1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "lfsampling.h"
21 #include "mifareutil.h"
27 // Craig Young - 14a stand-alone code
28 #ifdef WITH_ISO14443a_StandAlone
29 #include "iso14443a.h"
30 #include "protocols.h"
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void ToSendReset(void)
51 void ToSendStuffBit(int b
) {
54 ToSend
[ToSendMax
] = 0;
59 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
63 if(ToSendMax
>= sizeof(ToSend
)) {
65 DbpString("ToSendStuffBit overflowed!");
69 void PrintToSendBuffer(void){
70 DbpString("Printing ToSendBuffer:");
71 Dbhexdump(ToSendMax
, ToSend
, 0);
74 void print_result(char *name
, uint8_t *buf
, size_t len
) {
77 if ( len
% 16 == 0 ) {
78 for(; p
-buf
< len
; p
+= 16)
79 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
83 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7],p
[8], p
[9], p
[10], p
[11], p
[12], p
[13], p
[14], p
[15]
87 for(; p
-buf
< len
; p
+= 8)
88 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
92 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7]);
96 //=============================================================================
97 // Debug print functions, to go out over USB, to the usual PC-side client.
98 //=============================================================================
100 void DbpStringEx(char *str
, uint32_t cmd
){
101 byte_t len
= strlen(str
);
102 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
105 void DbpString(char *str
) {
110 void DbpIntegers(int x1
, int x2
, int x3
) {
111 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
114 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
115 // should probably limit size here; oh well, let's just use a big buffer
116 char output_string
[128] = {0x00};
120 kvsprintf(fmt
, output_string
, 10, ap
);
123 DbpStringEx(output_string
, cmd
);
126 void Dbprintf(const char *fmt
, ...) {
127 // should probably limit size here; oh well, let's just use a big buffer
128 char output_string
[128] = {0x00};
132 kvsprintf(fmt
, output_string
, 10, ap
);
135 DbpString(output_string
);
138 // prints HEX & ASCII
139 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
145 l
= (len
>8) ? 8 : len
;
152 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
155 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
157 Dbprintf("%*D",l
,d
," ");
164 //-----------------------------------------------------------------------------
165 // Read an ADC channel and block till it completes, then return the result
166 // in ADC units (0 to 1023). Also a routine to average 32 samples and
168 //-----------------------------------------------------------------------------
169 static int ReadAdc(int ch
)
173 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
174 AT91C_BASE_ADC
->ADC_MR
=
175 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
176 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
177 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
179 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
180 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
181 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
184 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
186 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
188 // Note: with the "historic" values in the comments above, the error was 34% !!!
190 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
192 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
194 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
196 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
200 int AvgAdc(int ch
) // was static - merlok
203 for(i
= 0; i
< 32; ++i
)
206 return (a
+ 15) >> 5;
210 void MeasureAntennaTuning(void) {
212 uint8_t LF_Results
[256];
213 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;
214 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
216 memset(LF_Results
, 0, sizeof(LF_Results
));
220 * Sweeps the useful LF range of the proxmark from
221 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
222 * read the voltage in the antenna, the result left
223 * in the buffer is a graph which should clearly show
224 * the resonating frequency of your LF antenna
225 * ( hopefully around 95 if it is tuned to 125kHz!)
228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
231 for (i
= 255; i
>= 19; i
--) {
233 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
235 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
236 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
237 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
239 LF_Results
[i
] = adcval
>> 8; // scale int to fit in byte for graphing purposes
240 if(LF_Results
[i
] > peak
) {
242 peak
= LF_Results
[i
];
248 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
252 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
254 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<< 16), vHf
, peakf
| (peakv
<< 16), LF_Results
, 256);
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void MeasureAntennaTuningHf(void) {
260 int vHf
= 0; // in mV
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
263 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
265 while ( !BUTTON_PRESS() ){
267 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
268 //Dbprintf("%d mV",vHf);
269 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
272 DbpString("cancelled");
276 void ReadMem(int addr
) {
277 const uint8_t *data
= ((uint8_t *)addr
);
279 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
280 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
283 /* osimage version information is linked in */
284 extern struct version_information version_information
;
285 /* bootrom version information is pointed to from _bootphase1_version_pointer */
286 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
287 void SendVersion(void)
289 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
290 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
292 /* Try to find the bootrom version information. Expect to find a pointer at
293 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
294 * pointer, then use it.
296 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
298 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
299 strcat(VersionString
, "bootrom version information appears invalid\n");
301 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
302 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
305 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
306 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
308 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
309 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
311 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
312 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
316 uint32_t compressed_data_section_size
= common_area
.arg1
;
317 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
320 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
322 void printUSBSpeed(void)
324 Dbprintf("USB Speed:");
325 Dbprintf(" Sending USB packets to client...");
327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
328 uint8_t *test_data
= BigBuf_get_addr();
331 uint32_t start_time
= end_time
= GetTickCount();
332 uint32_t bytes_transferred
= 0;
335 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
337 end_time
= GetTickCount();
338 bytes_transferred
+= USB_CMD_DATA_SIZE
;
342 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred
/ (end_time
- start_time
));
350 * Prints runtime information about the PM3.
352 void SendStatus(void) {
353 BigBuf_print_status();
355 printConfig(); //LF Sampling config
358 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
359 Dbprintf(" ToSendMax..........%d", ToSendMax
);
360 Dbprintf(" ToSendBit..........%d", ToSendBit
);
361 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
363 cmd_send(CMD_ACK
,1,0,0,0,0);
366 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
369 void StandAloneMode()
371 DbpString("Stand-alone mode! No PC necessary.");
372 // Oooh pretty -- notify user we're in elite samy mode now
374 LED(LED_ORANGE
, 200);
376 LED(LED_ORANGE
, 200);
378 LED(LED_ORANGE
, 200);
380 LED(LED_ORANGE
, 200);
385 #ifdef WITH_ISO14443a_StandAlone
386 void StandAloneMode14a()
389 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
392 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
393 int cardRead
[OPTS
] = {0};
394 uint8_t readUID
[10] = {0};
395 uint32_t uid_1st
[OPTS
]={0};
396 uint32_t uid_2nd
[OPTS
]={0};
397 uint32_t uid_tmp1
= 0;
398 uint32_t uid_tmp2
= 0;
399 iso14a_card_select_t hi14a_card
[OPTS
];
401 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
403 LED(selected
+ 1, 0);
411 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
415 LED(selected
+ 1, 0);
419 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
420 /* need this delay to prevent catching some weird data */
422 /* Code for reading from 14a tag */
423 uint8_t uid
[10] = {0};
425 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
430 if (BUTTON_PRESS()) {
431 if (cardRead
[selected
]) {
432 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
435 else if (cardRead
[(selected
+1)%OPTS
]) {
436 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
437 selected
= (selected
+1)%OPTS
;
438 break; // playing = 1;
441 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
445 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
449 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
450 memcpy(readUID
,uid
,10*sizeof(uint8_t));
451 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
452 // Set UID byte order
453 for (int i
=0; i
<4; i
++)
455 dst
= (uint8_t *)&uid_tmp2
;
456 for (int i
=0; i
<4; i
++)
458 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
459 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
463 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
464 uid_1st
[selected
] = (uid_tmp1
)>>8;
465 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
468 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
469 uid_1st
[selected
] = uid_tmp1
;
470 uid_2nd
[selected
] = uid_tmp2
;
476 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
477 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
480 LED(LED_ORANGE
, 200);
482 LED(LED_ORANGE
, 200);
485 LED(selected
+ 1, 0);
487 // Next state is replay:
490 cardRead
[selected
] = 1;
492 /* MF Classic UID clone */
493 else if (iGotoClone
==1)
497 LED(selected
+ 1, 0);
498 LED(LED_ORANGE
, 250);
501 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
503 // wait for button to be released
504 // Delay cloning until card is in place
505 while(BUTTON_PRESS())
508 Dbprintf("Starting clone. [Bank: %u]", selected
);
509 // need this delay to prevent catching some weird data
511 // Begin clone function here:
512 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
513 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
514 memcpy(c.d.asBytes, data, 16);
517 Block read is similar:
518 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
519 We need to imitate that call with blockNo 0 to set a uid.
521 The get and set commands are handled in this file:
522 // Work with "magic Chinese" card
523 case CMD_MIFARE_CSETBLOCK:
524 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
526 case CMD_MIFARE_CGETBLOCK:
527 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
530 mfCSetUID provides example logic for UID set workflow:
531 -Read block0 from card in field with MifareCGetBlock()
532 -Configure new values without replacing reserved bytes
533 memcpy(block0, uid, 4); // Copy UID bytes from byte array
535 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
536 Bytes 5-7 are reserved SAK and ATQA for mifare classic
537 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
539 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
540 // arg0 = Flags, arg1=blockNo
541 MifareCGetBlock(params
, 0, oldBlock0
);
542 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
543 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
547 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
548 memcpy(newBlock0
,oldBlock0
,16);
549 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
551 newBlock0
[0] = uid_1st
[selected
]>>24;
552 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
553 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
554 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
555 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
557 // arg0 = workFlags, arg1 = blockNo, datain
558 MifareCSetBlock(params
, 0, newBlock0
);
559 MifareCGetBlock(params
, 0, testBlock0
);
561 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
562 DbpString("Cloned successfull!");
563 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
566 selected
= (selected
+ 1) % OPTS
;
568 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
573 LED(selected
+ 1, 0);
575 // Change where to record (or begin playing)
576 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
579 LED(selected
+ 1, 0);
581 // Begin transmitting
585 DbpString("Playing");
588 int button_action
= BUTTON_HELD(1000);
589 if (button_action
== 0) { // No button action, proceed with sim
590 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
591 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
592 num_to_bytes(uid_1st
[selected
], 3, data
);
593 num_to_bytes(uid_2nd
[selected
], 4, data
);
595 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
596 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
597 DbpString("Mifare Classic");
598 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
600 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
601 DbpString("Mifare Ultralight");
602 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
604 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
605 DbpString("Mifare DESFire");
606 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
609 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
610 SimulateIso14443aTag(1, flags
, data
);
613 else if (button_action
== BUTTON_SINGLE_CLICK
) {
614 selected
= (selected
+ 1) % OPTS
;
615 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
619 else if (button_action
== BUTTON_HOLD
) {
620 Dbprintf("Playtime over. Begin cloning...");
627 /* We pressed a button so ignore it here with a delay */
630 LED(selected
+ 1, 0);
633 while(BUTTON_PRESS())
639 // samy's sniff and repeat routine
643 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
645 int high
[OPTS
], low
[OPTS
];
650 // Turn on selected LED
651 LED(selected
+ 1, 0);
657 // Was our button held down or pressed?
658 int button_pressed
= BUTTON_HELD(1000);
661 // Button was held for a second, begin recording
662 if (button_pressed
> 0 && cardRead
== 0)
665 LED(selected
+ 1, 0);
669 DbpString("Starting recording");
671 // wait for button to be released
672 while(BUTTON_PRESS())
675 /* need this delay to prevent catching some weird data */
678 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
679 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
682 LED(selected
+ 1, 0);
683 // Finished recording
684 // If we were previously playing, set playing off
685 // so next button push begins playing what we recorded
689 else if (button_pressed
> 0 && cardRead
== 1) {
691 LED(selected
+ 1, 0);
695 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
697 // wait for button to be released
698 while(BUTTON_PRESS())
701 /* need this delay to prevent catching some weird data */
704 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
705 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
708 LED(selected
+ 1, 0);
709 // Finished recording
711 // If we were previously playing, set playing off
712 // so next button push begins playing what we recorded
717 // Change where to record (or begin playing)
718 else if (button_pressed
) {
719 // Next option if we were previously playing
721 selected
= (selected
+ 1) % OPTS
;
725 LED(selected
+ 1, 0);
727 // Begin transmitting
731 DbpString("Playing");
732 // wait for button to be released
733 while(BUTTON_PRESS())
736 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
737 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
738 DbpString("Done playing");
740 if (BUTTON_HELD(1000) > 0) {
741 DbpString("Exiting");
746 /* We pressed a button so ignore it here with a delay */
749 // when done, we're done playing, move to next option
750 selected
= (selected
+ 1) % OPTS
;
753 LED(selected
+ 1, 0);
756 while(BUTTON_PRESS())
765 Listen and detect an external reader. Determine the best location
769 Inside the ListenReaderField() function, there is two mode.
770 By default, when you call the function, you will enter mode 1.
771 If you press the PM3 button one time, you will enter mode 2.
772 If you press the PM3 button a second time, you will exit the function.
774 DESCRIPTION OF MODE 1:
775 This mode just listens for an external reader field and lights up green
776 for HF and/or red for LF. This is the original mode of the detectreader
779 DESCRIPTION OF MODE 2:
780 This mode will visually represent, using the LEDs, the actual strength of the
781 current compared to the maximum current detected. Basically, once you know
782 what kind of external reader is present, it will help you spot the best location to place
783 your antenna. You will probably not get some good results if there is a LF and a HF reader
784 at the same place! :-)
788 static const char LIGHT_SCHEME
[] = {
789 0x0, /* ---- | No field detected */
790 0x1, /* X--- | 14% of maximum current detected */
791 0x2, /* -X-- | 29% of maximum current detected */
792 0x4, /* --X- | 43% of maximum current detected */
793 0x8, /* ---X | 57% of maximum current detected */
794 0xC, /* --XX | 71% of maximum current detected */
795 0xE, /* -XXX | 86% of maximum current detected */
796 0xF, /* XXXX | 100% of maximum current detected */
798 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
800 void ListenReaderField(int limit
) {
803 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
805 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
806 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
807 int mode
=1, display_val
, display_max
, i
;
809 // switch off FPGA - we don't want to measure our own signal
810 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
811 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
815 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
817 if(limit
!= HF_ONLY
) {
818 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
822 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
824 if (limit
!= LF_ONLY
) {
825 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
830 if (BUTTON_PRESS()) {
835 DbpString("Signal Strength Mode");
839 DbpString("Stopped");
847 if (limit
!= HF_ONLY
) {
849 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
855 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
856 // see if there's a significant change
857 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
858 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
865 if (limit
!= LF_ONLY
) {
867 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
873 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
874 // see if there's a significant change
875 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
876 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
884 if (limit
== LF_ONLY
) {
886 display_max
= lf_max
;
887 } else if (limit
== HF_ONLY
) {
889 display_max
= hf_max
;
890 } else { /* Pick one at random */
891 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
893 display_max
= hf_max
;
896 display_max
= lf_max
;
899 for (i
=0; i
<LIGHT_LEN
; i
++) {
900 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
901 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
902 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
903 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
904 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
912 void UsbPacketReceived(uint8_t *packet
, int len
)
914 UsbCommand
*c
= (UsbCommand
*)packet
;
916 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
920 case CMD_SET_LF_SAMPLING_CONFIG
:
921 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
923 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
924 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
926 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
927 ModThenAcquireRawAdcSamples125k(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
929 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
930 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
932 case CMD_HID_DEMOD_FSK
:
933 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
935 case CMD_HID_SIM_TAG
:
936 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
938 case CMD_FSK_SIM_TAG
:
939 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
941 case CMD_ASK_SIM_TAG
:
942 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
944 case CMD_PSK_SIM_TAG
:
945 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
947 case CMD_HID_CLONE_TAG
:
948 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
950 case CMD_IO_DEMOD_FSK
:
951 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
953 case CMD_IO_CLONE_TAG
:
954 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
956 case CMD_EM410X_DEMOD
:
957 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
959 case CMD_EM410X_WRITE_TAG
:
960 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
962 case CMD_READ_TI_TYPE
:
965 case CMD_WRITE_TI_TYPE
:
966 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
968 case CMD_SIMULATE_TAG_125K
:
970 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
973 case CMD_LF_SIMULATE_BIDIR
:
974 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
976 case CMD_INDALA_CLONE_TAG
:
977 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
979 case CMD_INDALA_CLONE_TAG_L
:
980 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
982 case CMD_T55XX_READ_BLOCK
:
983 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
985 case CMD_T55XX_WRITE_BLOCK
:
986 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
988 case CMD_T55XX_WAKEUP
:
989 T55xxWakeUp(c
->arg
[0]);
991 case CMD_T55XX_RESET_READ
:
994 case CMD_PCF7931_READ
:
997 case CMD_PCF7931_WRITE
:
998 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1000 case CMD_EM4X_READ_WORD
:
1001 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
1003 case CMD_EM4X_WRITE_WORD
:
1004 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1006 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1007 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1009 case CMD_VIKING_CLONE_TAG
:
1010 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1015 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1016 SnoopHitag(c
->arg
[0]);
1018 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1019 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1021 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1022 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1024 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1025 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1027 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1028 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1030 case CMD_READ_HITAG_S
: //Reader for only Hitag S tags, args = key or challenge
1031 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1033 case CMD_WR_HITAG_S
: //writer for Hitag tags args=data to write,page and key or challenge
1034 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1038 #ifdef WITH_ISO15693
1039 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1040 AcquireRawAdcSamplesIso15693();
1042 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1043 RecordRawAdcSamplesIso15693();
1045 case CMD_ISO_15693_COMMAND
:
1046 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1048 case CMD_ISO_15693_FIND_AFI
:
1049 BruteforceIso15693Afi(c
->arg
[0]);
1051 case CMD_ISO_15693_DEBUG
:
1052 SetDebugIso15693(c
->arg
[0]);
1054 case CMD_READER_ISO_15693
:
1055 ReaderIso15693(c
->arg
[0]);
1057 case CMD_SIMTAG_ISO_15693
:
1058 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1063 case CMD_SIMULATE_TAG_LEGIC_RF
:
1064 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1066 case CMD_WRITER_LEGIC_RF
:
1067 LegicRfWriter( c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1069 case CMD_READER_LEGIC_RF
:
1070 LegicRfReader(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1072 case CMD_LEGIC_INFO
:
1075 case CMD_LEGIC_ESET
:
1076 LegicEMemSet(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1080 #ifdef WITH_ISO14443b
1081 case CMD_READ_SRI_TAG
:
1082 ReadSTMemoryIso14443b(c
->arg
[0]);
1084 case CMD_SNOOP_ISO_14443B
:
1087 case CMD_SIMULATE_TAG_ISO_14443B
:
1088 SimulateIso14443bTag(c
->arg
[0]);
1090 case CMD_ISO_14443B_COMMAND
:
1091 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1092 SendRawCommand14443B_Ex(c
);
1096 #ifdef WITH_ISO14443a
1097 case CMD_SNOOP_ISO_14443a
:
1098 SniffIso14443a(c
->arg
[0]);
1100 case CMD_READER_ISO_14443a
:
1103 case CMD_SIMULATE_TAG_ISO_14443a
:
1104 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1106 case CMD_EPA_PACE_COLLECT_NONCE
:
1107 EPA_PACE_Collect_Nonce(c
);
1109 case CMD_EPA_PACE_REPLAY
:
1112 case CMD_READER_MIFARE
:
1113 ReaderMifare(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1115 case CMD_MIFARE_READBL
:
1116 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1118 case CMD_MIFAREU_READBL
:
1119 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1121 case CMD_MIFAREUC_AUTH
:
1122 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1124 case CMD_MIFAREU_READCARD
:
1125 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1127 case CMD_MIFAREUC_SETPWD
:
1128 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1130 case CMD_MIFARE_READSC
:
1131 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1133 case CMD_MIFARE_WRITEBL
:
1134 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1136 //case CMD_MIFAREU_WRITEBL_COMPAT:
1137 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1139 case CMD_MIFAREU_WRITEBL
:
1140 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1142 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1143 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1145 case CMD_MIFARE_NESTED
:
1146 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1148 case CMD_MIFARE_CHKKEYS
:
1149 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1151 case CMD_SIMULATE_MIFARE_CARD
:
1152 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1156 case CMD_MIFARE_SET_DBGMODE
:
1157 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1159 case CMD_MIFARE_EML_MEMCLR
:
1160 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1162 case CMD_MIFARE_EML_MEMSET
:
1163 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1165 case CMD_MIFARE_EML_MEMGET
:
1166 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1168 case CMD_MIFARE_EML_CARDLOAD
:
1169 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1172 // Work with "magic Chinese" card
1173 case CMD_MIFARE_CSETBLOCK
:
1174 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1176 case CMD_MIFARE_CGETBLOCK
:
1177 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1179 case CMD_MIFARE_CIDENT
:
1184 case CMD_MIFARE_SNIFFER
:
1185 SniffMifare(c
->arg
[0]);
1189 case CMD_MIFARE_DESFIRE_READBL
: break;
1190 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1191 case CMD_MIFARE_DESFIRE_AUTH1
:
1192 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1194 case CMD_MIFARE_DESFIRE_AUTH2
:
1195 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1197 case CMD_MIFARE_DES_READER
:
1198 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1200 case CMD_MIFARE_DESFIRE_INFO
:
1201 MifareDesfireGetInformation();
1203 case CMD_MIFARE_DESFIRE
:
1204 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1206 case CMD_MIFARE_COLLECT_NONCES
:
1210 case CMD_EMV_TRANSACTION
:
1213 case CMD_EMV_GET_RANDOM_NUM
:
1216 case CMD_EMV_LOAD_VALUE
:
1217 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1219 case CMD_EMV_DUMP_CARD
:
1223 // Makes use of ISO14443a FPGA Firmware
1224 case CMD_SNOOP_ICLASS
:
1227 case CMD_SIMULATE_TAG_ICLASS
:
1228 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1230 case CMD_READER_ICLASS
:
1231 ReaderIClass(c
->arg
[0]);
1233 case CMD_READER_ICLASS_REPLAY
:
1234 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1236 case CMD_ICLASS_EML_MEMSET
:
1237 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1239 case CMD_ICLASS_WRITEBLOCK
:
1240 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1242 case CMD_ICLASS_READCHECK
: // auth step 1
1243 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1245 case CMD_ICLASS_READBLOCK
:
1246 iClass_ReadBlk(c
->arg
[0]);
1248 case CMD_ICLASS_AUTHENTICATION
: //check
1249 iClass_Authentication(c
->d
.asBytes
);
1251 case CMD_ICLASS_DUMP
:
1252 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1254 case CMD_ICLASS_CLONE
:
1255 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1259 case CMD_HF_SNIFFER
:
1260 HfSnoop(c
->arg
[0], c
->arg
[1]);
1264 case CMD_BUFF_CLEAR
:
1268 case CMD_MEASURE_ANTENNA_TUNING
:
1269 MeasureAntennaTuning();
1272 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1273 MeasureAntennaTuningHf();
1276 case CMD_LISTEN_READER_FIELD
:
1277 ListenReaderField(c
->arg
[0]);
1280 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1281 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1283 LED_D_OFF(); // LED D indicates field ON or OFF
1286 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
1288 uint8_t *BigBuf
= BigBuf_get_addr();
1290 size_t startidx
= c
->arg
[0];
1291 uint8_t isok
= FALSE
;
1292 // arg0 = startindex
1293 // arg1 = length bytes to transfer
1295 //Dbprintf("transfer to client parameters: %llu | %llu | %llu", c->arg[0], c->arg[1], c->arg[2]);
1297 for(size_t i
= 0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1298 len
= MIN( (c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1299 isok
= cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, i
, len
, BigBuf_get_traceLen(), BigBuf
+ startidx
+ i
, len
);
1301 Dbprintf("transfer to client failed :: | bytes %d", len
);
1303 // Trigger a finish downloading signal with an ACK frame
1304 cmd_send(CMD_ACK
, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config
));
1308 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1309 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1310 // to be able to use this one for uploading data to device
1311 // arg1 = 0 upload for LF usage
1312 // 1 upload for HF usage
1313 if ( c
->arg
[1] == 0 )
1314 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1316 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1317 uint8_t *b
= BigBuf_get_addr();
1318 memcpy( b
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1319 cmd_send(CMD_ACK
,1,0,0,0,0);
1322 case CMD_DOWNLOAD_EML_BIGBUF
: {
1324 uint8_t *cardmem
= BigBuf_get_EM_addr();
1326 for(size_t i
=0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1327 len
= MIN((c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1328 cmd_send(CMD_DOWNLOADED_EML_BIGBUF
, i
, len
, CARD_MEMORY_SIZE
, cardmem
+ c
->arg
[0] + i
, len
);
1330 // Trigger a finish downloading signal with an ACK frame
1331 cmd_send(CMD_ACK
, 1, 0, CARD_MEMORY_SIZE
, 0, 0);
1339 case CMD_SET_LF_DIVISOR
:
1340 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1341 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1344 case CMD_SET_ADC_MUX
:
1346 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1347 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1348 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1349 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1360 cmd_send(CMD_ACK
,0,0,0,0,0);
1370 case CMD_SETUP_WRITE
:
1371 case CMD_FINISH_WRITE
:
1372 case CMD_HARDWARE_RESET
:
1375 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1377 // We're going to reset, and the bootrom will take control.
1381 case CMD_START_FLASH
:
1382 if(common_area
.flags
.bootrom_present
) {
1383 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1386 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1390 case CMD_DEVICE_INFO
: {
1391 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1392 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1393 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1397 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1402 void __attribute__((noreturn
)) AppMain(void)
1406 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1407 /* Initialize common area */
1408 memset(&common_area
, 0, sizeof(common_area
));
1409 common_area
.magic
= COMMON_AREA_MAGIC
;
1410 common_area
.version
= 1;
1412 common_area
.flags
.osimage_present
= 1;
1419 // The FPGA gets its clock from us from PCK0 output, so set that up.
1420 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1421 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1422 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1423 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1424 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
| AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1425 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1428 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1430 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1432 // Load the FPGA image, which we have stored in our flash.
1433 // (the HF version by default)
1434 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1442 byte_t rx
[sizeof(UsbCommand
)];
1446 if ( usb_poll_validate_length() ) {
1447 rx_len
= usb_read(rx
, sizeof(UsbCommand
));
1450 UsbPacketReceived(rx
, rx_len
);
1455 #ifndef WITH_ISO14443a_StandAlone
1456 if (BUTTON_HELD(1000) > 0)
1460 #ifdef WITH_ISO14443a
1461 #ifdef WITH_ISO14443a_StandAlone
1462 if (BUTTON_HELD(1000) > 0)
1463 StandAloneMode14a();