]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
FIX: Coverity, logical vs bitwise operator, remove the extra '&' for it to become...
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #include "BigBuf.h"
28 #include "mifareutil.h"
29 #include "pcf7931.h"
30 #ifdef WITH_LCD
31 #include "LCD.h"
32 #endif
33
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
37 #include "protocols.h"
38 #endif
39
40 #define abs(x) ( ((x)<0) ? -(x) : (x) )
41
42 //=============================================================================
43 // A buffer where we can queue things up to be sent through the FPGA, for
44 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
45 // is the order in which they go out on the wire.
46 //=============================================================================
47
48 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
49 uint8_t ToSend[TOSEND_BUFFER_SIZE];
50 int ToSendMax = 0;
51 static int ToSendBit;
52 struct common_area common_area __attribute__((section(".commonarea")));
53
54 void ToSendReset(void)
55 {
56 ToSendMax = -1;
57 ToSendBit = 8;
58 }
59
60 void ToSendStuffBit(int b)
61 {
62 if(ToSendBit >= 8) {
63 ToSendMax++;
64 ToSend[ToSendMax] = 0;
65 ToSendBit = 0;
66 }
67
68 if(b) {
69 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
70 }
71
72 ToSendBit++;
73
74 if(ToSendMax >= sizeof(ToSend)) {
75 ToSendBit = 0;
76 DbpString("ToSendStuffBit overflowed!");
77 }
78 }
79
80 //=============================================================================
81 // Debug print functions, to go out over USB, to the usual PC-side client.
82 //=============================================================================
83
84 void DbpString(char *str)
85 {
86 byte_t len = strlen(str);
87 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
88 }
89
90 #if 0
91 void DbpIntegers(int x1, int x2, int x3)
92 {
93 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
94 }
95 #endif
96
97 void Dbprintf(const char *fmt, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string[128];
100 va_list ap;
101
102 va_start(ap, fmt);
103 kvsprintf(fmt, output_string, 10, ap);
104 va_end(ap);
105
106 DbpString(output_string);
107 }
108
109 // prints HEX & ASCII
110 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
111 int l=0,i;
112 char ascii[9];
113
114 while (len>0) {
115 if (len>8) l=8;
116 else l=len;
117
118 memcpy(ascii,d,l);
119 ascii[l]=0;
120
121 // filter safe ascii
122 for (i=0;i<l;i++)
123 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
124
125 if (bAsci) {
126 Dbprintf("%-8s %*D",ascii,l,d," ");
127 } else {
128 Dbprintf("%*D",l,d," ");
129 }
130
131 len-=8;
132 d+=8;
133 }
134 }
135
136 //-----------------------------------------------------------------------------
137 // Read an ADC channel and block till it completes, then return the result
138 // in ADC units (0 to 1023). Also a routine to average 32 samples and
139 // return that.
140 //-----------------------------------------------------------------------------
141 static int ReadAdc(int ch)
142 {
143 uint32_t d;
144
145 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
146 AT91C_BASE_ADC->ADC_MR =
147 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
148 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
149 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
150
151 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
152 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
153 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 //
155 // The maths are:
156 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
157 //
158 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
159 //
160 // Note: with the "historic" values in the comments above, the error was 34% !!!
161
162 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
163
164 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
165
166 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
167 ;
168 d = AT91C_BASE_ADC->ADC_CDR[ch];
169
170 return d;
171 }
172
173 int AvgAdc(int ch) // was static - merlok
174 {
175 int i;
176 int a = 0;
177
178 for(i = 0; i < 32; i++) {
179 a += ReadAdc(ch);
180 }
181
182 return (a + 15) >> 5;
183 }
184
185 void MeasureAntennaTuning(void)
186 {
187 uint8_t LF_Results[256];
188 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
189 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
190
191 LED_B_ON();
192
193 /*
194 * Sweeps the useful LF range of the proxmark from
195 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
196 * read the voltage in the antenna, the result left
197 * in the buffer is a graph which should clearly show
198 * the resonating frequency of your LF antenna
199 * ( hopefully around 95 if it is tuned to 125kHz!)
200 */
201
202 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
203 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
204 for (i=255; i>=19; i--) {
205 WDT_HIT();
206 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
207 SpinDelay(20);
208 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
209 if (i==95) vLf125 = adcval; // voltage at 125Khz
210 if (i==89) vLf134 = adcval; // voltage at 134Khz
211
212 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
213 if(LF_Results[i] > peak) {
214 peakv = adcval;
215 peak = LF_Results[i];
216 peakf = i;
217 //ptr = i;
218 }
219 }
220
221 for (i=18; i >= 0; i--) LF_Results[i] = 0;
222
223 LED_A_ON();
224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
225 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
226 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
227 SpinDelay(20);
228 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
229
230 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
232 LED_A_OFF();
233 LED_B_OFF();
234 return;
235 }
236
237 void MeasureAntennaTuningHf(void)
238 {
239 int vHf = 0; // in mV
240
241 DbpString("Measuring HF antenna, press button to exit");
242
243 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
244 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
245 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
246
247 for (;;) {
248 SpinDelay(20);
249 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
250
251 Dbprintf("%d mV",vHf);
252 if (BUTTON_PRESS()) break;
253 }
254 DbpString("cancelled");
255
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
257
258 }
259
260
261 void ReadMem(int addr)
262 {
263 const uint8_t *data = ((uint8_t *)addr);
264
265 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
266 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
267 }
268
269 /* osimage version information is linked in */
270 extern struct version_information version_information;
271 /* bootrom version information is pointed to from _bootphase1_version_pointer */
272 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
273 void SendVersion(void)
274 {
275 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
276 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
277
278 /* Try to find the bootrom version information. Expect to find a pointer at
279 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
280 * pointer, then use it.
281 */
282 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
283 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
284 strcat(VersionString, "bootrom version information appears invalid\n");
285 } else {
286 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
287 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
288 }
289
290 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
291 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
292
293 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
295 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
296 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
297
298 // Send Chip ID and used flash memory
299 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
300 uint32_t compressed_data_section_size = common_area.arg1;
301 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
302 }
303
304 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
305 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
306 void printUSBSpeed(void)
307 {
308 Dbprintf("USB Speed:");
309 Dbprintf(" Sending USB packets to client...");
310
311 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
312 uint8_t *test_data = BigBuf_get_addr();
313 uint32_t end_time;
314
315 uint32_t start_time = end_time = GetTickCount();
316 uint32_t bytes_transferred = 0;
317
318 LED_B_ON();
319 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
320 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
321 end_time = GetTickCount();
322 bytes_transferred += USB_CMD_DATA_SIZE;
323 }
324 LED_B_OFF();
325
326 Dbprintf(" Time elapsed: %dms", end_time - start_time);
327 Dbprintf(" Bytes transferred: %d", bytes_transferred);
328 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
329 1000 * bytes_transferred / (end_time - start_time));
330
331 }
332
333 /**
334 * Prints runtime information about the PM3.
335 **/
336 void SendStatus(void)
337 {
338 BigBuf_print_status();
339 Fpga_print_status();
340 printConfig(); //LF Sampling config
341 printUSBSpeed();
342 Dbprintf("Various");
343 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
344 Dbprintf(" ToSendMax..........%d", ToSendMax);
345 Dbprintf(" ToSendBit..........%d", ToSendBit);
346 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
347
348 cmd_send(CMD_ACK,1,0,0,0,0);
349 }
350
351 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
352
353 #define OPTS 2
354 void StandAloneMode()
355 {
356 DbpString("Stand-alone mode! No PC necessary.");
357 // Oooh pretty -- notify user we're in elite samy mode now
358 LED(LED_RED, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_GREEN, 200);
361 LED(LED_ORANGE, 200);
362 LED(LED_RED, 200);
363 LED(LED_ORANGE, 200);
364 LED(LED_GREEN, 200);
365 LED(LED_ORANGE, 200);
366 LED(LED_RED, 200);
367 }
368 #endif
369
370 #ifdef WITH_ISO14443a_StandAlone
371 void StandAloneMode14a()
372 {
373 StandAloneMode();
374 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
375
376 int selected = 0;
377 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
378 int cardRead[OPTS] = {0};
379 uint8_t readUID[10] = {0};
380 uint32_t uid_1st[OPTS]={0};
381 uint32_t uid_2nd[OPTS]={0};
382 uint32_t uid_tmp1 = 0;
383 uint32_t uid_tmp2 = 0;
384 iso14a_card_select_t hi14a_card[OPTS];
385
386 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
387
388 LED(selected + 1, 0);
389
390 for (;;)
391 {
392 usb_poll();
393 WDT_HIT();
394 SpinDelay(300);
395
396 if (iGotoRecord == 1 || cardRead[selected] == 0)
397 {
398 iGotoRecord = 0;
399 LEDsoff();
400 LED(selected + 1, 0);
401 LED(LED_RED2, 0);
402
403 // record
404 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
405 /* need this delay to prevent catching some weird data */
406 SpinDelay(500);
407 /* Code for reading from 14a tag */
408 uint8_t uid[10] ={0};
409 uint32_t cuid;
410 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
411
412 for ( ; ; )
413 {
414 WDT_HIT();
415 if (BUTTON_PRESS()) {
416 if (cardRead[selected]) {
417 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
418 break;
419 }
420 else if (cardRead[(selected+1)%OPTS]) {
421 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
422 selected = (selected+1)%OPTS;
423 break; // playing = 1;
424 }
425 else {
426 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
427 SpinDelay(300);
428 }
429 }
430 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0))
431 continue;
432 else
433 {
434 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
435 memcpy(readUID,uid,10*sizeof(uint8_t));
436 uint8_t *dst = (uint8_t *)&uid_tmp1;
437 // Set UID byte order
438 for (int i=0; i<4; i++)
439 dst[i] = uid[3-i];
440 dst = (uint8_t *)&uid_tmp2;
441 for (int i=0; i<4; i++)
442 dst[i] = uid[7-i];
443 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
444 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
445 }
446 else {
447 if (uid_tmp2) {
448 Dbprintf("Bank[%d] received a 7-byte UID",selected);
449 uid_1st[selected] = (uid_tmp1)>>8;
450 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
451 }
452 else {
453 Dbprintf("Bank[%d] received a 4-byte UID",selected);
454 uid_1st[selected] = uid_tmp1;
455 uid_2nd[selected] = uid_tmp2;
456 }
457 break;
458 }
459 }
460 }
461 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
462 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
463 LEDsoff();
464 LED(LED_GREEN, 200);
465 LED(LED_ORANGE, 200);
466 LED(LED_GREEN, 200);
467 LED(LED_ORANGE, 200);
468
469 LEDsoff();
470 LED(selected + 1, 0);
471
472 // Next state is replay:
473 playing = 1;
474
475 cardRead[selected] = 1;
476 }
477 /* MF Classic UID clone */
478 else if (iGotoClone==1)
479 {
480 iGotoClone=0;
481 LEDsoff();
482 LED(selected + 1, 0);
483 LED(LED_ORANGE, 250);
484
485 // record
486 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
487
488 // wait for button to be released
489 // Delay cloning until card is in place
490 while(BUTTON_PRESS())
491 WDT_HIT();
492
493 Dbprintf("Starting clone. [Bank: %u]", selected);
494 // need this delay to prevent catching some weird data
495 SpinDelay(500);
496 // Begin clone function here:
497 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
498 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
499 memcpy(c.d.asBytes, data, 16);
500 SendCommand(&c);
501
502 Block read is similar:
503 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
504 We need to imitate that call with blockNo 0 to set a uid.
505
506 The get and set commands are handled in this file:
507 // Work with "magic Chinese" card
508 case CMD_MIFARE_CSETBLOCK:
509 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
510 break;
511 case CMD_MIFARE_CGETBLOCK:
512 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
513 break;
514
515 mfCSetUID provides example logic for UID set workflow:
516 -Read block0 from card in field with MifareCGetBlock()
517 -Configure new values without replacing reserved bytes
518 memcpy(block0, uid, 4); // Copy UID bytes from byte array
519 // Mifare UID BCC
520 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
521 Bytes 5-7 are reserved SAK and ATQA for mifare classic
522 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
523 */
524 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
525 // arg0 = Flags, arg1=blockNo
526 MifareCGetBlock(params, 0, oldBlock0);
527 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
528 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
529 playing = 1;
530 }
531 else {
532 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
533 memcpy(newBlock0,oldBlock0,16);
534 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
535
536 newBlock0[0] = uid_1st[selected]>>24;
537 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
538 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
539 newBlock0[3] = 0xFF & (uid_1st[selected]);
540 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
541
542 // arg0 = workFlags, arg1 = blockNo, datain
543 MifareCSetBlock(params, 0, newBlock0);
544 MifareCGetBlock(params, 0, testBlock0);
545
546 if (memcmp(testBlock0, newBlock0, 16)==0) {
547 DbpString("Cloned successfull!");
548 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
549 playing = 0;
550 iGotoRecord = 1;
551 selected = (selected + 1) % OPTS;
552 } else {
553 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
554 playing = 1;
555 }
556 }
557 LEDsoff();
558 LED(selected + 1, 0);
559 }
560 // Change where to record (or begin playing)
561 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
562 {
563 LEDsoff();
564 LED(selected + 1, 0);
565
566 // Begin transmitting
567 if (playing)
568 {
569 LED(LED_GREEN, 0);
570 DbpString("Playing");
571 for ( ; ; ) {
572 WDT_HIT();
573 int button_action = BUTTON_HELD(1000);
574 if (button_action == 0) { // No button action, proceed with sim
575 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
576 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
577 num_to_bytes(uid_1st[selected], 3, data);
578 num_to_bytes(uid_2nd[selected], 4, data);
579
580 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
581 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
582 DbpString("Mifare Classic");
583 SimulateIso14443aTag(1, flags, data); // Mifare Classic
584 }
585 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
586 DbpString("Mifare Ultralight");
587 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
588 }
589 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
590 DbpString("Mifare DESFire");
591 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
592 }
593 else {
594 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
595 SimulateIso14443aTag(1, flags, data);
596 }
597 }
598 else if (button_action == BUTTON_SINGLE_CLICK) {
599 selected = (selected + 1) % OPTS;
600 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
601 iGotoRecord = 1;
602 break;
603 }
604 else if (button_action == BUTTON_HOLD) {
605 Dbprintf("Playtime over. Begin cloning...");
606 iGotoClone = 1;
607 break;
608 }
609 WDT_HIT();
610 }
611
612 /* We pressed a button so ignore it here with a delay */
613 SpinDelay(300);
614 LEDsoff();
615 LED(selected + 1, 0);
616 }
617 else
618 while(BUTTON_PRESS())
619 WDT_HIT();
620 }
621 }
622 }
623 #elif WITH_LF
624 // samy's sniff and repeat routine
625 void SamyRun()
626 {
627 StandAloneMode();
628 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
629
630 int high[OPTS], low[OPTS];
631 int selected = 0;
632 int playing = 0;
633 int cardRead = 0;
634
635 // Turn on selected LED
636 LED(selected + 1, 0);
637
638 for (;;) {
639 usb_poll();
640 WDT_HIT();
641
642 // Was our button held down or pressed?
643 int button_pressed = BUTTON_HELD(1000);
644 SpinDelay(300);
645
646 // Button was held for a second, begin recording
647 if (button_pressed > 0 && cardRead == 0)
648 {
649 LEDsoff();
650 LED(selected + 1, 0);
651 LED(LED_RED2, 0);
652
653 // record
654 DbpString("Starting recording");
655
656 // wait for button to be released
657 while(BUTTON_PRESS())
658 WDT_HIT();
659
660 /* need this delay to prevent catching some weird data */
661 SpinDelay(500);
662
663 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
664 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
665
666 LEDsoff();
667 LED(selected + 1, 0);
668 // Finished recording
669 // If we were previously playing, set playing off
670 // so next button push begins playing what we recorded
671 playing = 0;
672 cardRead = 1;
673 }
674 else if (button_pressed > 0 && cardRead == 1) {
675 LEDsoff();
676 LED(selected + 1, 0);
677 LED(LED_ORANGE, 0);
678
679 // record
680 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
681
682 // wait for button to be released
683 while(BUTTON_PRESS())
684 WDT_HIT();
685
686 /* need this delay to prevent catching some weird data */
687 SpinDelay(500);
688
689 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
690 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
691
692 LEDsoff();
693 LED(selected + 1, 0);
694 // Finished recording
695
696 // If we were previously playing, set playing off
697 // so next button push begins playing what we recorded
698 playing = 0;
699 cardRead = 0;
700 }
701
702 // Change where to record (or begin playing)
703 else if (button_pressed) {
704 // Next option if we were previously playing
705 if (playing)
706 selected = (selected + 1) % OPTS;
707 playing = !playing;
708
709 LEDsoff();
710 LED(selected + 1, 0);
711
712 // Begin transmitting
713 if (playing)
714 {
715 LED(LED_GREEN, 0);
716 DbpString("Playing");
717 // wait for button to be released
718 while(BUTTON_PRESS())
719 WDT_HIT();
720 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
721 CmdHIDsimTAG(high[selected], low[selected], 0);
722 DbpString("Done playing");
723 if (BUTTON_HELD(1000) > 0)
724 {
725 DbpString("Exiting");
726 LEDsoff();
727 return;
728 }
729
730 /* We pressed a button so ignore it here with a delay */
731 SpinDelay(300);
732
733 // when done, we're done playing, move to next option
734 selected = (selected + 1) % OPTS;
735 playing = !playing;
736 LEDsoff();
737 LED(selected + 1, 0);
738 }
739 else
740 while(BUTTON_PRESS())
741 WDT_HIT();
742 }
743 }
744 }
745
746 #endif
747 /*
748 OBJECTIVE
749 Listen and detect an external reader. Determine the best location
750 for the antenna.
751
752 INSTRUCTIONS:
753 Inside the ListenReaderField() function, there is two mode.
754 By default, when you call the function, you will enter mode 1.
755 If you press the PM3 button one time, you will enter mode 2.
756 If you press the PM3 button a second time, you will exit the function.
757
758 DESCRIPTION OF MODE 1:
759 This mode just listens for an external reader field and lights up green
760 for HF and/or red for LF. This is the original mode of the detectreader
761 function.
762
763 DESCRIPTION OF MODE 2:
764 This mode will visually represent, using the LEDs, the actual strength of the
765 current compared to the maximum current detected. Basically, once you know
766 what kind of external reader is present, it will help you spot the best location to place
767 your antenna. You will probably not get some good results if there is a LF and a HF reader
768 at the same place! :-)
769
770 LIGHT SCHEME USED:
771 */
772 static const char LIGHT_SCHEME[] = {
773 0x0, /* ---- | No field detected */
774 0x1, /* X--- | 14% of maximum current detected */
775 0x2, /* -X-- | 29% of maximum current detected */
776 0x4, /* --X- | 43% of maximum current detected */
777 0x8, /* ---X | 57% of maximum current detected */
778 0xC, /* --XX | 71% of maximum current detected */
779 0xE, /* -XXX | 86% of maximum current detected */
780 0xF, /* XXXX | 100% of maximum current detected */
781 };
782 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
783
784 void ListenReaderField(int limit)
785 {
786 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
787 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
788 int mode=1, display_val, display_max, i;
789
790 #define LF_ONLY 1
791 #define HF_ONLY 2
792 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
793
794
795 // switch off FPGA - we don't want to measure our own signal
796 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
797 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
798
799 LEDsoff();
800
801 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
802
803 if(limit != HF_ONLY) {
804 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
805 lf_baseline = lf_av;
806 }
807
808 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
809
810 if (limit != LF_ONLY) {
811 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
812 hf_baseline = hf_av;
813 }
814
815 for(;;) {
816 if (BUTTON_PRESS()) {
817 SpinDelay(500);
818 switch (mode) {
819 case 1:
820 mode=2;
821 DbpString("Signal Strength Mode");
822 break;
823 case 2:
824 default:
825 DbpString("Stopped");
826 LEDsoff();
827 return;
828 break;
829 }
830 }
831 WDT_HIT();
832
833 if (limit != HF_ONLY) {
834 if(mode == 1) {
835 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
836 LED_D_ON();
837 else
838 LED_D_OFF();
839 }
840
841 lf_av_new = AvgAdc(ADC_CHAN_LF);
842 // see if there's a significant change
843 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
844 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
845 lf_av = lf_av_new;
846 if (lf_av > lf_max)
847 lf_max = lf_av;
848 }
849 }
850
851 if (limit != LF_ONLY) {
852 if (mode == 1){
853 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
854 LED_B_ON();
855 else
856 LED_B_OFF();
857 }
858
859 hf_av_new = AvgAdc(ADC_CHAN_HF);
860 // see if there's a significant change
861 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
862 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
863 hf_av = hf_av_new;
864 if (hf_av > hf_max)
865 hf_max = hf_av;
866 }
867 }
868
869 if(mode == 2) {
870 if (limit == LF_ONLY) {
871 display_val = lf_av;
872 display_max = lf_max;
873 } else if (limit == HF_ONLY) {
874 display_val = hf_av;
875 display_max = hf_max;
876 } else { /* Pick one at random */
877 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
878 display_val = hf_av;
879 display_max = hf_max;
880 } else {
881 display_val = lf_av;
882 display_max = lf_max;
883 }
884 }
885 for (i=0; i<LIGHT_LEN; i++) {
886 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
887 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
888 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
889 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
890 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
891 break;
892 }
893 }
894 }
895 }
896 }
897
898 void UsbPacketReceived(uint8_t *packet, int len)
899 {
900 UsbCommand *c = (UsbCommand *)packet;
901
902 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
903
904 switch(c->cmd) {
905 #ifdef WITH_LF
906 case CMD_SET_LF_SAMPLING_CONFIG:
907 setSamplingConfig((sample_config *) c->d.asBytes);
908 break;
909 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
910 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
911 break;
912 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
913 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
914 break;
915 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
916 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
917 break;
918 case CMD_HID_DEMOD_FSK:
919 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
920 break;
921 case CMD_HID_SIM_TAG:
922 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
923 break;
924 case CMD_FSK_SIM_TAG:
925 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
926 break;
927 case CMD_ASK_SIM_TAG:
928 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
929 break;
930 case CMD_PSK_SIM_TAG:
931 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
932 break;
933 case CMD_HID_CLONE_TAG:
934 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
935 break;
936 case CMD_IO_DEMOD_FSK:
937 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
938 break;
939 case CMD_IO_CLONE_TAG:
940 CopyIOtoT55x7(c->arg[0], c->arg[1]);
941 break;
942 case CMD_EM410X_DEMOD:
943 CmdEM410xdemod(c->arg[0], 0, 0, 1);
944 break;
945 case CMD_EM410X_WRITE_TAG:
946 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
947 break;
948 case CMD_READ_TI_TYPE:
949 ReadTItag();
950 break;
951 case CMD_WRITE_TI_TYPE:
952 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
953 break;
954 case CMD_SIMULATE_TAG_125K:
955 LED_A_ON();
956 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
957 LED_A_OFF();
958 break;
959 case CMD_LF_SIMULATE_BIDIR:
960 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
961 break;
962 case CMD_INDALA_CLONE_TAG:
963 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
964 break;
965 case CMD_INDALA_CLONE_TAG_L:
966 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
967 break;
968 case CMD_T55XX_READ_BLOCK:
969 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
970 break;
971 case CMD_T55XX_WRITE_BLOCK:
972 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
973 break;
974 case CMD_T55XX_WAKEUP:
975 T55xxWakeUp(c->arg[0]);
976 break;
977 case CMD_T55XX_RESET_READ:
978 T55xxResetRead();
979 break;
980 case CMD_PCF7931_READ:
981 ReadPCF7931();
982 break;
983 case CMD_PCF7931_WRITE:
984 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
985 break;
986 case CMD_EM4X_READ_WORD:
987 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
988 break;
989 case CMD_EM4X_WRITE_WORD:
990 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
991 break;
992 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
993 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
994 break;
995 case CMD_VIKING_CLONE_TAG:
996 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
997 break;
998 #endif
999
1000 #ifdef WITH_HITAG
1001 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1002 SnoopHitag(c->arg[0]);
1003 break;
1004 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1005 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1006 break;
1007 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1008 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1009 break;
1010 #endif
1011
1012 #ifdef WITH_ISO15693
1013 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1014 AcquireRawAdcSamplesIso15693();
1015 break;
1016 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1017 RecordRawAdcSamplesIso15693();
1018 break;
1019
1020 case CMD_ISO_15693_COMMAND:
1021 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1022 break;
1023
1024 case CMD_ISO_15693_FIND_AFI:
1025 BruteforceIso15693Afi(c->arg[0]);
1026 break;
1027
1028 case CMD_ISO_15693_DEBUG:
1029 SetDebugIso15693(c->arg[0]);
1030 break;
1031
1032 case CMD_READER_ISO_15693:
1033 ReaderIso15693(c->arg[0]);
1034 break;
1035 case CMD_SIMTAG_ISO_15693:
1036 SimTagIso15693(c->arg[0], c->d.asBytes);
1037 break;
1038 #endif
1039
1040 #ifdef WITH_LEGICRF
1041 case CMD_SIMULATE_TAG_LEGIC_RF:
1042 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1043 break;
1044
1045 case CMD_WRITER_LEGIC_RF:
1046 LegicRfWriter(c->arg[1], c->arg[0]);
1047 break;
1048
1049 case CMD_READER_LEGIC_RF:
1050 LegicRfReader(c->arg[0], c->arg[1]);
1051 break;
1052 #endif
1053
1054 #ifdef WITH_ISO14443b
1055 case CMD_READ_SRI512_TAG:
1056 ReadSTMemoryIso14443b(0x0F);
1057 break;
1058 case CMD_READ_SRIX4K_TAG:
1059 ReadSTMemoryIso14443b(0x7F);
1060 break;
1061 case CMD_SNOOP_ISO_14443B:
1062 SnoopIso14443b();
1063 break;
1064 case CMD_SIMULATE_TAG_ISO_14443B:
1065 SimulateIso14443bTag();
1066 break;
1067 case CMD_ISO_14443B_COMMAND:
1068 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1069 break;
1070 #endif
1071
1072 #ifdef WITH_ISO14443a
1073 case CMD_SNOOP_ISO_14443a:
1074 SniffIso14443a(c->arg[0]);
1075 break;
1076 case CMD_READER_ISO_14443a:
1077 ReaderIso14443a(c);
1078 break;
1079 case CMD_SIMULATE_TAG_ISO_14443a:
1080 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1081 break;
1082
1083 case CMD_EPA_PACE_COLLECT_NONCE:
1084 EPA_PACE_Collect_Nonce(c);
1085 break;
1086 case CMD_EPA_PACE_REPLAY:
1087 EPA_PACE_Replay(c);
1088 break;
1089
1090 case CMD_READER_MIFARE:
1091 ReaderMifare(c->arg[0]);
1092 break;
1093 case CMD_MIFARE_READBL:
1094 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1095 break;
1096 case CMD_MIFAREU_READBL:
1097 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1098 break;
1099 case CMD_MIFAREUC_AUTH:
1100 MifareUC_Auth(c->arg[0],c->d.asBytes);
1101 break;
1102 case CMD_MIFAREU_READCARD:
1103 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1104 break;
1105 case CMD_MIFAREUC_SETPWD:
1106 MifareUSetPwd(c->arg[0], c->d.asBytes);
1107 break;
1108 case CMD_MIFARE_READSC:
1109 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1110 break;
1111 case CMD_MIFARE_WRITEBL:
1112 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1113 break;
1114 //case CMD_MIFAREU_WRITEBL_COMPAT:
1115 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1116 //break;
1117 case CMD_MIFAREU_WRITEBL:
1118 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1119 break;
1120 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1121 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1122 break;
1123 case CMD_MIFARE_NESTED:
1124 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1125 break;
1126 case CMD_MIFARE_CHKKEYS:
1127 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1128 break;
1129 case CMD_SIMULATE_MIFARE_CARD:
1130 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1131 break;
1132
1133 // emulator
1134 case CMD_MIFARE_SET_DBGMODE:
1135 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1136 break;
1137 case CMD_MIFARE_EML_MEMCLR:
1138 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1139 break;
1140 case CMD_MIFARE_EML_MEMSET:
1141 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1142 break;
1143 case CMD_MIFARE_EML_MEMGET:
1144 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1145 break;
1146 case CMD_MIFARE_EML_CARDLOAD:
1147 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1148 break;
1149
1150 // Work with "magic Chinese" card
1151 case CMD_MIFARE_CSETBLOCK:
1152 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1153 break;
1154 case CMD_MIFARE_CGETBLOCK:
1155 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1156 break;
1157 case CMD_MIFARE_CIDENT:
1158 MifareCIdent();
1159 break;
1160
1161 // mifare sniffer
1162 case CMD_MIFARE_SNIFFER:
1163 SniffMifare(c->arg[0]);
1164 break;
1165
1166 //mifare desfire
1167 case CMD_MIFARE_DESFIRE_READBL: break;
1168 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1169 case CMD_MIFARE_DESFIRE_AUTH1:
1170 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1171 break;
1172 case CMD_MIFARE_DESFIRE_AUTH2:
1173 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1174 break;
1175 case CMD_MIFARE_DES_READER:
1176 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1177 break;
1178 case CMD_MIFARE_DESFIRE_INFO:
1179 MifareDesfireGetInformation();
1180 break;
1181 case CMD_MIFARE_DESFIRE:
1182 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1183 break;
1184
1185 case CMD_MIFARE_COLLECT_NONCES:
1186 break;
1187 #endif
1188
1189 #ifdef WITH_ICLASS
1190 // Makes use of ISO14443a FPGA Firmware
1191 case CMD_SNOOP_ICLASS:
1192 SnoopIClass();
1193 break;
1194 case CMD_SIMULATE_TAG_ICLASS:
1195 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1196 break;
1197 case CMD_READER_ICLASS:
1198 ReaderIClass(c->arg[0]);
1199 break;
1200 case CMD_READER_ICLASS_REPLAY:
1201 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1202 break;
1203 case CMD_ICLASS_EML_MEMSET:
1204 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1205 break;
1206 case CMD_ICLASS_WRITEBLOCK:
1207 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1208 break;
1209 case CMD_ICLASS_READCHECK: // auth step 1
1210 iClass_ReadCheck(c->arg[0], c->arg[1]);
1211 break;
1212 case CMD_ICLASS_READBLOCK:
1213 iClass_ReadBlk(c->arg[0]);
1214 break;
1215 case CMD_ICLASS_AUTHENTICATION: //check
1216 iClass_Authentication(c->d.asBytes);
1217 break;
1218 case CMD_ICLASS_DUMP:
1219 iClass_Dump(c->arg[0], c->arg[1]);
1220 break;
1221 case CMD_ICLASS_CLONE:
1222 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1223 break;
1224 #endif
1225 #ifdef WITH_HFSNOOP
1226 case CMD_HF_SNIFFER:
1227 HfSnoop(c->arg[0], c->arg[1]);
1228 break;
1229 #endif
1230
1231 case CMD_BUFF_CLEAR:
1232 BigBuf_Clear();
1233 break;
1234
1235 case CMD_MEASURE_ANTENNA_TUNING:
1236 MeasureAntennaTuning();
1237 break;
1238
1239 case CMD_MEASURE_ANTENNA_TUNING_HF:
1240 MeasureAntennaTuningHf();
1241 break;
1242
1243 case CMD_LISTEN_READER_FIELD:
1244 ListenReaderField(c->arg[0]);
1245 break;
1246
1247 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1249 SpinDelay(200);
1250 LED_D_OFF(); // LED D indicates field ON or OFF
1251 break;
1252
1253 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1254
1255 LED_B_ON();
1256 uint8_t *BigBuf = BigBuf_get_addr();
1257 size_t len = 0;
1258 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1259 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1260 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1261 }
1262 // Trigger a finish downloading signal with an ACK frame
1263 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1264 LED_B_OFF();
1265 break;
1266
1267 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1268 uint8_t *b = BigBuf_get_addr();
1269 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1270 cmd_send(CMD_ACK,0,0,0,0,0);
1271 break;
1272 }
1273 case CMD_READ_MEM:
1274 ReadMem(c->arg[0]);
1275 break;
1276
1277 case CMD_SET_LF_DIVISOR:
1278 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1279 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1280 break;
1281
1282 case CMD_SET_ADC_MUX:
1283 switch(c->arg[0]) {
1284 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1285 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1286 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1287 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1288 }
1289 break;
1290
1291 case CMD_VERSION:
1292 SendVersion();
1293 break;
1294 case CMD_STATUS:
1295 SendStatus();
1296 break;
1297 case CMD_PING:
1298 cmd_send(CMD_ACK,0,0,0,0,0);
1299 break;
1300 #ifdef WITH_LCD
1301 case CMD_LCD_RESET:
1302 LCDReset();
1303 break;
1304 case CMD_LCD:
1305 LCDSend(c->arg[0]);
1306 break;
1307 #endif
1308 case CMD_SETUP_WRITE:
1309 case CMD_FINISH_WRITE:
1310 case CMD_HARDWARE_RESET:
1311 usb_disable();
1312 SpinDelay(2000);
1313 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1314 for(;;) {
1315 // We're going to reset, and the bootrom will take control.
1316 }
1317 break;
1318
1319 case CMD_START_FLASH:
1320 if(common_area.flags.bootrom_present) {
1321 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1322 }
1323 usb_disable();
1324 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1325 for(;;);
1326 break;
1327
1328 case CMD_DEVICE_INFO: {
1329 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1330 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1331 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1332 break;
1333 }
1334 default:
1335 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1336 break;
1337 }
1338 }
1339
1340 void __attribute__((noreturn)) AppMain(void)
1341 {
1342 SpinDelay(100);
1343 clear_trace();
1344 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1345 /* Initialize common area */
1346 memset(&common_area, 0, sizeof(common_area));
1347 common_area.magic = COMMON_AREA_MAGIC;
1348 common_area.version = 1;
1349 }
1350 common_area.flags.osimage_present = 1;
1351
1352 LED_D_OFF();
1353 LED_C_OFF();
1354 LED_B_OFF();
1355 LED_A_OFF();
1356
1357 // Init USB device
1358 usb_enable();
1359
1360 // The FPGA gets its clock from us from PCK0 output, so set that up.
1361 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1362 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1363 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1364 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1365 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1366 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1367 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1368
1369 // Reset SPI
1370 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1371 // Reset SSC
1372 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1373
1374 // Load the FPGA image, which we have stored in our flash.
1375 // (the HF version by default)
1376 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1377
1378 StartTickCount();
1379
1380 #ifdef WITH_LCD
1381 LCDInit();
1382 #endif
1383
1384 byte_t rx[sizeof(UsbCommand)];
1385 size_t rx_len;
1386
1387 for(;;) {
1388 if (usb_poll()) {
1389 rx_len = usb_read(rx,sizeof(UsbCommand));
1390 if (rx_len) {
1391 UsbPacketReceived(rx,rx_len);
1392 }
1393 }
1394 WDT_HIT();
1395
1396 #ifdef WITH_LF
1397 #ifndef WITH_ISO14443a_StandAlone
1398 if (BUTTON_HELD(1000) > 0)
1399 SamyRun();
1400 #endif
1401 #endif
1402 #ifdef WITH_ISO14443a
1403 #ifdef WITH_ISO14443a_StandAlone
1404 if (BUTTON_HELD(1000) > 0)
1405 StandAloneMode14a();
1406 #endif
1407 #endif
1408 }
1409 }
Impressum, Datenschutz