1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
37 #include "protocols.h"
40 #define abs(x) ( ((x)<0) ? -(x) : (x) )
42 //=============================================================================
43 // A buffer where we can queue things up to be sent through the FPGA, for
44 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
45 // is the order in which they go out on the wire.
46 //=============================================================================
48 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
49 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
52 struct common_area common_area
__attribute__((section(".commonarea")));
54 void ToSendReset(void)
60 void ToSendStuffBit(int b
)
64 ToSend
[ToSendMax
] = 0;
69 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
74 if(ToSendMax
>= sizeof(ToSend
)) {
76 DbpString("ToSendStuffBit overflowed!");
80 //=============================================================================
81 // Debug print functions, to go out over USB, to the usual PC-side client.
82 //=============================================================================
84 void DbpString(char *str
)
86 byte_t len
= strlen(str
);
87 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
91 void DbpIntegers(int x1
, int x2
, int x3
)
93 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
97 void Dbprintf(const char *fmt
, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string
[128];
103 kvsprintf(fmt
, output_string
, 10, ap
);
106 DbpString(output_string
);
109 // prints HEX & ASCII
110 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
123 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
126 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
128 Dbprintf("%*D",l
,d
," ");
136 //-----------------------------------------------------------------------------
137 // Read an ADC channel and block till it completes, then return the result
138 // in ADC units (0 to 1023). Also a routine to average 32 samples and
140 //-----------------------------------------------------------------------------
141 static int ReadAdc(int ch
)
145 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
146 AT91C_BASE_ADC
->ADC_MR
=
147 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
148 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
149 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
151 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
152 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
153 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
156 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
158 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
160 // Note: with the "historic" values in the comments above, the error was 34% !!!
162 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
164 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
166 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
168 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
173 int AvgAdc(int ch
) // was static - merlok
178 for(i
= 0; i
< 32; i
++) {
182 return (a
+ 15) >> 5;
185 void MeasureAntennaTuning(void)
187 uint8_t LF_Results
[256];
188 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
189 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
194 * Sweeps the useful LF range of the proxmark from
195 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
196 * read the voltage in the antenna, the result left
197 * in the buffer is a graph which should clearly show
198 * the resonating frequency of your LF antenna
199 * ( hopefully around 95 if it is tuned to 125kHz!)
202 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
203 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
204 for (i
=255; i
>=19; i
--) {
206 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
208 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
209 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
210 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
212 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
213 if(LF_Results
[i
] > peak
) {
215 peak
= LF_Results
[i
];
221 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
225 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
226 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
228 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
230 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
237 void MeasureAntennaTuningHf(void)
239 int vHf
= 0; // in mV
241 DbpString("Measuring HF antenna, press button to exit");
243 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
244 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
245 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
249 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
251 Dbprintf("%d mV",vHf
);
252 if (BUTTON_PRESS()) break;
254 DbpString("cancelled");
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
261 void ReadMem(int addr
)
263 const uint8_t *data
= ((uint8_t *)addr
);
265 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
266 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
269 /* osimage version information is linked in */
270 extern struct version_information version_information
;
271 /* bootrom version information is pointed to from _bootphase1_version_pointer */
272 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
273 void SendVersion(void)
275 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
276 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
278 /* Try to find the bootrom version information. Expect to find a pointer at
279 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
280 * pointer, then use it.
282 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
283 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
284 strcat(VersionString
, "bootrom version information appears invalid\n");
286 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
287 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
290 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
291 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
295 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
296 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
298 // Send Chip ID and used flash memory
299 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
300 uint32_t compressed_data_section_size
= common_area
.arg1
;
301 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
304 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
305 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
306 void printUSBSpeed(void)
308 Dbprintf("USB Speed:");
309 Dbprintf(" Sending USB packets to client...");
311 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
312 uint8_t *test_data
= BigBuf_get_addr();
315 uint32_t start_time
= end_time
= GetTickCount();
316 uint32_t bytes_transferred
= 0;
319 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
320 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
321 end_time
= GetTickCount();
322 bytes_transferred
+= USB_CMD_DATA_SIZE
;
326 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
327 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
328 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
329 1000 * bytes_transferred
/ (end_time
- start_time
));
334 * Prints runtime information about the PM3.
336 void SendStatus(void)
338 BigBuf_print_status();
340 printConfig(); //LF Sampling config
343 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
344 Dbprintf(" ToSendMax..........%d", ToSendMax
);
345 Dbprintf(" ToSendBit..........%d", ToSendBit
);
346 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
348 cmd_send(CMD_ACK
,1,0,0,0,0);
351 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
354 void StandAloneMode()
356 DbpString("Stand-alone mode! No PC necessary.");
357 // Oooh pretty -- notify user we're in elite samy mode now
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
363 LED(LED_ORANGE
, 200);
365 LED(LED_ORANGE
, 200);
370 #ifdef WITH_ISO14443a_StandAlone
371 void StandAloneMode14a()
374 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
377 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
378 int cardRead
[OPTS
] = {0};
379 uint8_t readUID
[10] = {0};
380 uint32_t uid_1st
[OPTS
]={0};
381 uint32_t uid_2nd
[OPTS
]={0};
382 uint32_t uid_tmp1
= 0;
383 uint32_t uid_tmp2
= 0;
384 iso14a_card_select_t hi14a_card
[OPTS
];
386 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
388 LED(selected
+ 1, 0);
396 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
400 LED(selected
+ 1, 0);
404 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
405 /* need this delay to prevent catching some weird data */
407 /* Code for reading from 14a tag */
408 uint8_t uid
[10] ={0};
410 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
415 if (BUTTON_PRESS()) {
416 if (cardRead
[selected
]) {
417 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
420 else if (cardRead
[(selected
+1)%OPTS
]) {
421 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
422 selected
= (selected
+1)%OPTS
;
423 break; // playing = 1;
426 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
430 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
434 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
435 memcpy(readUID
,uid
,10*sizeof(uint8_t));
436 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
437 // Set UID byte order
438 for (int i
=0; i
<4; i
++)
440 dst
= (uint8_t *)&uid_tmp2
;
441 for (int i
=0; i
<4; i
++)
443 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
444 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
448 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
449 uid_1st
[selected
] = (uid_tmp1
)>>8;
450 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
453 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
454 uid_1st
[selected
] = uid_tmp1
;
455 uid_2nd
[selected
] = uid_tmp2
;
461 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
462 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
465 LED(LED_ORANGE
, 200);
467 LED(LED_ORANGE
, 200);
470 LED(selected
+ 1, 0);
472 // Next state is replay:
475 cardRead
[selected
] = 1;
477 /* MF Classic UID clone */
478 else if (iGotoClone
==1)
482 LED(selected
+ 1, 0);
483 LED(LED_ORANGE
, 250);
486 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
488 // wait for button to be released
489 // Delay cloning until card is in place
490 while(BUTTON_PRESS())
493 Dbprintf("Starting clone. [Bank: %u]", selected
);
494 // need this delay to prevent catching some weird data
496 // Begin clone function here:
497 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
498 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
499 memcpy(c.d.asBytes, data, 16);
502 Block read is similar:
503 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
504 We need to imitate that call with blockNo 0 to set a uid.
506 The get and set commands are handled in this file:
507 // Work with "magic Chinese" card
508 case CMD_MIFARE_CSETBLOCK:
509 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
511 case CMD_MIFARE_CGETBLOCK:
512 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
515 mfCSetUID provides example logic for UID set workflow:
516 -Read block0 from card in field with MifareCGetBlock()
517 -Configure new values without replacing reserved bytes
518 memcpy(block0, uid, 4); // Copy UID bytes from byte array
520 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
521 Bytes 5-7 are reserved SAK and ATQA for mifare classic
522 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
524 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
525 // arg0 = Flags, arg1=blockNo
526 MifareCGetBlock(params
, 0, oldBlock0
);
527 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
528 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
532 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
533 memcpy(newBlock0
,oldBlock0
,16);
534 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
536 newBlock0
[0] = uid_1st
[selected
]>>24;
537 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
538 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
539 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
540 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
542 // arg0 = workFlags, arg1 = blockNo, datain
543 MifareCSetBlock(params
, 0, newBlock0
);
544 MifareCGetBlock(params
, 0, testBlock0
);
546 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
547 DbpString("Cloned successfull!");
548 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
551 selected
= (selected
+ 1) % OPTS
;
553 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
558 LED(selected
+ 1, 0);
560 // Change where to record (or begin playing)
561 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
564 LED(selected
+ 1, 0);
566 // Begin transmitting
570 DbpString("Playing");
573 int button_action
= BUTTON_HELD(1000);
574 if (button_action
== 0) { // No button action, proceed with sim
575 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
576 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
577 num_to_bytes(uid_1st
[selected
], 3, data
);
578 num_to_bytes(uid_2nd
[selected
], 4, data
);
580 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
581 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
582 DbpString("Mifare Classic");
583 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
585 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
586 DbpString("Mifare Ultralight");
587 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
589 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
590 DbpString("Mifare DESFire");
591 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
594 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
595 SimulateIso14443aTag(1, flags
, data
);
598 else if (button_action
== BUTTON_SINGLE_CLICK
) {
599 selected
= (selected
+ 1) % OPTS
;
600 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
604 else if (button_action
== BUTTON_HOLD
) {
605 Dbprintf("Playtime over. Begin cloning...");
612 /* We pressed a button so ignore it here with a delay */
615 LED(selected
+ 1, 0);
618 while(BUTTON_PRESS())
624 // samy's sniff and repeat routine
628 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
630 int high
[OPTS
], low
[OPTS
];
635 // Turn on selected LED
636 LED(selected
+ 1, 0);
642 // Was our button held down or pressed?
643 int button_pressed
= BUTTON_HELD(1000);
646 // Button was held for a second, begin recording
647 if (button_pressed
> 0 && cardRead
== 0)
650 LED(selected
+ 1, 0);
654 DbpString("Starting recording");
656 // wait for button to be released
657 while(BUTTON_PRESS())
660 /* need this delay to prevent catching some weird data */
663 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
664 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
667 LED(selected
+ 1, 0);
668 // Finished recording
669 // If we were previously playing, set playing off
670 // so next button push begins playing what we recorded
674 else if (button_pressed
> 0 && cardRead
== 1) {
676 LED(selected
+ 1, 0);
680 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
682 // wait for button to be released
683 while(BUTTON_PRESS())
686 /* need this delay to prevent catching some weird data */
689 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
690 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
693 LED(selected
+ 1, 0);
694 // Finished recording
696 // If we were previously playing, set playing off
697 // so next button push begins playing what we recorded
702 // Change where to record (or begin playing)
703 else if (button_pressed
) {
704 // Next option if we were previously playing
706 selected
= (selected
+ 1) % OPTS
;
710 LED(selected
+ 1, 0);
712 // Begin transmitting
716 DbpString("Playing");
717 // wait for button to be released
718 while(BUTTON_PRESS())
720 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
721 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
722 DbpString("Done playing");
723 if (BUTTON_HELD(1000) > 0)
725 DbpString("Exiting");
730 /* We pressed a button so ignore it here with a delay */
733 // when done, we're done playing, move to next option
734 selected
= (selected
+ 1) % OPTS
;
737 LED(selected
+ 1, 0);
740 while(BUTTON_PRESS())
749 Listen and detect an external reader. Determine the best location
753 Inside the ListenReaderField() function, there is two mode.
754 By default, when you call the function, you will enter mode 1.
755 If you press the PM3 button one time, you will enter mode 2.
756 If you press the PM3 button a second time, you will exit the function.
758 DESCRIPTION OF MODE 1:
759 This mode just listens for an external reader field and lights up green
760 for HF and/or red for LF. This is the original mode of the detectreader
763 DESCRIPTION OF MODE 2:
764 This mode will visually represent, using the LEDs, the actual strength of the
765 current compared to the maximum current detected. Basically, once you know
766 what kind of external reader is present, it will help you spot the best location to place
767 your antenna. You will probably not get some good results if there is a LF and a HF reader
768 at the same place! :-)
772 static const char LIGHT_SCHEME
[] = {
773 0x0, /* ---- | No field detected */
774 0x1, /* X--- | 14% of maximum current detected */
775 0x2, /* -X-- | 29% of maximum current detected */
776 0x4, /* --X- | 43% of maximum current detected */
777 0x8, /* ---X | 57% of maximum current detected */
778 0xC, /* --XX | 71% of maximum current detected */
779 0xE, /* -XXX | 86% of maximum current detected */
780 0xF, /* XXXX | 100% of maximum current detected */
782 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
784 void ListenReaderField(int limit
)
786 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
787 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
788 int mode
=1, display_val
, display_max
, i
;
792 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
795 // switch off FPGA - we don't want to measure our own signal
796 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
797 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
801 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
803 if(limit
!= HF_ONLY
) {
804 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
808 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
810 if (limit
!= LF_ONLY
) {
811 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
816 if (BUTTON_PRESS()) {
821 DbpString("Signal Strength Mode");
825 DbpString("Stopped");
833 if (limit
!= HF_ONLY
) {
835 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
841 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
842 // see if there's a significant change
843 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
844 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
851 if (limit
!= LF_ONLY
) {
853 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
859 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
860 // see if there's a significant change
861 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
862 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
870 if (limit
== LF_ONLY
) {
872 display_max
= lf_max
;
873 } else if (limit
== HF_ONLY
) {
875 display_max
= hf_max
;
876 } else { /* Pick one at random */
877 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
879 display_max
= hf_max
;
882 display_max
= lf_max
;
885 for (i
=0; i
<LIGHT_LEN
; i
++) {
886 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
887 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
888 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
889 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
890 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
898 void UsbPacketReceived(uint8_t *packet
, int len
)
900 UsbCommand
*c
= (UsbCommand
*)packet
;
902 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
906 case CMD_SET_LF_SAMPLING_CONFIG
:
907 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
909 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
910 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
912 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
913 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
915 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
916 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
918 case CMD_HID_DEMOD_FSK
:
919 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
921 case CMD_HID_SIM_TAG
:
922 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
924 case CMD_FSK_SIM_TAG
:
925 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
927 case CMD_ASK_SIM_TAG
:
928 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
930 case CMD_PSK_SIM_TAG
:
931 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
933 case CMD_HID_CLONE_TAG
:
934 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
936 case CMD_IO_DEMOD_FSK
:
937 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
939 case CMD_IO_CLONE_TAG
:
940 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
942 case CMD_EM410X_DEMOD
:
943 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
945 case CMD_EM410X_WRITE_TAG
:
946 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
948 case CMD_READ_TI_TYPE
:
951 case CMD_WRITE_TI_TYPE
:
952 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
954 case CMD_SIMULATE_TAG_125K
:
956 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
959 case CMD_LF_SIMULATE_BIDIR
:
960 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
962 case CMD_INDALA_CLONE_TAG
:
963 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
965 case CMD_INDALA_CLONE_TAG_L
:
966 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
968 case CMD_T55XX_READ_BLOCK
:
969 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
971 case CMD_T55XX_WRITE_BLOCK
:
972 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
974 case CMD_T55XX_WAKEUP
:
975 T55xxWakeUp(c
->arg
[0]);
977 case CMD_T55XX_RESET_READ
:
980 case CMD_PCF7931_READ
:
983 case CMD_PCF7931_WRITE
:
984 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
986 case CMD_EM4X_READ_WORD
:
987 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
989 case CMD_EM4X_WRITE_WORD
:
990 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
992 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
993 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
995 case CMD_VIKING_CLONE_TAG
:
996 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1001 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1002 SnoopHitag(c
->arg
[0]);
1004 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1005 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1007 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1008 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1012 #ifdef WITH_ISO15693
1013 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1014 AcquireRawAdcSamplesIso15693();
1016 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1017 RecordRawAdcSamplesIso15693();
1020 case CMD_ISO_15693_COMMAND
:
1021 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1024 case CMD_ISO_15693_FIND_AFI
:
1025 BruteforceIso15693Afi(c
->arg
[0]);
1028 case CMD_ISO_15693_DEBUG
:
1029 SetDebugIso15693(c
->arg
[0]);
1032 case CMD_READER_ISO_15693
:
1033 ReaderIso15693(c
->arg
[0]);
1035 case CMD_SIMTAG_ISO_15693
:
1036 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1041 case CMD_SIMULATE_TAG_LEGIC_RF
:
1042 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1045 case CMD_WRITER_LEGIC_RF
:
1046 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1049 case CMD_READER_LEGIC_RF
:
1050 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1054 #ifdef WITH_ISO14443b
1055 case CMD_READ_SRI512_TAG
:
1056 ReadSTMemoryIso14443b(0x0F);
1058 case CMD_READ_SRIX4K_TAG
:
1059 ReadSTMemoryIso14443b(0x7F);
1061 case CMD_SNOOP_ISO_14443B
:
1064 case CMD_SIMULATE_TAG_ISO_14443B
:
1065 SimulateIso14443bTag();
1067 case CMD_ISO_14443B_COMMAND
:
1068 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1072 #ifdef WITH_ISO14443a
1073 case CMD_SNOOP_ISO_14443a
:
1074 SniffIso14443a(c
->arg
[0]);
1076 case CMD_READER_ISO_14443a
:
1079 case CMD_SIMULATE_TAG_ISO_14443a
:
1080 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1083 case CMD_EPA_PACE_COLLECT_NONCE
:
1084 EPA_PACE_Collect_Nonce(c
);
1086 case CMD_EPA_PACE_REPLAY
:
1090 case CMD_READER_MIFARE
:
1091 ReaderMifare(c
->arg
[0]);
1093 case CMD_MIFARE_READBL
:
1094 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1096 case CMD_MIFAREU_READBL
:
1097 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1099 case CMD_MIFAREUC_AUTH
:
1100 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1102 case CMD_MIFAREU_READCARD
:
1103 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1105 case CMD_MIFAREUC_SETPWD
:
1106 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1108 case CMD_MIFARE_READSC
:
1109 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1111 case CMD_MIFARE_WRITEBL
:
1112 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1114 //case CMD_MIFAREU_WRITEBL_COMPAT:
1115 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1117 case CMD_MIFAREU_WRITEBL
:
1118 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1120 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1121 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1123 case CMD_MIFARE_NESTED
:
1124 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1126 case CMD_MIFARE_CHKKEYS
:
1127 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1129 case CMD_SIMULATE_MIFARE_CARD
:
1130 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1134 case CMD_MIFARE_SET_DBGMODE
:
1135 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1137 case CMD_MIFARE_EML_MEMCLR
:
1138 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1140 case CMD_MIFARE_EML_MEMSET
:
1141 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1143 case CMD_MIFARE_EML_MEMGET
:
1144 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1146 case CMD_MIFARE_EML_CARDLOAD
:
1147 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1150 // Work with "magic Chinese" card
1151 case CMD_MIFARE_CSETBLOCK
:
1152 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1154 case CMD_MIFARE_CGETBLOCK
:
1155 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1157 case CMD_MIFARE_CIDENT
:
1162 case CMD_MIFARE_SNIFFER
:
1163 SniffMifare(c
->arg
[0]);
1167 case CMD_MIFARE_DESFIRE_READBL
: break;
1168 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1169 case CMD_MIFARE_DESFIRE_AUTH1
:
1170 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1172 case CMD_MIFARE_DESFIRE_AUTH2
:
1173 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1175 case CMD_MIFARE_DES_READER
:
1176 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1178 case CMD_MIFARE_DESFIRE_INFO
:
1179 MifareDesfireGetInformation();
1181 case CMD_MIFARE_DESFIRE
:
1182 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1185 case CMD_MIFARE_COLLECT_NONCES
:
1190 // Makes use of ISO14443a FPGA Firmware
1191 case CMD_SNOOP_ICLASS
:
1194 case CMD_SIMULATE_TAG_ICLASS
:
1195 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1197 case CMD_READER_ICLASS
:
1198 ReaderIClass(c
->arg
[0]);
1200 case CMD_READER_ICLASS_REPLAY
:
1201 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1203 case CMD_ICLASS_EML_MEMSET
:
1204 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1206 case CMD_ICLASS_WRITEBLOCK
:
1207 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1209 case CMD_ICLASS_READCHECK
: // auth step 1
1210 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1212 case CMD_ICLASS_READBLOCK
:
1213 iClass_ReadBlk(c
->arg
[0]);
1215 case CMD_ICLASS_AUTHENTICATION
: //check
1216 iClass_Authentication(c
->d
.asBytes
);
1218 case CMD_ICLASS_DUMP
:
1219 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1221 case CMD_ICLASS_CLONE
:
1222 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1226 case CMD_HF_SNIFFER
:
1227 HfSnoop(c
->arg
[0], c
->arg
[1]);
1231 case CMD_BUFF_CLEAR
:
1235 case CMD_MEASURE_ANTENNA_TUNING
:
1236 MeasureAntennaTuning();
1239 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1240 MeasureAntennaTuningHf();
1243 case CMD_LISTEN_READER_FIELD
:
1244 ListenReaderField(c
->arg
[0]);
1247 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1250 LED_D_OFF(); // LED D indicates field ON or OFF
1253 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1256 uint8_t *BigBuf
= BigBuf_get_addr();
1258 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1259 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1260 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1262 // Trigger a finish downloading signal with an ACK frame
1263 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1267 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1268 uint8_t *b
= BigBuf_get_addr();
1269 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1270 cmd_send(CMD_ACK
,0,0,0,0,0);
1277 case CMD_SET_LF_DIVISOR
:
1278 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1279 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1282 case CMD_SET_ADC_MUX
:
1284 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1285 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1286 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1287 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1298 cmd_send(CMD_ACK
,0,0,0,0,0);
1308 case CMD_SETUP_WRITE
:
1309 case CMD_FINISH_WRITE
:
1310 case CMD_HARDWARE_RESET
:
1313 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1315 // We're going to reset, and the bootrom will take control.
1319 case CMD_START_FLASH
:
1320 if(common_area
.flags
.bootrom_present
) {
1321 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1324 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1328 case CMD_DEVICE_INFO
: {
1329 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1330 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1331 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1335 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1340 void __attribute__((noreturn
)) AppMain(void)
1344 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1345 /* Initialize common area */
1346 memset(&common_area
, 0, sizeof(common_area
));
1347 common_area
.magic
= COMMON_AREA_MAGIC
;
1348 common_area
.version
= 1;
1350 common_area
.flags
.osimage_present
= 1;
1360 // The FPGA gets its clock from us from PCK0 output, so set that up.
1361 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1362 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1363 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1364 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1365 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1366 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1367 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1370 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1372 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1374 // Load the FPGA image, which we have stored in our flash.
1375 // (the HF version by default)
1376 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1384 byte_t rx
[sizeof(UsbCommand
)];
1389 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1391 UsbPacketReceived(rx
,rx_len
);
1397 #ifndef WITH_ISO14443a_StandAlone
1398 if (BUTTON_HELD(1000) > 0)
1402 #ifdef WITH_ISO14443a
1403 #ifdef WITH_ISO14443a_StandAlone
1404 if (BUTTON_HELD(1000) > 0)
1405 StandAloneMode14a();