 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
89 // see if 'h' was specified
90 if (command
[strlen((char *) command
) - 1] == 'h')
96 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
98 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
100 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
102 // Give it a bit of time for the resonant antenna to settle.
104 // And a little more time for the tag to fully power up
107 // Now set up the SSC to get the ADC samples that are now streaming at us.
110 // now modulate the reader field
111 while(*command
!= '\0' && *command
!= ' ') {
112 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
114 SpinDelayUs(delay_off
);
116 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
118 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
122 if(*(command
++) == '0')
123 SpinDelayUs(period_0
);
125 SpinDelayUs(period_1
);
127 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
129 SpinDelayUs(delay_off
);
131 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
133 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
135 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
138 DoAcquisition125k(-1);
141 /* blank r/w tag data stream
142 ...0000000000000000 01111111
143 1010101010101010101010101010101010101010101010101010101010101010
146 101010101010101[0]000...
148 [5555fe852c5555555555555555fe0000]
152 // some hardcoded initial params
153 // when we read a TI tag we sample the zerocross line at 2Mhz
154 // TI tags modulate a 1 as 16 cycles of 123.2Khz
155 // TI tags modulate a 0 as 16 cycles of 134.2Khz
156 #define FSAMPLE 2000000
157 #define FREQLO 123200
158 #define FREQHI 134200
160 signed char *dest
= (signed char *)BigBuf
;
161 int n
= sizeof(BigBuf
);
162 // int *dest = GraphBuffer;
163 // int n = GraphTraceLen;
165 // 128 bit shift register [shift3:shift2:shift1:shift0]
166 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
168 int i
, cycles
=0, samples
=0;
169 // how many sample points fit in 16 cycles of each frequency
170 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
171 // when to tell if we're close enough to one freq or another
172 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
174 // TI tags charge at 134.2Khz
175 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
176 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
178 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
179 // connects to SSP_DIN and the SSP_DOUT logic level controls
180 // whether we're modulating the antenna (high)
181 // or listening to the antenna (low)
182 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
184 // get TI tag data into the buffer
187 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
189 for (i
=0; i
<n
-1; i
++) {
190 // count cycles by looking for lo to hi zero crossings
191 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
193 // after 16 cycles, measure the frequency
196 samples
=i
-samples
; // number of samples in these 16 cycles
198 // TI bits are coming to us lsb first so shift them
199 // right through our 128 bit right shift register
200 shift0
= (shift0
>>1) | (shift1
<< 31);
201 shift1
= (shift1
>>1) | (shift2
<< 31);
202 shift2
= (shift2
>>1) | (shift3
<< 31);
205 // check if the cycles fall close to the number
206 // expected for either the low or high frequency
207 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
208 // low frequency represents a 1
210 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
211 // high frequency represents a 0
213 // probably detected a gay waveform or noise
214 // use this as gaydar or discard shift register and start again
215 shift3
= shift2
= shift1
= shift0
= 0;
219 // for each bit we receive, test if we've detected a valid tag
221 // if we see 17 zeroes followed by 6 ones, we might have a tag
222 // remember the bits are backwards
223 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
224 // if start and end bytes match, we have a tag so break out of the loop
225 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
226 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
234 // if flag is set we have a tag
236 DbpString("Info: No valid tag detected.");
238 // put 64 bit data into shift1 and shift0
239 shift0
= (shift0
>>24) | (shift1
<< 8);
240 shift1
= (shift1
>>24) | (shift2
<< 8);
242 // align 16 bit crc into lower half of shift2
243 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
245 // if r/w tag, check ident match
246 if ( shift3
&(1<<15) ) {
247 DbpString("Info: TI tag is rewriteable");
248 // only 15 bits compare, last bit of ident is not valid
249 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
250 DbpString("Error: Ident mismatch!");
252 DbpString("Info: TI tag ident is valid");
255 DbpString("Info: TI tag is readonly");
258 // WARNING the order of the bytes in which we calc crc below needs checking
259 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
260 // bytes in reverse or something
264 crc
= update_crc16(crc
, (shift0
)&0xff);
265 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
266 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
267 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
268 crc
= update_crc16(crc
, (shift1
)&0xff);
269 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
270 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
271 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
273 Dbprintf("Info: Tag data: %x%08x, crc=%x",
274 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
275 if (crc
!= (shift2
&0xffff)) {
276 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
278 DbpString("Info: CRC is good");
283 void WriteTIbyte(uint8_t b
)
287 // modulate 8 bits out to the antenna
291 // stop modulating antenna
298 // stop modulating antenna
308 void AcquireTiType(void)
311 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
312 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
313 #define TIBUFLEN 1250
316 memset(BigBuf
,0,sizeof(BigBuf
));
318 // Set up the synchronous serial port
319 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
320 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
322 // steal this pin from the SSP and use it to control the modulation
323 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
324 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
326 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
327 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
329 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
330 // 48/2 = 24 MHz clock must be divided by 12
331 AT91C_BASE_SSC
->SSC_CMR
= 12;
333 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
334 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
335 AT91C_BASE_SSC
->SSC_TCMR
= 0;
336 AT91C_BASE_SSC
->SSC_TFMR
= 0;
343 // Charge TI tag for 50ms.
346 // stop modulating antenna and listen
353 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
354 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
355 i
++; if(i
>= TIBUFLEN
) break;
360 // return stolen pin to SSP
361 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
362 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
364 char *dest
= (char *)BigBuf
;
367 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
368 for (j
=0; j
<32; j
++) {
369 if(BigBuf
[i
] & (1 << j
)) {
378 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
379 // if crc provided, it will be written with the data verbatim (even if bogus)
380 // if not provided a valid crc will be computed from the data and written.
381 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
383 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
385 crc
= update_crc16(crc
, (idlo
)&0xff);
386 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
387 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
388 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
389 crc
= update_crc16(crc
, (idhi
)&0xff);
390 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
391 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
392 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
394 Dbprintf("Writing to tag: %x%08x, crc=%x",
395 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
397 // TI tags charge at 134.2Khz
398 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
399 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
400 // connects to SSP_DIN and the SSP_DOUT logic level controls
401 // whether we're modulating the antenna (high)
402 // or listening to the antenna (low)
403 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
406 // steal this pin from the SSP and use it to control the modulation
407 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
408 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
410 // writing algorithm:
411 // a high bit consists of a field off for 1ms and field on for 1ms
412 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
413 // initiate a charge time of 50ms (field on) then immediately start writing bits
414 // start by writing 0xBB (keyword) and 0xEB (password)
415 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
416 // finally end with 0x0300 (write frame)
417 // all data is sent lsb firts
418 // finish with 15ms programming time
422 SpinDelay(50); // charge time
424 WriteTIbyte(0xbb); // keyword
425 WriteTIbyte(0xeb); // password
426 WriteTIbyte( (idlo
)&0xff );
427 WriteTIbyte( (idlo
>>8 )&0xff );
428 WriteTIbyte( (idlo
>>16)&0xff );
429 WriteTIbyte( (idlo
>>24)&0xff );
430 WriteTIbyte( (idhi
)&0xff );
431 WriteTIbyte( (idhi
>>8 )&0xff );
432 WriteTIbyte( (idhi
>>16)&0xff );
433 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
434 WriteTIbyte( (crc
)&0xff ); // crc lo
435 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
436 WriteTIbyte(0x00); // write frame lo
437 WriteTIbyte(0x03); // write frame hi
439 SpinDelay(50); // programming time
443 // get TI tag data into the buffer
446 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
447 DbpString("Now use tiread to check");
450 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
453 uint8_t *tab
= (uint8_t *)BigBuf
;
455 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
456 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
458 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
460 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
461 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
463 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
464 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
468 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
470 DbpString("Stopped");
487 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
489 DbpString("Stopped");
506 #define DEBUG_FRAME_CONTENTS 1
507 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
511 // compose fc/8 fc/10 waveform
512 static void fc(int c
, int *n
) {
513 uint8_t *dest
= (uint8_t *)BigBuf
;
516 // for when we want an fc8 pattern every 4 logical bits
527 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
529 for (idx
=0; idx
<6; idx
++) {
541 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
543 for (idx
=0; idx
<5; idx
++) {
558 // prepare a waveform pattern in the buffer based on the ID given then
559 // simulate a HID tag until the button is pressed
560 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
564 HID tag bitstream format
565 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
566 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
567 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
568 A fc8 is inserted before every 4 bits
569 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
570 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
574 DbpString("Tags can only have 44 bits.");
578 // special start of frame marker containing invalid bit sequences
579 fc(8, &n
); fc(8, &n
); // invalid
580 fc(8, &n
); fc(10, &n
); // logical 0
581 fc(10, &n
); fc(10, &n
); // invalid
582 fc(8, &n
); fc(10, &n
); // logical 0
585 // manchester encode bits 43 to 32
586 for (i
=11; i
>=0; i
--) {
587 if ((i
%4)==3) fc(0,&n
);
589 fc(10, &n
); fc(8, &n
); // low-high transition
591 fc(8, &n
); fc(10, &n
); // high-low transition
596 // manchester encode bits 31 to 0
597 for (i
=31; i
>=0; i
--) {
598 if ((i
%4)==3) fc(0,&n
);
600 fc(10, &n
); fc(8, &n
); // low-high transition
602 fc(8, &n
); fc(10, &n
); // high-low transition
608 SimulateTagLowFrequency(n
, 0, ledcontrol
);
615 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
616 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
618 uint8_t *dest
= (uint8_t *)BigBuf
;
619 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
620 uint32_t hi2
=0, hi
=0, lo
=0;
622 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
623 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
624 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
626 // Connect the A/D to the peak-detected low-frequency path.
627 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
629 // Give it a bit of time for the resonant antenna to settle.
632 // Now set up the SSC to get the ADC samples that are now streaming at us.
640 DbpString("Stopped");
650 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
651 AT91C_BASE_SSC
->SSC_THR
= 0x43;
655 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
656 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
657 // we don't care about actual value, only if it's more or less than a
658 // threshold essentially we capture zero crossings for later analysis
659 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
671 // sync to first lo-hi transition
672 for( idx
=1; idx
<m
; idx
++) {
673 if (dest
[idx
-1]<dest
[idx
])
679 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
680 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
681 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
682 for( i
=0; idx
<m
; idx
++) {
683 if (dest
[idx
-1]<dest
[idx
]) {
698 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
703 for( idx
=0; idx
<m
; idx
++) {
704 if (dest
[idx
]==lastval
) {
707 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
708 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
709 // swallowed up by rounding
710 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
711 // special start of frame markers use invalid manchester states (no transitions) by using sequences
714 n
=(n
+1)/6; // fc/8 in sets of 6
716 n
=(n
+1)/5; // fc/10 in sets of 5
718 switch (n
) { // stuff appropriate bits in buffer
721 dest
[i
++]=dest
[idx
-1];
724 dest
[i
++]=dest
[idx
-1];
725 dest
[i
++]=dest
[idx
-1];
727 case 3: // 3 bit start of frame markers
728 dest
[i
++]=dest
[idx
-1];
729 dest
[i
++]=dest
[idx
-1];
730 dest
[i
++]=dest
[idx
-1];
732 // When a logic 0 is immediately followed by the start of the next transmisson
733 // (special pattern) a pattern of 4 bit duration lengths is created.
735 dest
[i
++]=dest
[idx
-1];
736 dest
[i
++]=dest
[idx
-1];
737 dest
[i
++]=dest
[idx
-1];
738 dest
[i
++]=dest
[idx
-1];
740 default: // this shouldn't happen, don't stuff any bits
750 // final loop, go over previously decoded manchester data and decode into usable tag ID
751 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
752 for( idx
=0; idx
<m
-6; idx
++) {
753 // search for a start of frame marker
754 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
758 if (found
&& (hi2
|hi
|lo
)) {
760 Dbprintf("TAG ID: %x%08x%08x (%d)",
761 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
764 Dbprintf("TAG ID: %x%08x (%d)",
765 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
767 /* if we're only looking for one tag */
781 if (dest
[idx
] && (!dest
[idx
+1]) ) {
782 hi2
=(hi2
<<1)|(hi
>>31);
785 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
786 hi2
=(hi2
<<1)|(hi
>>31);
797 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
801 if (found
&& (hi
|lo
)) {
803 Dbprintf("TAG ID: %x%08x%08x (%d)",
804 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
807 Dbprintf("TAG ID: %x%08x (%d)",
808 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
810 /* if we're only looking for one tag */
828 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
830 uint8_t *dest
= (uint8_t *)BigBuf
;
831 int m
=0, n
=0, i
=0, idx
=0, lastval
=0;
833 uint32_t code
=0, code2
=0;
834 //uint32_t hi2=0, hi=0, lo=0;
836 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
837 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
838 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
840 // Connect the A/D to the peak-detected low-frequency path.
841 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
843 // Give it a bit of time for the resonant antenna to settle.
846 // Now set up the SSC to get the ADC samples that are now streaming at us.
854 DbpString("Stopped");
864 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
865 AT91C_BASE_SSC
->SSC_THR
= 0x43;
869 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
870 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
871 // we don't care about actual value, only if it's more or less than a
872 // threshold essentially we capture zero crossings for later analysis
873 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
885 // sync to first lo-hi transition
886 for( idx
=1; idx
<m
; idx
++) {
887 if (dest
[idx
-1]<dest
[idx
])
893 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
894 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
895 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
896 for( i
=0; idx
<m
; idx
++) {
897 if (dest
[idx
-1]<dest
[idx
]) {
912 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
917 for( idx
=0; idx
<m
; idx
++) {
918 if (dest
[idx
]==lastval
) {
921 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
922 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
923 // swallowed up by rounding
924 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
925 // special start of frame markers use invalid manchester states (no transitions) by using sequences
928 n
=(n
+1)/7; // fc/8 in sets of 7
930 n
=(n
+1)/6; // fc/10 in sets of 6
932 switch (n
) { // stuff appropriate bits in buffer
935 dest
[i
++]=dest
[idx
-1]^1;
936 //Dbprintf("%d",dest[idx-1]);
939 dest
[i
++]=dest
[idx
-1]^1;
940 dest
[i
++]=dest
[idx
-1]^1;
941 //Dbprintf("%d",dest[idx-1]);
942 //Dbprintf("%d",dest[idx-1]);
944 case 3: // 3 bit start of frame markers
945 for(int j
=0; j
<3; j
++){
946 dest
[i
++]=dest
[idx
-1]^1;
947 // Dbprintf("%d",dest[idx-1]);
951 for(int j
=0; j
<4; j
++){
952 dest
[i
++]=dest
[idx
-1]^1;
953 // Dbprintf("%d",dest[idx-1]);
957 for(int j
=0; j
<5; j
++){
958 dest
[i
++]=dest
[idx
-1]^1;
959 // Dbprintf("%d",dest[idx-1]);
963 for(int j
=0; j
<6; j
++){
964 dest
[i
++]=dest
[idx
-1]^1;
965 // Dbprintf("%d",dest[idx-1]);
969 for(int j
=0; j
<7; j
++){
970 dest
[i
++]=dest
[idx
-1]^1;
971 // Dbprintf("%d",dest[idx-1]);
975 for(int j
=0; j
<8; j
++){
976 dest
[i
++]=dest
[idx
-1]^1;
977 // Dbprintf("%d",dest[idx-1]);
981 for(int j
=0; j
<9; j
++){
982 dest
[i
++]=dest
[idx
-1]^1;
983 // Dbprintf("%d",dest[idx-1]);
987 for(int j
=0; j
<10; j
++){
988 dest
[i
++]=dest
[idx
-1]^1;
989 // Dbprintf("%d",dest[idx-1]);
993 for(int j
=0; j
<11; j
++){
994 dest
[i
++]=dest
[idx
-1]^1;
995 // Dbprintf("%d",dest[idx-1]);
999 for(int j
=0; j
<12; j
++){
1000 dest
[i
++]=dest
[idx
-1]^1;
1001 // Dbprintf("%d",dest[idx-1]);
1004 default: // this shouldn't happen, don't stuff any bits
1005 //Dbprintf("%d",dest[idx-1]);
1012 /*for(int j=0; j<64;j+=8){
1013 Dbprintf("%d%d%d%d%d%d%d%d",dest[j],dest[j+1],dest[j+2],dest[j+3],dest[j+4],dest[j+5],dest[j+6],dest[j+7]);
1019 for( idx
=0; idx
<m
-9; idx
++) {
1020 if ( !(dest
[idx
]) && !(dest
[idx
+1]) && !(dest
[idx
+2]) && !(dest
[idx
+3]) && !(dest
[idx
+4]) && !(dest
[idx
+5]) && !(dest
[idx
+6]) && !(dest
[idx
+7]) && !(dest
[idx
+8])&& (dest
[idx
+9])){
1024 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7]);
1025 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+8], dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15]);
1026 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+16],dest
[idx
+17],dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23]);
1027 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+24],dest
[idx
+25],dest
[idx
+26],dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31]);
1028 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35],dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39]);
1029 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44],dest
[idx
+45],dest
[idx
+46],dest
[idx
+47]);
1030 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53],dest
[idx
+54],dest
[idx
+55]);
1031 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1033 short version
='\x00';
1034 char unknown
='\x00';
1036 for(int j
=14;j
<18;j
++){
1037 //Dbprintf("%d",dest[idx+j]);
1039 if (dest
[idx
+j
]) version
|= 1;
1041 for(int j
=19;j
<27;j
++){
1042 //Dbprintf("%d",dest[idx+j]);
1044 if (dest
[idx
+j
]) unknown
|= 1;
1046 for(int j
=36;j
<45;j
++){
1047 //Dbprintf("%d",dest[idx+j]);
1049 if (dest
[idx
+j
]) number
|= 1;
1051 for(int j
=46;j
<53;j
++){
1052 //Dbprintf("%d",dest[idx+j]);
1054 if (dest
[idx
+j
]) number
|= 1;
1056 for(int j
=0; j
<32; j
++){
1058 if(dest
[idx
+j
]) code
|= 1;
1060 for(int j
=32; j
<64; j
++){
1062 if(dest
[idx
+j
]) code2
|= 1;
1065 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,unknown
,number
,code
,code2
);
1069 // if we're only looking for one tag
1087 /*------------------------------
1088 * T5555/T5557/T5567 routines
1089 *------------------------------
1092 /* T55x7 configuration register definitions */
1093 #define T55x7_POR_DELAY 0x00000001
1094 #define T55x7_ST_TERMINATOR 0x00000008
1095 #define T55x7_PWD 0x00000010
1096 #define T55x7_MAXBLOCK_SHIFT 5
1097 #define T55x7_AOR 0x00000200
1098 #define T55x7_PSKCF_RF_2 0
1099 #define T55x7_PSKCF_RF_4 0x00000400
1100 #define T55x7_PSKCF_RF_8 0x00000800
1101 #define T55x7_MODULATION_DIRECT 0
1102 #define T55x7_MODULATION_PSK1 0x00001000
1103 #define T55x7_MODULATION_PSK2 0x00002000
1104 #define T55x7_MODULATION_PSK3 0x00003000
1105 #define T55x7_MODULATION_FSK1 0x00004000
1106 #define T55x7_MODULATION_FSK2 0x00005000
1107 #define T55x7_MODULATION_FSK1a 0x00006000
1108 #define T55x7_MODULATION_FSK2a 0x00007000
1109 #define T55x7_MODULATION_MANCHESTER 0x00008000
1110 #define T55x7_MODULATION_BIPHASE 0x00010000
1111 #define T55x7_BITRATE_RF_8 0
1112 #define T55x7_BITRATE_RF_16 0x00040000
1113 #define T55x7_BITRATE_RF_32 0x00080000
1114 #define T55x7_BITRATE_RF_40 0x000C0000
1115 #define T55x7_BITRATE_RF_50 0x00100000
1116 #define T55x7_BITRATE_RF_64 0x00140000
1117 #define T55x7_BITRATE_RF_100 0x00180000
1118 #define T55x7_BITRATE_RF_128 0x001C0000
1120 /* T5555 (Q5) configuration register definitions */
1121 #define T5555_ST_TERMINATOR 0x00000001
1122 #define T5555_MAXBLOCK_SHIFT 0x00000001
1123 #define T5555_MODULATION_MANCHESTER 0
1124 #define T5555_MODULATION_PSK1 0x00000010
1125 #define T5555_MODULATION_PSK2 0x00000020
1126 #define T5555_MODULATION_PSK3 0x00000030
1127 #define T5555_MODULATION_FSK1 0x00000040
1128 #define T5555_MODULATION_FSK2 0x00000050
1129 #define T5555_MODULATION_BIPHASE 0x00000060
1130 #define T5555_MODULATION_DIRECT 0x00000070
1131 #define T5555_INVERT_OUTPUT 0x00000080
1132 #define T5555_PSK_RF_2 0
1133 #define T5555_PSK_RF_4 0x00000100
1134 #define T5555_PSK_RF_8 0x00000200
1135 #define T5555_USE_PWD 0x00000400
1136 #define T5555_USE_AOR 0x00000800
1137 #define T5555_BITRATE_SHIFT 12
1138 #define T5555_FAST_WRITE 0x00004000
1139 #define T5555_PAGE_SELECT 0x00008000
1142 * Relevant times in microsecond
1143 * To compensate antenna falling times shorten the write times
1144 * and enlarge the gap ones.
1146 #define START_GAP 250
1147 #define WRITE_GAP 160
1148 #define WRITE_0 144 // 192
1149 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
1151 // VALUES TAKEN FROM EM4x function: SendForward
1152 // START_GAP = 440; //(55*8)
1153 // WRITE_GAP = 128; //(16*8)
1154 // WRITE_1 = 256 32*8; //32 cycles at 125Khz (8us each) 1
1155 // //These timings work for 4469/4269/4305 (with the 55*8 above)
1156 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); // (8us each) 0
1160 // Write one bit to card
1161 void T55xxWriteBit(int bit
)
1163 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1164 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1165 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1167 SpinDelayUs(WRITE_0
);
1169 SpinDelayUs(WRITE_1
);
1170 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1171 SpinDelayUs(WRITE_GAP
);
1174 // Write one card block in page 0, no lock
1175 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1179 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1180 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1181 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1183 // Give it a bit of time for the resonant antenna to settle.
1184 // And for the tag to fully power up
1187 // Now start writting
1188 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1189 SpinDelayUs(START_GAP
);
1193 T55xxWriteBit(0); //Page 0
1196 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1197 T55xxWriteBit(Pwd
& i
);
1203 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1204 T55xxWriteBit(Data
& i
);
1207 for (i
= 0x04; i
!= 0; i
>>= 1)
1208 T55xxWriteBit(Block
& i
);
1210 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1211 // so wait a little more)
1212 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1213 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1215 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1218 // Read one card block in page 0
1219 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1221 uint8_t *dest
= mifare_get_bigbufptr();
1222 uint16_t bufferlength
= 16000;
1225 // Clear destination buffer before sending the command 0x80 = average.
1226 memset(dest
, 0x80, bufferlength
);
1228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1230 // Connect the A/D to the peak-detected low-frequency path.
1231 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1232 // Now set up the SSC to get the ADC samples that are now streaming at us.
1236 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1237 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1239 // Give it a bit of time for the resonant antenna to settle.
1240 // And for the tag to fully power up
1243 // Now start writting
1244 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1245 SpinDelayUs(START_GAP
);
1249 T55xxWriteBit(0); //Page 0
1252 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1253 T55xxWriteBit(Pwd
& i
);
1258 for (i
= 0x04; i
!= 0; i
>>= 1)
1259 T55xxWriteBit(Block
& i
);
1261 // Turn field on to read the response
1262 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1263 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1265 // Now do the acquisition
1268 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1269 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1272 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1273 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1276 if (i
> bufferlength
) break;
1280 cmd_send(CMD_ACK
,0,0,0,0,0);
1282 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1286 // Read card traceability data (page 1)
1287 void T55xxReadTrace(void){
1288 uint8_t *dest
= mifare_get_bigbufptr();
1289 uint16_t bufferlength
= 16000;
1292 // Clear destination buffer before sending the command 0x80 = average
1293 memset(dest
, 0x80, bufferlength
);
1295 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1297 // Connect the A/D to the peak-detected low-frequency path.
1298 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1299 // Now set up the SSC to get the ADC samples that are now streaming at us.
1303 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1304 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1306 // Give it a bit of time for the resonant antenna to settle.
1307 // And for the tag to fully power up
1310 // Now start writting
1311 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1312 SpinDelayUs(START_GAP
);
1316 T55xxWriteBit(1); //Page 1
1318 // Turn field on to read the response
1319 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1320 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1322 // Now do the acquisition
1325 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1326 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1329 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1330 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1333 if (i
>= bufferlength
) break;
1337 cmd_send(CMD_ACK
,0,0,0,0,0);
1339 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1343 /*-------------- Cloning routines -----------*/
1344 // Copy HID id to card and setup block 0 config
1345 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1347 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1351 // Ensure no more than 84 bits supplied
1353 DbpString("Tags can only have 84 bits.");
1356 // Build the 6 data blocks for supplied 84bit ID
1358 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1359 for (int i
=0;i
<4;i
++) {
1360 if (hi2
& (1<<(19-i
)))
1361 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1363 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1367 for (int i
=0;i
<16;i
++) {
1368 if (hi2
& (1<<(15-i
)))
1369 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1371 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1375 for (int i
=0;i
<16;i
++) {
1376 if (hi
& (1<<(31-i
)))
1377 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1379 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1383 for (int i
=0;i
<16;i
++) {
1384 if (hi
& (1<<(15-i
)))
1385 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1387 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1391 for (int i
=0;i
<16;i
++) {
1392 if (lo
& (1<<(31-i
)))
1393 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1395 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1399 for (int i
=0;i
<16;i
++) {
1400 if (lo
& (1<<(15-i
)))
1401 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1403 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1407 // Ensure no more than 44 bits supplied
1409 DbpString("Tags can only have 44 bits.");
1413 // Build the 3 data blocks for supplied 44bit ID
1416 data1
= 0x1D000000; // load preamble
1418 for (int i
=0;i
<12;i
++) {
1419 if (hi
& (1<<(11-i
)))
1420 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1422 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1426 for (int i
=0;i
<16;i
++) {
1427 if (lo
& (1<<(31-i
)))
1428 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1430 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1434 for (int i
=0;i
<16;i
++) {
1435 if (lo
& (1<<(15-i
)))
1436 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1438 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1443 // Program the data blocks for supplied ID
1444 // and the block 0 for HID format
1445 T55xxWriteBlock(data1
,1,0,0);
1446 T55xxWriteBlock(data2
,2,0,0);
1447 T55xxWriteBlock(data3
,3,0,0);
1449 if (longFMT
) { // if long format there are 6 blocks
1450 T55xxWriteBlock(data4
,4,0,0);
1451 T55xxWriteBlock(data5
,5,0,0);
1452 T55xxWriteBlock(data6
,6,0,0);
1455 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1456 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1457 T55x7_MODULATION_FSK2a
|
1458 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1466 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1468 int data1
=0, data2
=0; //up to six blocks for long format
1470 data1
= hi
; // load preamble
1474 // Program the data blocks for supplied ID
1475 // and the block 0 for HID format
1476 T55xxWriteBlock(data1
,1,0,0);
1477 T55xxWriteBlock(data2
,2,0,0);
1480 T55xxWriteBlock(0x00147040,0,0,0);
1486 // Define 9bit header for EM410x tags
1487 #define EM410X_HEADER 0x1FF
1488 #define EM410X_ID_LENGTH 40
1490 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1493 uint64_t id
= EM410X_HEADER
;
1494 uint64_t rev_id
= 0; // reversed ID
1495 int c_parity
[4]; // column parity
1496 int r_parity
= 0; // row parity
1499 // Reverse ID bits given as parameter (for simpler operations)
1500 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1502 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1505 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1510 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1511 id_bit
= rev_id
& 1;
1514 // Don't write row parity bit at start of parsing
1516 id
= (id
<< 1) | r_parity
;
1517 // Start counting parity for new row
1524 // First elements in column?
1526 // Fill out first elements
1527 c_parity
[i
] = id_bit
;
1529 // Count column parity
1530 c_parity
[i
% 4] ^= id_bit
;
1533 id
= (id
<< 1) | id_bit
;
1537 // Insert parity bit of last row
1538 id
= (id
<< 1) | r_parity
;
1540 // Fill out column parity at the end of tag
1541 for (i
= 0; i
< 4; ++i
)
1542 id
= (id
<< 1) | c_parity
[i
];
1547 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1551 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1552 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1554 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1556 // Clock rate is stored in bits 8-15 of the card value
1557 clock
= (card
& 0xFF00) >> 8;
1558 Dbprintf("Clock rate: %d", clock
);
1562 clock
= T55x7_BITRATE_RF_32
;
1565 clock
= T55x7_BITRATE_RF_16
;
1568 // A value of 0 is assumed to be 64 for backwards-compatibility
1571 clock
= T55x7_BITRATE_RF_64
;
1574 Dbprintf("Invalid clock rate: %d", clock
);
1578 // Writing configuration for T55x7 tag
1579 T55xxWriteBlock(clock
|
1580 T55x7_MODULATION_MANCHESTER
|
1581 2 << T55x7_MAXBLOCK_SHIFT
,
1585 // Writing configuration for T5555(Q5) tag
1586 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1587 T5555_MODULATION_MANCHESTER
|
1588 2 << T5555_MAXBLOCK_SHIFT
,
1592 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1593 (uint32_t)(id
>> 32), (uint32_t)id
);
1596 // Clone Indala 64-bit tag by UID to T55x7
1597 void CopyIndala64toT55x7(int hi
, int lo
)
1600 //Program the 2 data blocks for supplied 64bit UID
1601 // and the block 0 for Indala64 format
1602 T55xxWriteBlock(hi
,1,0,0);
1603 T55xxWriteBlock(lo
,2,0,0);
1604 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1605 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1606 T55x7_MODULATION_PSK1
|
1607 2 << T55x7_MAXBLOCK_SHIFT
,
1609 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1610 // T5567WriteBlock(0x603E1042,0);
1616 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1619 //Program the 7 data blocks for supplied 224bit UID
1620 // and the block 0 for Indala224 format
1621 T55xxWriteBlock(uid1
,1,0,0);
1622 T55xxWriteBlock(uid2
,2,0,0);
1623 T55xxWriteBlock(uid3
,3,0,0);
1624 T55xxWriteBlock(uid4
,4,0,0);
1625 T55xxWriteBlock(uid5
,5,0,0);
1626 T55xxWriteBlock(uid6
,6,0,0);
1627 T55xxWriteBlock(uid7
,7,0,0);
1628 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1629 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1630 T55x7_MODULATION_PSK1
|
1631 7 << T55x7_MAXBLOCK_SHIFT
,
1633 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1634 // T5567WriteBlock(0x603E10E2,0);
1641 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1642 #define max(x,y) ( x<y ? y:x)
1644 int DemodPCF7931(uint8_t **outBlocks
) {
1645 uint8_t BitStream
[256];
1646 uint8_t Blocks
[8][16];
1647 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1648 int GraphTraceLen
= sizeof(BigBuf
);
1649 int i
, j
, lastval
, bitidx
, half_switch
;
1651 int tolerance
= clock
/ 8;
1652 int pmc
, block_done
;
1653 int lc
, warnings
= 0;
1655 int lmin
=128, lmax
=128;
1658 AcquireRawAdcSamples125k(0);
1665 /* Find first local max/min */
1666 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1667 while(i
< GraphTraceLen
) {
1668 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1675 while(i
< GraphTraceLen
) {
1676 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1688 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1690 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1695 // Switch depending on lc length:
1696 // Tolerance is 1/8 of clock rate (arbitrary)
1697 if (abs(lc
-clock
/4) < tolerance
) {
1699 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1701 i
+= (128+127+16+32+33+16)-1;
1709 } else if (abs(lc
-clock
/2) < tolerance
) {
1711 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1713 i
+= (128+127+16+32+33)-1;
1718 else if(half_switch
== 1) {
1719 BitStream
[bitidx
++] = 0;
1724 } else if (abs(lc
-clock
) < tolerance
) {
1726 BitStream
[bitidx
++] = 1;
1732 Dbprintf("Error: too many detection errors, aborting.");
1737 if(block_done
== 1) {
1739 for(j
=0; j
<16; j
++) {
1740 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1741 64*BitStream
[j
*8+6]+
1742 32*BitStream
[j
*8+5]+
1743 16*BitStream
[j
*8+4]+
1755 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1761 if(num_blocks
== 4) break;
1763 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1767 int IsBlock0PCF7931(uint8_t *Block
) {
1768 // Assume RFU means 0 :)
1769 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1771 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1776 int IsBlock1PCF7931(uint8_t *Block
) {
1777 // Assume RFU means 0 :)
1778 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1779 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1786 void ReadPCF7931() {
1787 uint8_t Blocks
[8][17];
1788 uint8_t tmpBlocks
[4][16];
1789 int i
, j
, ind
, ind2
, n
;
1796 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1799 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1800 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1803 if(error
==10 && num_blocks
== 0) {
1804 Dbprintf("Error, no tag or bad tag");
1807 else if (tries
==20 || error
==10) {
1808 Dbprintf("Error reading the tag");
1809 Dbprintf("Here is the partial content");
1814 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1815 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1816 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1818 for(i
=0; i
<n
; i
++) {
1819 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1821 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1825 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1826 Blocks
[0][ALLOC
] = 1;
1827 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1828 Blocks
[1][ALLOC
] = 1;
1829 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1831 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1833 // Handle following blocks
1834 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1837 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1838 Blocks
[ind2
][ALLOC
] = 1;
1846 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1847 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1848 for(j
=0; j
<max_blocks
; j
++) {
1849 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1850 // Found an identical block
1851 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1854 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1855 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1856 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1857 Blocks
[ind2
][ALLOC
] = 1;
1859 if(num_blocks
== max_blocks
) goto end
;
1862 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1863 if(ind2
> max_blocks
)
1865 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1866 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1867 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1868 Blocks
[ind2
][ALLOC
] = 1;
1870 if(num_blocks
== max_blocks
) goto end
;
1879 if (BUTTON_PRESS()) return;
1880 } while (num_blocks
!= max_blocks
);
1882 Dbprintf("-----------------------------------------");
1883 Dbprintf("Memory content:");
1884 Dbprintf("-----------------------------------------");
1885 for(i
=0; i
<max_blocks
; i
++) {
1886 if(Blocks
[i
][ALLOC
]==1)
1887 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1888 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1889 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1891 Dbprintf("<missing block %d>", i
);
1893 Dbprintf("-----------------------------------------");
1899 //-----------------------------------
1900 // EM4469 / EM4305 routines
1901 //-----------------------------------
1902 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1903 #define FWD_CMD_WRITE 0xA
1904 #define FWD_CMD_READ 0x9
1905 #define FWD_CMD_DISABLE 0x5
1908 uint8_t forwardLink_data
[64]; //array of forwarded bits
1909 uint8_t * forward_ptr
; //ptr for forward message preparation
1910 uint8_t fwd_bit_sz
; //forwardlink bit counter
1911 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1913 //====================================================================
1914 // prepares command bits
1916 //====================================================================
1917 //--------------------------------------------------------------------
1918 uint8_t Prepare_Cmd( uint8_t cmd
) {
1919 //--------------------------------------------------------------------
1921 *forward_ptr
++ = 0; //start bit
1922 *forward_ptr
++ = 0; //second pause for 4050 code
1924 *forward_ptr
++ = cmd
;
1926 *forward_ptr
++ = cmd
;
1928 *forward_ptr
++ = cmd
;
1930 *forward_ptr
++ = cmd
;
1932 return 6; //return number of emited bits
1935 //====================================================================
1936 // prepares address bits
1938 //====================================================================
1940 //--------------------------------------------------------------------
1941 uint8_t Prepare_Addr( uint8_t addr
) {
1942 //--------------------------------------------------------------------
1944 register uint8_t line_parity
;
1949 *forward_ptr
++ = addr
;
1950 line_parity
^= addr
;
1954 *forward_ptr
++ = (line_parity
& 1);
1956 return 7; //return number of emited bits
1959 //====================================================================
1960 // prepares data bits intreleaved with parity bits
1962 //====================================================================
1964 //--------------------------------------------------------------------
1965 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1966 //--------------------------------------------------------------------
1968 register uint8_t line_parity
;
1969 register uint8_t column_parity
;
1970 register uint8_t i
, j
;
1971 register uint16_t data
;
1976 for(i
=0; i
<4; i
++) {
1978 for(j
=0; j
<8; j
++) {
1979 line_parity
^= data
;
1980 column_parity
^= (data
& 1) << j
;
1981 *forward_ptr
++ = data
;
1984 *forward_ptr
++ = line_parity
;
1989 for(j
=0; j
<8; j
++) {
1990 *forward_ptr
++ = column_parity
;
1991 column_parity
>>= 1;
1995 return 45; //return number of emited bits
1998 //====================================================================
1999 // Forward Link send function
2000 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
2001 // fwd_bit_count set with number of bits to be sent
2002 //====================================================================
2003 void SendForward(uint8_t fwd_bit_count
) {
2005 fwd_write_ptr
= forwardLink_data
;
2006 fwd_bit_sz
= fwd_bit_count
;
2011 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
2012 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2013 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
2015 // Give it a bit of time for the resonant antenna to settle.
2016 // And for the tag to fully power up
2019 // force 1st mod pulse (start gap must be longer for 4305)
2020 fwd_bit_sz
--; //prepare next bit modulation
2022 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2023 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
2024 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2025 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
2026 SpinDelayUs(16*8); //16 cycles on (8us each)
2028 // now start writting
2029 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
2030 if(((*fwd_write_ptr
++) & 1) == 1)
2031 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
2033 //These timings work for 4469/4269/4305 (with the 55*8 above)
2034 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2035 SpinDelayUs(23*8); //16-4 cycles off (8us each)
2036 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2037 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
2038 SpinDelayUs(9*8); //16 cycles on (8us each)
2044 void EM4xLogin(uint32_t Password
) {
2046 uint8_t fwd_bit_count
;
2048 forward_ptr
= forwardLink_data
;
2049 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
2050 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
2052 SendForward(fwd_bit_count
);
2054 //Wait for command to complete
2059 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2061 uint8_t *dest
= mifare_get_bigbufptr();
2062 uint16_t bufferlength
= 16000;
2065 // Clear destination buffer before sending the command 0x80 = average.
2066 memset(dest
, 0x80, bufferlength
);
2068 uint8_t fwd_bit_count
;
2070 //If password mode do login
2071 if (PwdMode
== 1) EM4xLogin(Pwd
);
2073 forward_ptr
= forwardLink_data
;
2074 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
2075 fwd_bit_count
+= Prepare_Addr( Address
);
2077 // Connect the A/D to the peak-detected low-frequency path.
2078 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
2079 // Now set up the SSC to get the ADC samples that are now streaming at us.
2082 SendForward(fwd_bit_count
);
2084 // Now do the acquisition
2087 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
2088 AT91C_BASE_SSC
->SSC_THR
= 0x43;
2090 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
2091 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
2093 if (i
>= bufferlength
) break;
2097 cmd_send(CMD_ACK
,0,0,0,0,0);
2098 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2102 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2104 uint8_t fwd_bit_count
;
2106 //If password mode do login
2107 if (PwdMode
== 1) EM4xLogin(Pwd
);
2109 forward_ptr
= forwardLink_data
;
2110 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
2111 fwd_bit_count
+= Prepare_Addr( Address
);
2112 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
2114 SendForward(fwd_bit_count
);
2116 //Wait for write to complete
2118 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off