1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // LEGIC RF simulation code
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
17 #include "legic_prng.h"
20 static struct legic_frame
{
31 static crc_t legic_crc
;
32 static int legic_read_count
;
33 static uint32_t legic_prng_bc
;
34 static uint32_t legic_prng_iv
;
36 static int legic_phase_drift
;
37 static int legic_frame_drift
;
38 static int legic_reqresp_drift
;
43 static void setup_timer(void)
45 /* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
46 * this it won't be terribly accurate but should be good enough.
48 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC1
);
49 timer
= AT91C_BASE_TC1
;
50 timer
->TC_CCR
= AT91C_TC_CLKDIS
;
51 timer
->TC_CMR
= AT91C_TC_CLKS_TIMER_DIV3_CLOCK
;
52 timer
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
55 * Set up Timer 2 to use for measuring time between frames in
56 * tag simulation mode. Runs 4x faster as Timer 1
58 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC2
);
59 prng_timer
= AT91C_BASE_TC2
;
60 prng_timer
->TC_CCR
= AT91C_TC_CLKDIS
;
61 prng_timer
->TC_CMR
= AT91C_TC_CLKS_TIMER_DIV2_CLOCK
;
62 prng_timer
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
65 /* At TIMER_CLOCK3 (MCK/32) */
66 #define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */
67 #define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */
68 #define RWD_TIME_PAUSE 30 /* 20us */
69 #define RWD_TIME_FUZZ 20 /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */
70 #define TAG_TIME_BIT 150 /* 100us for every bit */
71 #define TAG_TIME_WAIT 490 /* time from RWD frame end to tag frame start, experimentally determined */
73 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
74 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
76 #define SESSION_IV 0x55
77 #define OFFSET_LOG 1024
79 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
81 /* Generate Keystream */
82 static uint32_t get_key_stream(int skip
, int count
)
84 uint32_t key
=0; int i
;
86 /* Use int to enlarge timer tc to 32bit */
87 legic_prng_bc
+= prng_timer
->TC_CV
;
88 prng_timer
->TC_CCR
= AT91C_TC_SWTRG
;
90 /* If skip == -1, forward prng time based */
92 i
= (legic_prng_bc
+SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */
93 i
-= legic_prng_count(); /* substract cycles of finished frames */
94 i
-= count
; /* substract current frame length, rewidn to bedinning */
95 legic_prng_forward(i
);
97 legic_prng_forward(skip
);
100 /* Write Time Data into LOG */
101 uint8_t *BigBuf
= BigBuf_get_addr();
102 i
= (count
== 6) ? -1 : legic_read_count
;
104 BigBuf
[OFFSET_LOG
+128+i
] = legic_prng_count();
105 BigBuf
[OFFSET_LOG
+256+i
*4] = (legic_prng_bc
>> 0) & 0xff;
106 BigBuf
[OFFSET_LOG
+256+i
*4+1] = (legic_prng_bc
>> 8) & 0xff;
107 BigBuf
[OFFSET_LOG
+256+i
*4+2] = (legic_prng_bc
>>16) & 0xff;
108 BigBuf
[OFFSET_LOG
+256+i
*4+3] = (legic_prng_bc
>>24) & 0xff;
109 BigBuf
[OFFSET_LOG
+384+i
] = count
;
111 /* Generate KeyStream */
112 for(i
=0; i
<count
; i
++) {
113 key
|= legic_prng_get_bit() << i
;
114 legic_prng_forward(1);
119 /* Send a frame in tag mode, the FPGA must have been set up by
122 static void frame_send_tag(uint16_t response
, int bits
, int crypt
)
124 /* Bitbang the response */
125 AT91C_BASE_PIOA
->PIO_CODR
= GPIO_SSC_DOUT
;
126 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
127 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
129 /* Use time to crypt frame */
131 legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */
133 for(i
=0; i
<bits
; i
++) {
134 key
|= legic_prng_get_bit() << i
;
135 legic_prng_forward(1);
137 //Dbprintf("key = 0x%x", key);
138 response
= response
^ key
;
141 /* Wait for the frame start */
142 while(timer
->TC_CV
< (TAG_TIME_WAIT
- 30)) ;
145 for(i
=0; i
<bits
; i
++) {
146 int nextbit
= timer
->TC_CV
+ TAG_TIME_BIT
;
147 int bit
= response
& 1;
148 response
= response
>> 1;
150 AT91C_BASE_PIOA
->PIO_SODR
= GPIO_SSC_DOUT
;
152 AT91C_BASE_PIOA
->PIO_CODR
= GPIO_SSC_DOUT
;
154 while(timer
->TC_CV
< nextbit
) ;
156 AT91C_BASE_PIOA
->PIO_CODR
= GPIO_SSC_DOUT
;
159 /* Send a frame in reader mode, the FPGA must have been set up by
162 static void frame_send_rwd(uint32_t data
, int bits
)
165 timer
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
166 while(timer
->TC_CV
> 1) ; /* Wait till the clock has reset */
169 for(i
=0; i
<bits
; i
++) {
170 int starttime
= timer
->TC_CV
;
171 int pause_end
= starttime
+ RWD_TIME_PAUSE
, bit_end
;
175 if(bit
^ legic_prng_get_bit())
176 bit_end
= starttime
+ RWD_TIME_1
;
178 bit_end
= starttime
+ RWD_TIME_0
;
181 /* RWD_TIME_PAUSE time off, then some time on, so that the complete bit time is
182 * RWD_TIME_x, where x is the bit to be transmitted */
183 AT91C_BASE_PIOA
->PIO_CODR
= GPIO_SSC_DOUT
;
184 while(timer
->TC_CV
< pause_end
) ;
185 AT91C_BASE_PIOA
->PIO_SODR
= GPIO_SSC_DOUT
;
186 legic_prng_forward(1); /* bit duration is longest. use this time to forward the lfsr */
188 while(timer
->TC_CV
< bit_end
);
191 /* One final pause to mark the end of the frame */
192 int pause_end
= timer
->TC_CV
+ RWD_TIME_PAUSE
;
193 AT91C_BASE_PIOA
->PIO_CODR
= GPIO_SSC_DOUT
;
194 while(timer
->TC_CV
< pause_end
) ;
195 AT91C_BASE_PIOA
->PIO_SODR
= GPIO_SSC_DOUT
;
198 /* Reset the timer, to measure time until the start of the tag frame */
199 timer
->TC_CCR
= AT91C_TC_SWTRG
;
200 while(timer
->TC_CV
> 1) ; /* Wait till the clock has reset */
203 /* Receive a frame from the card in reader emulation mode, the FPGA and
204 * timer must have been set up by LegicRfReader and frame_send_rwd.
206 * The LEGIC RF protocol from card to reader does not include explicit
207 * frame start/stop information or length information. The reader must
208 * know beforehand how many bits it wants to receive. (Notably: a card
209 * sending a stream of 0-bits is indistinguishable from no card present.)
211 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
212 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
213 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
214 * for edges. Count the edges in each bit interval. If they are approximately
215 * 0 this was a 0-bit, if they are approximately equal to the number of edges
216 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
217 * timer that's still running from frame_send_rwd in order to get a synchronization
218 * with the frame that we just sent.
220 * FIXME: Because we're relying on the hysteresis to just do the right thing
221 * the range is severely reduced (and you'll probably also need a good antenna).
222 * So this should be fixed some time in the future for a proper receiver.
224 static void frame_receive_rwd(struct legic_frame
* const f
, int bits
, int crypt
)
226 uint32_t the_bit
= 1; /* Use a bitmask to save on shifts */
228 int i
, old_level
=0, edges
=0;
229 int next_bit_at
= TAG_TIME_WAIT
;
235 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
236 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
238 /* we have some time now, precompute the cipher
239 * since we cannot compute it on the fly while reading */
240 legic_prng_forward(2);
243 for(i
=0; i
<bits
; i
++) {
244 data
|= legic_prng_get_bit() << i
;
245 legic_prng_forward(1);
249 while(timer
->TC_CV
< next_bit_at
) ;
251 next_bit_at
+= TAG_TIME_BIT
;
253 for(i
=0; i
<bits
; i
++) {
255 while(timer
->TC_CV
< next_bit_at
) {
256 int level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
257 if(level
!= old_level
)
261 next_bit_at
+= TAG_TIME_BIT
;
263 if(edges
> 20 && edges
< 60) { /* expected are 42 edges */
272 /* Reset the timer, to synchronize the next frame */
273 timer
->TC_CCR
= AT91C_TC_SWTRG
;
274 while(timer
->TC_CV
> 1) ; /* Wait till the clock has reset */
277 static void frame_append_bit(struct legic_frame
* const f
, int bit
)
280 return; /* Overflow, won't happen */
282 f
->data
|= (bit
<< f
->bits
);
286 static void frame_clean(struct legic_frame
* const f
)
292 static uint32_t perform_setup_phase_rwd(int iv
)
295 /* Switch on carrier and let the tag charge for 1ms */
296 AT91C_BASE_PIOA
->PIO_SODR
= GPIO_SSC_DOUT
;
299 legic_prng_init(0); /* no keystream yet */
300 frame_send_rwd(iv
, 7);
303 frame_clean(¤t_frame
);
304 frame_receive_rwd(¤t_frame
, 6, 1);
305 legic_prng_forward(3); /* we wait anyways */
306 while(timer
->TC_CV
< 387) ; /* ~ 258us */
307 frame_send_rwd(0x39, 6);
309 return current_frame
.data
;
312 static void LegicCommonInit(void) {
313 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
314 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
316 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
);
318 /* Bitbang the transmitter */
319 AT91C_BASE_PIOA
->PIO_CODR
= GPIO_SSC_DOUT
;
320 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
321 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
325 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
328 /* Switch off carrier, make sure tag is reset */
329 static void switch_off_tag_rwd(void)
331 AT91C_BASE_PIOA
->PIO_CODR
= GPIO_SSC_DOUT
;
335 /* calculate crc for a legic command */
336 static int LegicCRC(int byte_index
, int value
, int cmd_sz
) {
337 crc_clear(&legic_crc
);
338 crc_update(&legic_crc
, 1, 1); /* CMD_READ */
339 crc_update(&legic_crc
, byte_index
, cmd_sz
-1);
340 crc_update(&legic_crc
, value
, 8);
341 return crc_finish(&legic_crc
);
344 int legic_read_byte(int byte_index
, int cmd_sz
) {
347 while(timer
->TC_CV
< 387) ; /* ~ 258us + 100us*delay */
349 frame_send_rwd(1 | (byte_index
<< 1), cmd_sz
);
350 frame_clean(¤t_frame
);
352 frame_receive_rwd(¤t_frame
, 12, 1);
354 byte
= current_frame
.data
& 0xff;
356 if( LegicCRC(byte_index
, byte
, cmd_sz
) != (current_frame
.data
>> 8) ) {
357 Dbprintf("!!! crc mismatch: expected %x but got %x !!!",
358 LegicCRC(byte_index
, current_frame
.data
& 0xff, cmd_sz
),
359 current_frame
.data
>> 8);
363 legic_prng_forward(4); /* we wait anyways */
367 /* legic_write_byte() is not included, however it's trivial to implement
368 * and here are some hints on what remains to be done:
370 * * assemble a write_cmd_frame with crc and send it
371 * * wait until the tag sends back an ACK ('1' bit unencrypted)
372 * * forward the prng based on the timing
374 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
375 int legic_write_byte(int byte
, int addr
, int addr_sz
) {
376 //do not write UID, CRC
380 //== send write command ==============================
381 crc_clear(&legic_crc
);
382 crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */
383 crc_update(&legic_crc
, addr
, addr_sz
);
384 crc_update(&legic_crc
, byte
, 8);
386 uint32_t crc
= crc_finish(&legic_crc
);
387 uint32_t cmd
= ((crc
<<(addr_sz
+1+8)) //CRC
388 |(byte
<<(addr_sz
+1)) //Data
389 |(addr
<<1) //Address
390 |(0x00 <<0)); //CMD = W
391 uint32_t cmd_sz
= addr_sz
+1+8+4; //crc+data+cmd
393 legic_prng_forward(2); /* we wait anyways */
394 while(timer
->TC_CV
< 387) ; /* ~ 258us */
395 frame_send_rwd(cmd
, cmd_sz
);
397 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
398 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
400 //== wait for ack ====================================
401 int t
, old_level
=0, edges
=0;
403 while(timer
->TC_CV
< 387) ; /* ~ 258us */
404 for(t
=0; t
<80; t
++) {
406 next_bit_at
+= TAG_TIME_BIT
;
407 while(timer
->TC_CV
< next_bit_at
) {
408 int level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
409 if(level
!= old_level
) {
414 if(edges
> 20 && edges
< 60) { /* expected are 42 edges */
415 int t
= timer
->TC_CV
;
416 int c
= t
/TAG_TIME_BIT
;
417 timer
->TC_CCR
= AT91C_TC_SWTRG
;
418 while(timer
->TC_CV
> 1) ; /* Wait till the clock has reset */
419 legic_prng_forward(c
);
423 timer
->TC_CCR
= AT91C_TC_SWTRG
;
424 while(timer
->TC_CV
> 1) ; /* Wait till the clock has reset */
428 int LegicRfReader(int offset
, int bytes
, int iv
) {
430 // ice_legic_setup();
431 // ice_legic_select_card();
434 int byte_index
=0, cmd_sz
=0, card_sz
=0;
436 iv
= (iv
<= 0 ) ? SESSION_IV
: iv
;
440 uint8_t *BigBuf
= BigBuf_get_addr();
441 memset(BigBuf
, 0, 1024);
443 DbpString("setting up legic card");
444 uint32_t tag_type
= perform_setup_phase_rwd(iv
);
445 switch_off_tag_rwd(); //we lose to mutch time with dprintf
448 DbpString("MIM22 card found, reading card ...");
453 DbpString("MIM256 card found, reading card ...");
458 DbpString("MIM1024 card found, reading card ...");
463 Dbprintf("Unknown card format: %x",tag_type
);
469 if(bytes
+offset
>= card_sz
)
470 bytes
= card_sz
-offset
;
472 perform_setup_phase_rwd(iv
);
474 legic_prng_forward(2);
477 while(byte_index
< bytes
) {
478 int r
= legic_read_byte(byte_index
+offset
, cmd_sz
);
479 if(r
== -1 ||BUTTON_PRESS()) {
480 DbpString("operation aborted");
481 switch_off_tag_rwd();
486 BigBuf
[byte_index
] = r
;
489 if (byte_index
& 0x10) LED_C_ON(); else LED_C_OFF();
493 switch_off_tag_rwd();
494 Dbprintf("Card read, use 'hf legic decode' or");
495 Dbprintf("'data hexsamples %d' to view results", (bytes
+7) & ~7);
499 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
503 perform_setup_phase_rwd(SESSION_IV);
504 //legic_prng_forward(2);
505 while(byte_index < bytes) {
508 //check if the DCF should be changed
509 if ( (offset == 0x05) && (bytes == 0x02) ) {
510 //write DCF in reverse order (addr 0x06 before 0x05)
511 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
512 //legic_prng_forward(1);
515 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
517 //legic_prng_forward(1);
520 r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
522 if((r != 0) || BUTTON_PRESS()) {
523 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
524 switch_off_tag_rwd();
532 if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
536 DbpString("write successful");
540 void LegicRfWriter(int offset
, int bytes
, int iv
) {
542 int byte_index
=0, addr_sz
=0;
543 uint8_t *BigBuf
= BigBuf_get_addr();
544 iv
= (iv
<=0 ) ? SESSION_IV
: iv
;
548 DbpString("setting up legic card");
549 uint32_t tag_type
= perform_setup_phase_rwd(iv
);
550 switch_off_tag_rwd();
553 if(offset
+bytes
> 22) {
554 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset
+bytes
);
558 Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+bytes
);
561 if(offset
+bytes
> 0x100) {
562 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset
+bytes
);
566 Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+bytes
);
569 if(offset
+bytes
> 0x400) {
570 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset
+bytes
);
574 Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset
, offset
+bytes
);
577 Dbprintf("No or unknown card found, aborting");
583 perform_setup_phase_rwd(iv
);
584 while(byte_index
< bytes
) {
587 //check if the DCF should be changed
588 if ( ((byte_index
+offset
) == 0x05) && (bytes
>= 0x02) ) {
589 //write DCF in reverse order (addr 0x06 before 0x05)
590 r
= legic_write_byte(BigBuf
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
592 // write second byte on success...
595 r
= legic_write_byte(BigBuf
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
599 r
= legic_write_byte(BigBuf
[byte_index
+offset
], byte_index
+offset
, addr_sz
);
601 if((r
!= 0) || BUTTON_PRESS()) {
602 Dbprintf("operation aborted @ 0x%03.3x", byte_index
);
603 switch_off_tag_rwd();
611 if(byte_index
& 0x10) LED_C_ON(); else LED_C_OFF();
615 DbpString("write successful");
617 for(byte_index
= -2; byte_index
< 200; byte_index
++)
619 Dbprintf("+ Try RndValue %d...", byte_index
);
620 if(_LegicRfWriter(bytes
, offset
, addr_sz
, BigBuf
, byte_index
) == 0)
627 void LegicRfRawWriter(int address
, int byte
, int iv
) {
628 int byte_index
=0, addr_sz
=0;
630 iv
= (iv
<= 0) ? SESSION_IV
: iv
;
634 DbpString("setting up legic card");
635 uint32_t tag_type
= perform_setup_phase_rwd(iv
);
636 switch_off_tag_rwd();
640 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address
);
644 Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
647 if(address
> 0x100) {
648 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address
);
652 Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
655 if(address
> 0x400) {
656 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address
);
660 Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address
, byte
);
663 Dbprintf("No or unknown card found, aborting");
666 Dbprintf("integer value: %d address: %d addr_sz: %d", byte
, address
, addr_sz
);
668 perform_setup_phase_rwd(iv
);
669 //legic_prng_forward(2);
671 int r
= legic_write_byte(byte
, address
, addr_sz
);
673 if((r
!= 0) || BUTTON_PRESS()) {
674 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index
, r
);
675 switch_off_tag_rwd();
683 DbpString("write successful");
688 /* Handle (whether to respond) a frame in tag mode */
689 static void frame_handle_tag(struct legic_frame
const * const f
)
691 uint8_t *BigBuf
= BigBuf_get_addr();
693 /* First Part of Handshake (IV) */
695 // if(f->data == SESSION_IV) {
697 prng_timer
->TC_CCR
= AT91C_TC_SWTRG
;
698 legic_prng_init(f
->data
);
699 frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1b */
700 legic_state
= STATE_IV
;
701 legic_read_count
= 0;
703 legic_prng_iv
= f
->data
;
706 timer
->TC_CCR
= AT91C_TC_SWTRG
;
707 while(timer
->TC_CV
> 1);
708 while(timer
->TC_CV
< 280);
710 // } else if((prng_timer->TC_CV % 50) > 40) {
711 // legic_prng_init(f->data);
712 // frame_send_tag(0x3d, 6, 1);
719 if(legic_state
== STATE_IV
) {
720 int local_key
= get_key_stream(3, 6);
721 int xored
= 0x39 ^ local_key
;
722 if((f
->bits
== 6) && (f
->data
== xored
)) {
723 legic_state
= STATE_CON
;
726 timer
->TC_CCR
= AT91C_TC_SWTRG
;
727 while(timer
->TC_CV
> 1);
728 while(timer
->TC_CV
< 200);
731 legic_state
= STATE_DISCON
;
733 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
);
740 if(legic_state
== STATE_CON
) {
741 int key
= get_key_stream(2, 11); //legic_phase_drift, 11);
742 int addr
= f
->data
^ key
; addr
= addr
>> 1;
743 int data
= BigBuf
[addr
];
744 int hash
= LegicCRC(addr
, data
, 11) << 8;
745 BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
;
748 //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
749 legic_prng_forward(legic_reqresp_drift
);
751 frame_send_tag(hash
| data
, 12, 1);
754 timer
->TC_CCR
= AT91C_TC_SWTRG
;
755 while(timer
->TC_CV
> 1);
756 legic_prng_forward(2);
757 while(timer
->TC_CV
< 180);
764 int key
= get_key_stream(-1, 23); //legic_frame_drift, 23);
765 int addr
= f
->data
^ key
; addr
= addr
>> 1; addr
= addr
& 0x3ff;
766 int data
= f
->data
^ key
; data
= data
>> 11; data
= data
& 0xff;
769 legic_state
= STATE_DISCON
;
771 Dbprintf("write - addr: %x, data: %x", addr
, data
);
775 if(legic_state
!= STATE_DISCON
) {
776 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
);
778 Dbprintf("IV: %03.3x", legic_prng_iv
);
779 for(i
= 0; i
<legic_read_count
; i
++) {
780 Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]);
783 for(i
= -1; i
<legic_read_count
; i
++) {
785 t
= BigBuf
[OFFSET_LOG
+256+i
*4];
786 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8;
787 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16;
788 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24;
790 Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
791 BigBuf
[OFFSET_LOG
+128+i
],
792 BigBuf
[OFFSET_LOG
+384+i
],
796 legic_state
= STATE_DISCON
;
797 legic_read_count
= 0;
803 /* Read bit by bit untill full frame is received
804 * Call to process frame end answer
806 static void emit(int bit
)
809 if(current_frame
.bits
<= 4) {
810 frame_clean(¤t_frame
);
812 frame_handle_tag(¤t_frame
);
813 frame_clean(¤t_frame
);
816 } else if(bit
== 0) {
817 frame_append_bit(¤t_frame
, 0);
818 } else if(bit
== 1) {
819 frame_append_bit(¤t_frame
, 1);
823 void LegicRfSimulate(int phase
, int frame
, int reqresp
)
825 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
826 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
827 * envelope waveform on DIN and should send our response on DOUT.
829 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
830 * measure the time between two rising edges on DIN, and no encoding on the
831 * subcarrier from card to reader, so we'll just shift out our verbatim data
832 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
833 * seems to be 300us-ish.
838 // for(i=0; i<=reqresp; i++) {
839 // legic_prng_init(SESSION_IV);
840 // Dbprintf("i=%u, key 0x%3.3x", i, get_key_stream(i, frame));
845 legic_phase_drift
= phase
;
846 legic_frame_drift
= frame
;
847 legic_reqresp_drift
= reqresp
;
849 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
850 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
852 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K
);
854 /* Bitbang the receiver */
855 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
856 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
859 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
863 legic_state
= STATE_DISCON
;
866 DbpString("Starting Legic emulator, press button to end");
867 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
868 int level
= !!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
869 int time
= timer
->TC_CV
;
871 if(level
!= old_level
) {
873 timer
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
874 if(FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) {
879 } else if(FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) {
893 if(time
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) {
900 if(time
>= (20*RWD_TIME_1
) && (timer
->TC_SR
& AT91C_TC_CLKSTA
)) {
901 timer
->TC_CCR
= AT91C_TC_CLKDIS
;
907 DbpString("Stopped");
914 //-----------------------------------------------------------------------------
915 //-----------------------------------------------------------------------------
918 //-----------------------------------------------------------------------------
919 // Code up a string of octets at layer 2 (including CRC, we don't generate
920 // that here) so that they can be transmitted to the reader. Doesn't transmit
921 // them yet, just leaves them ready to send in ToSend[].
922 //-----------------------------------------------------------------------------
923 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
929 // // Transmit a burst of ones, as the initial thing that lets the
930 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
931 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
933 // for(i = 0; i < 20; i++) {
934 // ToSendStuffBit(1);
935 // ToSendStuffBit(1);
936 // ToSendStuffBit(1);
937 // ToSendStuffBit(1);
941 // for(i = 0; i < 10; i++) {
942 // ToSendStuffBit(0);
943 // ToSendStuffBit(0);
944 // ToSendStuffBit(0);
945 // ToSendStuffBit(0);
947 // for(i = 0; i < 2; i++) {
948 // ToSendStuffBit(1);
949 // ToSendStuffBit(1);
950 // ToSendStuffBit(1);
951 // ToSendStuffBit(1);
954 // for(i = 0; i < len; i++) {
956 // uint8_t b = cmd[i];
959 // ToSendStuffBit(0);
960 // ToSendStuffBit(0);
961 // ToSendStuffBit(0);
962 // ToSendStuffBit(0);
965 // for(j = 0; j < 8; j++) {
967 // ToSendStuffBit(1);
968 // ToSendStuffBit(1);
969 // ToSendStuffBit(1);
970 // ToSendStuffBit(1);
972 // ToSendStuffBit(0);
973 // ToSendStuffBit(0);
974 // ToSendStuffBit(0);
975 // ToSendStuffBit(0);
981 // ToSendStuffBit(1);
982 // ToSendStuffBit(1);
983 // ToSendStuffBit(1);
984 // ToSendStuffBit(1);
988 // for(i = 0; i < 10; i++) {
989 // ToSendStuffBit(0);
990 // ToSendStuffBit(0);
991 // ToSendStuffBit(0);
992 // ToSendStuffBit(0);
994 // for(i = 0; i < 2; i++) {
995 // ToSendStuffBit(1);
996 // ToSendStuffBit(1);
997 // ToSendStuffBit(1);
998 // ToSendStuffBit(1);
1001 // // Convert from last byte pos to length
1005 //-----------------------------------------------------------------------------
1006 // The software UART that receives commands from the reader, and its state
1008 //-----------------------------------------------------------------------------
1012 STATE_GOT_FALLING_EDGE_OF_SOF
,
1013 STATE_AWAITING_START_BIT
,
1014 STATE_RECEIVING_DATA
1024 /* Receive & handle a bit coming from the reader.
1026 * This function is called 4 times per bit (every 2 subcarrier cycles).
1027 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1030 * LED A -> ON once we have received the SOF and are expecting the rest.
1031 * LED A -> OFF once we have received EOF or are in error state or unsynced
1033 * Returns: true if we received a EOF
1034 * false if we are still waiting for some more
1036 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1038 // switch(Uart.state) {
1039 // case STATE_UNSYNCD:
1041 // // we went low, so this could be the beginning of an SOF
1042 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1048 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1050 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1052 // if(Uart.bitCnt > 9) {
1053 // // we've seen enough consecutive
1054 // // zeros that it's a valid SOF
1056 // Uart.byteCnt = 0;
1057 // Uart.state = STATE_AWAITING_START_BIT;
1058 // LED_A_ON(); // Indicate we got a valid SOF
1060 // // didn't stay down long enough
1061 // // before going high, error
1062 // Uart.state = STATE_UNSYNCD;
1065 // // do nothing, keep waiting
1069 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1070 // if(Uart.bitCnt > 12) {
1071 // // Give up if we see too many zeros without
1074 // Uart.state = STATE_UNSYNCD;
1078 // case STATE_AWAITING_START_BIT:
1081 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1082 // // stayed high for too long between
1083 // // characters, error
1084 // Uart.state = STATE_UNSYNCD;
1087 // // falling edge, this starts the data byte
1090 // Uart.shiftReg = 0;
1091 // Uart.state = STATE_RECEIVING_DATA;
1095 // case STATE_RECEIVING_DATA:
1097 // if(Uart.posCnt == 2) {
1098 // // time to sample a bit
1099 // Uart.shiftReg >>= 1;
1101 // Uart.shiftReg |= 0x200;
1105 // if(Uart.posCnt >= 4) {
1108 // if(Uart.bitCnt == 10) {
1109 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1111 // // this is a data byte, with correct
1112 // // start and stop bits
1113 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1116 // if(Uart.byteCnt >= Uart.byteCntMax) {
1117 // // Buffer overflowed, give up
1119 // Uart.state = STATE_UNSYNCD;
1121 // // so get the next byte now
1123 // Uart.state = STATE_AWAITING_START_BIT;
1125 // } else if (Uart.shiftReg == 0x000) {
1126 // // this is an EOF byte
1127 // LED_A_OFF(); // Finished receiving
1128 // Uart.state = STATE_UNSYNCD;
1129 // if (Uart.byteCnt != 0) {
1133 // // this is an error
1135 // Uart.state = STATE_UNSYNCD;
1142 // Uart.state = STATE_UNSYNCD;
1150 static void UartReset()
1152 Uart
.byteCntMax
= MAX_FRAME_SIZE
;
1153 Uart
.state
= STATE_UNSYNCD
;
1157 memset(Uart
.output
, 0x00, MAX_FRAME_SIZE
);
1160 // static void UartInit(uint8_t *data)
1162 // Uart.output = data;
1166 //=============================================================================
1167 // An LEGIC reader. We take layer two commands, code them
1168 // appropriately, and then send them to the tag. We then listen for the
1169 // tag's response, which we leave in the buffer to be demodulated on the
1171 //=============================================================================
1176 DEMOD_PHASE_REF_TRAINING
,
1177 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
1178 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
1179 DEMOD_AWAITING_START_BIT
,
1180 DEMOD_RECEIVING_DATA
1193 * Handles reception of a bit from the tag
1195 * This function is called 2 times per bit (every 4 subcarrier cycles).
1196 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1199 * LED C -> ON once we have received the SOF and are expecting the rest.
1200 * LED C -> OFF once we have received EOF or are unsynced
1202 * Returns: true if we received a EOF
1203 * false if we are still waiting for some more
1207 #ifndef SUBCARRIER_DETECT_THRESHOLD
1208 # define SUBCARRIER_DETECT_THRESHOLD 8
1211 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1212 #ifndef CHECK_FOR_SUBCARRIER
1213 # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); }
1216 // The soft decision on the bit uses an estimate of just the
1217 // quadrant of the reference angle, not the exact angle.
1218 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1219 #define MAKE_SOFT_DECISION() { \
1220 if(Demod.sumI > 0) \
1225 if(Demod.sumQ > 0) \
1232 static RAMFUNC
int HandleLegicSamplesDemod(int ci
, int cq
)
1237 int halfci
= (ai
>> 1);
1238 int halfcq
= (aq
>> 1);
1240 switch(Demod
.state
) {
1243 CHECK_FOR_SUBCARRIER()
1245 if(v
> SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
1246 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
1253 case DEMOD_PHASE_REF_TRAINING
:
1254 if(Demod
.posCount
< 8) {
1256 CHECK_FOR_SUBCARRIER()
1258 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
1259 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1260 // note: synchronization time > 80 1/fs
1266 Demod
.state
= DEMOD_UNSYNCD
;
1269 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
1273 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
1275 MAKE_SOFT_DECISION()
1277 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1278 // logic '0' detected
1281 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
1283 // start of SOF sequence
1286 // maximum length of TR1 = 200 1/fs
1287 if(Demod
.posCount
> 25*2) Demod
.state
= DEMOD_UNSYNCD
;
1292 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
1295 MAKE_SOFT_DECISION()
1298 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1299 if(Demod
.posCount
< 10*2) {
1300 Demod
.state
= DEMOD_UNSYNCD
;
1302 LED_C_ON(); // Got SOF
1303 Demod
.state
= DEMOD_AWAITING_START_BIT
;
1308 // low phase of SOF too long (> 12 etu)
1309 if(Demod
.posCount
> 13*2) {
1310 Demod
.state
= DEMOD_UNSYNCD
;
1316 case DEMOD_AWAITING_START_BIT
:
1319 MAKE_SOFT_DECISION()
1322 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1323 if(Demod
.posCount
> 3*2) {
1324 Demod
.state
= DEMOD_UNSYNCD
;
1328 // start bit detected
1330 Demod
.posCount
= 1; // this was the first half
1333 Demod
.state
= DEMOD_RECEIVING_DATA
;
1337 case DEMOD_RECEIVING_DATA
:
1339 MAKE_SOFT_DECISION()
1341 if(Demod
.posCount
== 0) {
1342 // first half of bit
1346 // second half of bit
1348 Demod
.shiftReg
>>= 1;
1350 if(Demod
.thisBit
> 0)
1351 Demod
.shiftReg
|= 0x200;
1355 if(Demod
.bitCount
== 10) {
1357 uint16_t s
= Demod
.shiftReg
;
1359 if((s
& 0x200) && !(s
& 0x001)) {
1360 // stop bit == '1', start bit == '0'
1361 uint8_t b
= (s
>> 1);
1362 Demod
.output
[Demod
.len
] = b
;
1364 Demod
.state
= DEMOD_AWAITING_START_BIT
;
1366 Demod
.state
= DEMOD_UNSYNCD
;
1370 // This is EOF (start, stop and all data bits == '0'
1380 Demod
.state
= DEMOD_UNSYNCD
;
1387 // Clear out the state of the "UART" that receives from the tag.
1388 static void DemodReset() {
1390 Demod
.state
= DEMOD_UNSYNCD
;
1397 memset(Demod
.output
, 0x00, MAX_FRAME_SIZE
);
1400 static void DemodInit(uint8_t *data
) {
1401 Demod
.output
= data
;
1406 * Demodulate the samples we received from the tag, also log to tracebuffer
1407 * quiet: set to 'TRUE' to disable debug output
1409 #define LEGIC_DMA_BUFFER_SIZE 256
1410 static void GetSamplesForLegicDemod(int n
, bool quiet
)
1413 bool gotFrame
= FALSE
;
1414 int lastRxCounter
= LEGIC_DMA_BUFFER_SIZE
;
1415 int ci
, cq
, samples
= 0;
1419 // And put the FPGA in the appropriate mode
1420 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_QUARTER_FREQ
);
1422 // The response (tag -> reader) that we're receiving.
1423 // Set up the demodulator for tag -> reader responses.
1424 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1426 // The DMA buffer, used to stream samples from the FPGA
1427 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE
);
1428 int8_t *upTo
= dmaBuf
;
1430 // Setup and start DMA.
1431 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, LEGIC_DMA_BUFFER_SIZE
) ){
1432 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1436 // Signal field is ON with the appropriate LED:
1439 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
1440 if(behindBy
> max
) max
= behindBy
;
1442 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (LEGIC_DMA_BUFFER_SIZE
-1)) > 2) {
1446 if(upTo
>= dmaBuf
+ LEGIC_DMA_BUFFER_SIZE
) {
1448 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
1449 AT91C_BASE_PDC_SSC
->PDC_RNCR
= LEGIC_DMA_BUFFER_SIZE
;
1452 if(lastRxCounter
<= 0)
1453 lastRxCounter
= LEGIC_DMA_BUFFER_SIZE
;
1457 gotFrame
= HandleLegicSamplesDemod(ci
, cq
);
1462 if(samples
> n
|| gotFrame
)
1466 FpgaDisableSscDma();
1468 if (!quiet
&& Demod
.len
== 0) {
1469 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1480 if (Demod
.len
> 0) {
1481 uint8_t parity
[MAX_PARITY_SIZE
] = {0x00};
1482 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
);
1485 //-----------------------------------------------------------------------------
1486 // Transmit the command (to the tag) that was placed in ToSend[].
1487 //-----------------------------------------------------------------------------
1488 static void TransmitForLegic(void)
1494 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))
1495 AT91C_BASE_SSC
->SSC_THR
= 0xff;
1497 // Signal field is ON with the appropriate Red LED
1500 // Signal we are transmitting with the Green LED
1502 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1504 for(c
= 0; c
< 10;) {
1505 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1506 AT91C_BASE_SSC
->SSC_THR
= 0xff;
1509 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1510 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1518 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1519 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
1520 legic_prng_forward(1); // forward the lfsr
1522 if(c
>= ToSendMax
) {
1526 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1527 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1536 //-----------------------------------------------------------------------------
1537 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1538 // so that it is ready to transmit to the tag using TransmitForLegic().
1539 //-----------------------------------------------------------------------------
1540 static void CodeLegicBitsAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
)
1548 for(i
= 0; i
< 7; i
++)
1552 for(i
= 0; i
< cmdlen
; i
++) {
1558 for(j
= 0; j
< bits
; j
++) {
1568 // Convert from last character reference to length
1573 Convenience function to encode, transmit and trace Legic comms
1575 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
)
1577 CodeLegicBitsAsReader(cmd
, cmdlen
, bits
);
1580 uint8_t parity
[1] = {0x00};
1581 LogTrace(cmd
, cmdlen
, 0, 0, parity
, TRUE
);
1585 int ice_legic_select_card()
1587 //int cmd_size=0, card_size=0;
1588 uint8_t wakeup
[] = { 0x7F };
1589 uint8_t getid
[] = {0x19};
1591 legic_prng_init(SESSION_IV
);
1593 // first, wake up the tag, 7bits
1594 CodeAndTransmitLegicAsReader(wakeup
, sizeof(wakeup
), 7);
1596 GetSamplesForLegicDemod(1000, TRUE
);
1598 // frame_clean(¤t_frame);
1599 //frame_receive_rwd(¤t_frame, 6, 1);
1601 legic_prng_forward(1); /* we wait anyways */
1603 //while(timer->TC_CV < 387) ; /* ~ 258us */
1604 //frame_send_rwd(0x19, 6);
1605 CodeAndTransmitLegicAsReader(getid
, sizeof(getid
), 8);
1606 GetSamplesForLegicDemod(1000, TRUE
);
1608 //if (Demod.len < 14) return 2;
1609 Dbprintf("CARD TYPE: %02x LEN: %d", Demod
.output
[0], Demod
.len
);
1611 switch(Demod
.output
[0]) {
1613 DbpString("MIM 256 card found");
1618 DbpString("MIM 1024 card found");
1620 // card_size = 1024;
1627 // bytes = card_size;
1629 // if(bytes + offset >= card_size)
1630 // bytes = card_size - offset;
1632 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1637 // Set up LEGIC communication
1638 void ice_legic_setup() {
1641 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1642 BigBuf_free(); BigBuf_Clear_ext(false);
1648 // Set up the synchronous serial port
1651 // connect Demodulated Signal to ADC:
1652 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1654 // Signal field is on with the appropriate LED
1656 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1659 //StartCountSspClk();
1662 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);