1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
15 #include "../include/proxmark3.h"
16 #include "../include/hitag2.h"
23 #include "lfsampling.h"
30 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32 //=============================================================================
33 // A buffer where we can queue things up to be sent through the FPGA, for
34 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
35 // is the order in which they go out on the wire.
36 //=============================================================================
38 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
39 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
42 struct common_area common_area
__attribute__((section(".commonarea")));
44 void ToSendReset(void)
50 void ToSendStuffBit(int b
)
54 ToSend
[ToSendMax
] = 0;
59 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
64 if(ToSendMax
>= sizeof(ToSend
)) {
66 DbpString("ToSendStuffBit overflowed!");
70 //=============================================================================
71 // Debug print functions, to go out over USB, to the usual PC-side client.
72 //=============================================================================
74 void DbpString(char *str
)
76 byte_t len
= strlen(str
);
77 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
81 void DbpIntegers(int x1
, int x2
, int x3
)
83 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
87 void Dbprintf(const char *fmt
, ...) {
88 // should probably limit size here; oh well, let's just use a big buffer
89 char output_string
[128];
93 kvsprintf(fmt
, output_string
, 10, ap
);
96 DbpString(output_string
);
100 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
113 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
116 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
118 Dbprintf("%*D",l
,d
," ");
126 //-----------------------------------------------------------------------------
127 // Read an ADC channel and block till it completes, then return the result
128 // in ADC units (0 to 1023). Also a routine to average 32 samples and
130 //-----------------------------------------------------------------------------
131 static int ReadAdc(int ch
)
135 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
136 AT91C_BASE_ADC
->ADC_MR
=
137 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
138 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
139 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
141 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
142 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
143 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
146 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
148 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
150 // Note: with the "historic" values in the comments above, the error was 34% !!!
152 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
154 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
156 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
158 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
163 int AvgAdc(int ch
) // was static - merlok
168 for(i
= 0; i
< 32; i
++) {
172 return (a
+ 15) >> 5;
175 void MeasureAntennaTuning(void)
177 uint8_t LF_Results
[256];
178 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
179 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
184 * Sweeps the useful LF range of the proxmark from
185 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
186 * read the voltage in the antenna, the result left
187 * in the buffer is a graph which should clearly show
188 * the resonating frequency of your LF antenna
189 * ( hopefully around 95 if it is tuned to 125kHz!)
192 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
193 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
194 for (i
=255; i
>=19; i
--) {
196 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
198 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
199 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
200 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
202 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
203 if(LF_Results
[i
] > peak
) {
205 peak
= LF_Results
[i
];
211 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
214 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
215 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
216 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
218 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
220 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
221 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
227 void MeasureAntennaTuningHf(void)
229 int vHf
= 0; // in mV
231 DbpString("Measuring HF antenna, press button to exit");
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
239 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
241 Dbprintf("%d mV",vHf
);
242 if (BUTTON_PRESS()) break;
244 DbpString("cancelled");
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
251 void SimulateTagHfListen(void)
253 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
254 // There might be a better size to be defined:
255 #define HF_14B_SNOOP_BUFFER_SIZE 2744
256 uint8_t *dest
= BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE
);
261 // We're using this mode just so that I can test it out; the simulated
262 // tag mode would work just as well and be simpler.
263 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
264 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
266 // We need to listen to the high-frequency, peak-detected path.
267 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
273 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
274 AT91C_BASE_SSC
->SSC_THR
= 0xff;
276 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
277 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
291 if(i
>= HF_14B_SNOOP_BUFFER_SIZE
) {
297 DbpString("simulate tag (now type bitsamples)");
300 void ReadMem(int addr
)
302 const uint8_t *data
= ((uint8_t *)addr
);
304 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
305 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
308 /* osimage version information is linked in */
309 extern struct version_information version_information
;
310 /* bootrom version information is pointed to from _bootphase1_version_pointer */
311 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
312 void SendVersion(void)
314 char temp
[512]; /* Limited data payload in USB packets */
315 DbpString("Prox/RFID mark3 RFID instrument");
317 /* Try to find the bootrom version information. Expect to find a pointer at
318 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
319 * pointer, then use it.
321 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
322 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
323 DbpString("bootrom version information appears invalid");
325 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
329 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
332 FpgaGatherVersion(temp
, sizeof(temp
));
335 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
339 // samy's sniff and repeat routine
342 DbpString("Stand-alone mode! No PC necessary.");
343 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
345 // 3 possible options? no just 2 for now
348 int high
[OPTS
], low
[OPTS
];
350 // Oooh pretty -- notify user we're in elite samy mode now
352 LED(LED_ORANGE
, 200);
354 LED(LED_ORANGE
, 200);
356 LED(LED_ORANGE
, 200);
358 LED(LED_ORANGE
, 200);
365 // Turn on selected LED
366 LED(selected
+ 1, 0);
373 // Was our button held down or pressed?
374 int button_pressed
= BUTTON_HELD(1000);
377 // Button was held for a second, begin recording
378 if (button_pressed
> 0 && cardRead
== 0)
381 LED(selected
+ 1, 0);
385 DbpString("Starting recording");
387 // wait for button to be released
388 while(BUTTON_PRESS())
391 /* need this delay to prevent catching some weird data */
394 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
395 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
398 LED(selected
+ 1, 0);
399 // Finished recording
401 // If we were previously playing, set playing off
402 // so next button push begins playing what we recorded
409 else if (button_pressed
> 0 && cardRead
== 1)
412 LED(selected
+ 1, 0);
416 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
418 // wait for button to be released
419 while(BUTTON_PRESS())
422 /* need this delay to prevent catching some weird data */
425 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
426 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
429 LED(selected
+ 1, 0);
430 // Finished recording
432 // If we were previously playing, set playing off
433 // so next button push begins playing what we recorded
440 // Change where to record (or begin playing)
441 else if (button_pressed
)
443 // Next option if we were previously playing
445 selected
= (selected
+ 1) % OPTS
;
449 LED(selected
+ 1, 0);
451 // Begin transmitting
455 DbpString("Playing");
456 // wait for button to be released
457 while(BUTTON_PRESS())
459 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
460 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
461 DbpString("Done playing");
462 if (BUTTON_HELD(1000) > 0)
464 DbpString("Exiting");
469 /* We pressed a button so ignore it here with a delay */
472 // when done, we're done playing, move to next option
473 selected
= (selected
+ 1) % OPTS
;
476 LED(selected
+ 1, 0);
479 while(BUTTON_PRESS())
488 Listen and detect an external reader. Determine the best location
492 Inside the ListenReaderField() function, there is two mode.
493 By default, when you call the function, you will enter mode 1.
494 If you press the PM3 button one time, you will enter mode 2.
495 If you press the PM3 button a second time, you will exit the function.
497 DESCRIPTION OF MODE 1:
498 This mode just listens for an external reader field and lights up green
499 for HF and/or red for LF. This is the original mode of the detectreader
502 DESCRIPTION OF MODE 2:
503 This mode will visually represent, using the LEDs, the actual strength of the
504 current compared to the maximum current detected. Basically, once you know
505 what kind of external reader is present, it will help you spot the best location to place
506 your antenna. You will probably not get some good results if there is a LF and a HF reader
507 at the same place! :-)
511 static const char LIGHT_SCHEME
[] = {
512 0x0, /* ---- | No field detected */
513 0x1, /* X--- | 14% of maximum current detected */
514 0x2, /* -X-- | 29% of maximum current detected */
515 0x4, /* --X- | 43% of maximum current detected */
516 0x8, /* ---X | 57% of maximum current detected */
517 0xC, /* --XX | 71% of maximum current detected */
518 0xE, /* -XXX | 86% of maximum current detected */
519 0xF, /* XXXX | 100% of maximum current detected */
521 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
523 void ListenReaderField(int limit
)
525 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
526 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
527 int mode
=1, display_val
, display_max
, i
;
531 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
534 // switch off FPGA - we don't want to measure our own signal
535 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
536 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
540 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
542 if(limit
!= HF_ONLY
) {
543 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
547 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
549 if (limit
!= LF_ONLY
) {
550 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
555 if (BUTTON_PRESS()) {
560 DbpString("Signal Strength Mode");
564 DbpString("Stopped");
572 if (limit
!= HF_ONLY
) {
574 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
580 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
581 // see if there's a significant change
582 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
583 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
590 if (limit
!= LF_ONLY
) {
592 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
598 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
599 // see if there's a significant change
600 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
601 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
609 if (limit
== LF_ONLY
) {
611 display_max
= lf_max
;
612 } else if (limit
== HF_ONLY
) {
614 display_max
= hf_max
;
615 } else { /* Pick one at random */
616 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
618 display_max
= hf_max
;
621 display_max
= lf_max
;
624 for (i
=0; i
<LIGHT_LEN
; i
++) {
625 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
626 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
627 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
628 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
629 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
637 void UsbPacketReceived(uint8_t *packet
, int len
)
639 UsbCommand
*c
= (UsbCommand
*)packet
;
641 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
645 case CMD_SET_LF_SAMPLING_CONFIG
:
646 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
648 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
649 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
651 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
652 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
654 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
655 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
657 case CMD_HID_DEMOD_FSK
:
658 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
660 case CMD_HID_SIM_TAG
:
661 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
663 case CMD_FSK_SIM_TAG
:
664 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
666 case CMD_ASK_SIM_TAG
:
667 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
669 case CMD_PSK_SIM_TAG
:
670 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
672 case CMD_HID_CLONE_TAG
:
673 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
675 case CMD_IO_DEMOD_FSK
:
676 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
678 case CMD_IO_CLONE_TAG
:
679 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
681 case CMD_EM410X_DEMOD
:
682 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
684 case CMD_EM410X_WRITE_TAG
:
685 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
687 case CMD_READ_TI_TYPE
:
690 case CMD_WRITE_TI_TYPE
:
691 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
693 case CMD_SIMULATE_TAG_125K
:
694 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 0);
695 //SimulateTagLowFrequencyA(c->arg[0], c->arg[1]);
697 case CMD_LF_SIMULATE_BIDIR
:
698 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
700 case CMD_INDALA_CLONE_TAG
:
701 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
703 case CMD_INDALA_CLONE_TAG_L
:
704 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
706 case CMD_T55XX_READ_BLOCK
:
707 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
709 case CMD_T55XX_WRITE_BLOCK
:
710 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
712 case CMD_T55XX_READ_TRACE
:
715 case CMD_PCF7931_READ
:
717 cmd_send(CMD_ACK
,0,0,0,0,0);
719 case CMD_EM4X_READ_WORD
:
720 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
722 case CMD_EM4X_WRITE_WORD
:
723 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
728 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
729 SnoopHitag(c
->arg
[0]);
731 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
732 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
734 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
735 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
740 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
741 AcquireRawAdcSamplesIso15693();
743 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
744 RecordRawAdcSamplesIso15693();
747 case CMD_ISO_15693_COMMAND
:
748 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
751 case CMD_ISO_15693_FIND_AFI
:
752 BruteforceIso15693Afi(c
->arg
[0]);
755 case CMD_ISO_15693_DEBUG
:
756 SetDebugIso15693(c
->arg
[0]);
759 case CMD_READER_ISO_15693
:
760 ReaderIso15693(c
->arg
[0]);
762 case CMD_SIMTAG_ISO_15693
:
763 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
768 case CMD_SIMULATE_TAG_LEGIC_RF
:
769 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
772 case CMD_WRITER_LEGIC_RF
:
773 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
776 case CMD_READER_LEGIC_RF
:
777 LegicRfReader(c
->arg
[0], c
->arg
[1]);
781 #ifdef WITH_ISO14443b
782 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
783 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
785 case CMD_READ_SRI512_TAG
:
786 ReadSTMemoryIso14443(0x0F);
788 case CMD_READ_SRIX4K_TAG
:
789 ReadSTMemoryIso14443(0x7F);
791 case CMD_SNOOP_ISO_14443
:
794 case CMD_SIMULATE_TAG_ISO_14443
:
795 SimulateIso14443Tag();
797 case CMD_ISO_14443B_COMMAND
:
798 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
802 #ifdef WITH_ISO14443a
803 case CMD_SNOOP_ISO_14443a
:
804 SnoopIso14443a(c
->arg
[0]);
806 case CMD_READER_ISO_14443a
:
809 case CMD_SIMULATE_TAG_ISO_14443a
:
810 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
813 case CMD_EPA_PACE_COLLECT_NONCE
:
814 EPA_PACE_Collect_Nonce(c
);
821 case CMD_READER_MIFARE
:
822 ReaderMifare(c
->arg
[0]);
824 case CMD_MIFARE_READBL
:
825 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
827 case CMD_MIFAREU_READBL
:
828 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
830 case CMD_MIFAREUC_AUTH1
:
831 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
833 case CMD_MIFAREUC_AUTH2
:
834 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
836 case CMD_MIFAREU_READCARD
:
837 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
839 case CMD_MIFAREUC_READCARD
:
840 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
842 case CMD_MIFAREUC_SETPWD
:
843 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
845 //case CMD_MIFAREU_SETUID:
846 //MifareUSetUid(c->arg[0], c->d.asBytes);
848 case CMD_MIFARE_READSC
:
849 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
851 case CMD_MIFARE_WRITEBL
:
852 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
854 case CMD_MIFAREU_WRITEBL_COMPAT
:
855 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
857 case CMD_MIFAREU_WRITEBL
:
858 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
860 case CMD_MIFARE_NESTED
:
861 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
863 case CMD_MIFARE_CHKKEYS
:
864 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
866 case CMD_SIMULATE_MIFARE_CARD
:
867 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
871 case CMD_MIFARE_SET_DBGMODE
:
872 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
874 case CMD_MIFARE_EML_MEMCLR
:
875 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
877 case CMD_MIFARE_EML_MEMSET
:
878 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
880 case CMD_MIFARE_EML_MEMGET
:
881 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
883 case CMD_MIFARE_EML_CARDLOAD
:
884 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
887 // Work with "magic Chinese" card
888 case CMD_MIFARE_CSETBLOCK
:
889 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
891 case CMD_MIFARE_CGETBLOCK
:
892 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
894 case CMD_MIFARE_CIDENT
:
899 case CMD_MIFARE_SNIFFER
:
900 SniffMifare(c
->arg
[0]);
904 case CMD_MIFARE_DESFIRE_READBL
: break;
905 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
906 case CMD_MIFARE_DESFIRE_AUTH1
:
907 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
909 case CMD_MIFARE_DESFIRE_AUTH2
:
910 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
912 case CMD_MIFARE_DES_READER
:
913 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
915 case CMD_MIFARE_DESFIRE_INFO
:
916 MifareDesfireGetInformation();
918 case CMD_MIFARE_DESFIRE
:
919 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
925 // Makes use of ISO14443a FPGA Firmware
926 case CMD_SNOOP_ICLASS
:
929 case CMD_SIMULATE_TAG_ICLASS
:
930 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
932 case CMD_READER_ICLASS
:
933 ReaderIClass(c
->arg
[0]);
935 case CMD_READER_ICLASS_REPLAY
:
936 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
938 case CMD_ICLASS_EML_MEMSET
:
939 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
943 case CMD_SIMULATE_TAG_HF_LISTEN
:
944 SimulateTagHfListen();
951 case CMD_MEASURE_ANTENNA_TUNING
:
952 MeasureAntennaTuning();
955 case CMD_MEASURE_ANTENNA_TUNING_HF
:
956 MeasureAntennaTuningHf();
959 case CMD_LISTEN_READER_FIELD
:
960 ListenReaderField(c
->arg
[0]);
963 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
964 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
966 LED_D_OFF(); // LED D indicates field ON or OFF
969 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
972 uint8_t *BigBuf
= BigBuf_get_addr();
973 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
974 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
975 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
977 // Trigger a finish downloading signal with an ACK frame
978 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
982 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
983 uint8_t *b
= BigBuf_get_addr();
984 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
985 cmd_send(CMD_ACK
,0,0,0,0,0);
992 case CMD_SET_LF_DIVISOR
:
993 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
994 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
997 case CMD_SET_ADC_MUX
:
999 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1000 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1001 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1002 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1018 case CMD_SETUP_WRITE
:
1019 case CMD_FINISH_WRITE
:
1020 case CMD_HARDWARE_RESET
:
1024 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1026 // We're going to reset, and the bootrom will take control.
1030 case CMD_START_FLASH
:
1031 if(common_area
.flags
.bootrom_present
) {
1032 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1035 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1039 case CMD_DEVICE_INFO
: {
1040 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1041 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1042 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1046 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1051 void __attribute__((noreturn
)) AppMain(void)
1055 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1056 /* Initialize common area */
1057 memset(&common_area
, 0, sizeof(common_area
));
1058 common_area
.magic
= COMMON_AREA_MAGIC
;
1059 common_area
.version
= 1;
1061 common_area
.flags
.osimage_present
= 1;
1071 // The FPGA gets its clock from us from PCK0 output, so set that up.
1072 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1073 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1074 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1075 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1076 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1077 AT91C_PMC_PRES_CLK_4
;
1078 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1081 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1083 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1085 // Load the FPGA image, which we have stored in our flash.
1086 // (the HF version by default)
1087 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1095 byte_t rx
[sizeof(UsbCommand
)];
1100 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1102 UsbPacketReceived(rx
,rx_len
);
1108 if (BUTTON_HELD(1000) > 0)