]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
added cmdhflist file
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "iso14443a.h"
14
15 #include <stdio.h>
16 #include <string.h>
17 #include "proxmark3.h"
18 #include "apps.h"
19 #include "util.h"
20 #include "cmd.h"
21 #include "iso14443crc.h"
22 #include "crapto1/crapto1.h"
23 #include "mifareutil.h"
24 #include "mifaresniff.h"
25 #include "BigBuf.h"
26 #include "protocols.h"
27 #include "parity.h"
28
29 typedef struct {
30 enum {
31 DEMOD_UNSYNCD,
32 // DEMOD_HALF_SYNCD,
33 // DEMOD_MOD_FIRST_HALF,
34 // DEMOD_NOMOD_FIRST_HALF,
35 DEMOD_MANCHESTER_DATA
36 } state;
37 uint16_t twoBits;
38 uint16_t highCnt;
39 uint16_t bitCount;
40 uint16_t collisionPos;
41 uint16_t syncBit;
42 uint8_t parityBits;
43 uint8_t parityLen;
44 uint16_t shiftReg;
45 uint16_t samples;
46 uint16_t len;
47 uint32_t startTime, endTime;
48 uint8_t *output;
49 uint8_t *parity;
50 } tDemod;
51
52 typedef enum {
53 MOD_NOMOD = 0,
54 MOD_SECOND_HALF,
55 MOD_FIRST_HALF,
56 MOD_BOTH_HALVES
57 } Modulation_t;
58
59 typedef struct {
60 enum {
61 STATE_UNSYNCD,
62 STATE_START_OF_COMMUNICATION,
63 STATE_MILLER_X,
64 STATE_MILLER_Y,
65 STATE_MILLER_Z,
66 // DROP_NONE,
67 // DROP_FIRST_HALF,
68 } state;
69 uint16_t shiftReg;
70 int16_t bitCount;
71 uint16_t len;
72 uint16_t byteCntMax;
73 uint16_t posCnt;
74 uint16_t syncBit;
75 uint8_t parityBits;
76 uint8_t parityLen;
77 uint32_t fourBits;
78 uint32_t startTime, endTime;
79 uint8_t *output;
80 uint8_t *parity;
81 } tUart;
82
83 static uint32_t iso14a_timeout;
84 #define MAX_ISO14A_TIMEOUT 524288
85
86 int rsamples = 0;
87 uint8_t trigger = 0;
88 // the block number for the ISO14443-4 PCB
89 static uint8_t iso14_pcb_blocknum = 0;
90
91 //
92 // ISO14443 timing:
93 //
94 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
95 #define REQUEST_GUARD_TIME (7000/16 + 1)
96 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
97 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
98 // bool LastCommandWasRequest = false;
99
100 //
101 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
102 //
103 // When the PM acts as reader and is receiving tag data, it takes
104 // 3 ticks delay in the AD converter
105 // 16 ticks until the modulation detector completes and sets curbit
106 // 8 ticks until bit_to_arm is assigned from curbit
107 // 8*16 ticks for the transfer from FPGA to ARM
108 // 4*16 ticks until we measure the time
109 // - 8*16 ticks because we measure the time of the previous transfer
110 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
111
112 // When the PM acts as a reader and is sending, it takes
113 // 4*16 ticks until we can write data to the sending hold register
114 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
115 // 8 ticks until the first transfer starts
116 // 8 ticks later the FPGA samples the data
117 // 1 tick to assign mod_sig_coil
118 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
119
120 // When the PM acts as tag and is receiving it takes
121 // 2 ticks delay in the RF part (for the first falling edge),
122 // 3 ticks for the A/D conversion,
123 // 8 ticks on average until the start of the SSC transfer,
124 // 8 ticks until the SSC samples the first data
125 // 7*16 ticks to complete the transfer from FPGA to ARM
126 // 8 ticks until the next ssp_clk rising edge
127 // 4*16 ticks until we measure the time
128 // - 8*16 ticks because we measure the time of the previous transfer
129 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
130
131 // The FPGA will report its internal sending delay in
132 uint16_t FpgaSendQueueDelay;
133 // the 5 first bits are the number of bits buffered in mod_sig_buf
134 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
135 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
136
137 // When the PM acts as tag and is sending, it takes
138 // 4*16 + 8 ticks until we can write data to the sending hold register
139 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
140 // 8 ticks later the FPGA samples the first data
141 // + 16 ticks until assigned to mod_sig
142 // + 1 tick to assign mod_sig_coil
143 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
144 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE)
145
146 // When the PM acts as sniffer and is receiving tag data, it takes
147 // 3 ticks A/D conversion
148 // 14 ticks to complete the modulation detection
149 // 8 ticks (on average) until the result is stored in to_arm
150 // + the delays in transferring data - which is the same for
151 // sniffing reader and tag data and therefore not relevant
152 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
153
154 // When the PM acts as sniffer and is receiving reader data, it takes
155 // 2 ticks delay in analogue RF receiver (for the falling edge of the
156 // start bit, which marks the start of the communication)
157 // 3 ticks A/D conversion
158 // 8 ticks on average until the data is stored in to_arm.
159 // + the delays in transferring data - which is the same for
160 // sniffing reader and tag data and therefore not relevant
161 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
162
163 //variables used for timing purposes:
164 //these are in ssp_clk cycles:
165 static uint32_t NextTransferTime;
166 static uint32_t LastTimeProxToAirStart;
167 static uint32_t LastProxToAirDuration;
168
169
170
171 // CARD TO READER - manchester
172 // Sequence D: 11110000 modulation with subcarrier during first half
173 // Sequence E: 00001111 modulation with subcarrier during second half
174 // Sequence F: 00000000 no modulation with subcarrier
175 // READER TO CARD - miller
176 // Sequence X: 00001100 drop after half a period
177 // Sequence Y: 00000000 no drop
178 // Sequence Z: 11000000 drop at start
179 #define SEC_D 0xf0
180 #define SEC_E 0x0f
181 #define SEC_F 0x00
182 #define SEC_X 0x0c
183 #define SEC_Y 0x00
184 #define SEC_Z 0xc0
185
186 void iso14a_set_trigger(bool enable) {
187 trigger = enable;
188 }
189
190
191 void iso14a_set_timeout(uint32_t timeout) {
192 // adjust timeout by FPGA delays and 2 additional ssp_frames to detect SOF
193 iso14a_timeout = timeout + (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8) + 2;
194 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", timeout, timeout / 106);
195 }
196
197
198 uint32_t iso14a_get_timeout(void) {
199 return iso14a_timeout - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8) - 2;
200 }
201
202 //-----------------------------------------------------------------------------
203 // Generate the parity value for a byte sequence
204 //
205 //-----------------------------------------------------------------------------
206 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
207 {
208 uint16_t paritybit_cnt = 0;
209 uint16_t paritybyte_cnt = 0;
210 uint8_t parityBits = 0;
211
212 for (uint16_t i = 0; i < iLen; i++) {
213 // Generate the parity bits
214 parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
215 if (paritybit_cnt == 7) {
216 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
217 parityBits = 0; // and advance to next Parity Byte
218 paritybyte_cnt++;
219 paritybit_cnt = 0;
220 } else {
221 paritybit_cnt++;
222 }
223 }
224
225 // save remaining parity bits
226 par[paritybyte_cnt] = parityBits;
227
228 }
229
230 void AppendCrc14443a(uint8_t* data, int len)
231 {
232 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
233 }
234
235 static void AppendCrc14443b(uint8_t* data, int len)
236 {
237 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
238 }
239
240
241 //=============================================================================
242 // ISO 14443 Type A - Miller decoder
243 //=============================================================================
244 // Basics:
245 // This decoder is used when the PM3 acts as a tag.
246 // The reader will generate "pauses" by temporarily switching of the field.
247 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
248 // The FPGA does a comparison with a threshold and would deliver e.g.:
249 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
250 // The Miller decoder needs to identify the following sequences:
251 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
252 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
253 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
254 // Note 1: the bitstream may start at any time. We therefore need to sync.
255 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
256 //-----------------------------------------------------------------------------
257 static tUart Uart;
258
259 // Lookup-Table to decide if 4 raw bits are a modulation.
260 // We accept the following:
261 // 0001 - a 3 tick wide pause
262 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
263 // 0111 - a 2 tick wide pause shifted left
264 // 1001 - a 2 tick wide pause shifted right
265 const bool Mod_Miller_LUT[] = {
266 false, true, false, true, false, false, false, true,
267 false, true, false, false, false, false, false, false
268 };
269 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
270 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
271
272 static void UartReset()
273 {
274 Uart.state = STATE_UNSYNCD;
275 Uart.bitCount = 0;
276 Uart.len = 0; // number of decoded data bytes
277 Uart.parityLen = 0; // number of decoded parity bytes
278 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
279 Uart.parityBits = 0; // holds 8 parity bits
280 Uart.startTime = 0;
281 Uart.endTime = 0;
282 }
283
284 static void UartInit(uint8_t *data, uint8_t *parity)
285 {
286 Uart.output = data;
287 Uart.parity = parity;
288 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
289 UartReset();
290 }
291
292 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
293 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
294 {
295
296 Uart.fourBits = (Uart.fourBits << 8) | bit;
297
298 if (Uart.state == STATE_UNSYNCD) { // not yet synced
299
300 Uart.syncBit = 9999; // not set
301 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
302 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
303 // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
304 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
305 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
306 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
307 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
308 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
309 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
310 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
311 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
312 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
313 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
314 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
315
316 if (Uart.syncBit != 9999) { // found a sync bit
317 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
318 Uart.startTime -= Uart.syncBit;
319 Uart.endTime = Uart.startTime;
320 Uart.state = STATE_START_OF_COMMUNICATION;
321 }
322
323 } else {
324
325 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
326 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
327 UartReset();
328 } else { // Modulation in first half = Sequence Z = logic "0"
329 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
330 UartReset();
331 } else {
332 Uart.bitCount++;
333 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
334 Uart.state = STATE_MILLER_Z;
335 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
336 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
337 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
338 Uart.parityBits <<= 1; // make room for the parity bit
339 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
340 Uart.bitCount = 0;
341 Uart.shiftReg = 0;
342 if((Uart.len&0x0007) == 0) { // every 8 data bytes
343 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
344 Uart.parityBits = 0;
345 }
346 }
347 }
348 }
349 } else {
350 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
351 Uart.bitCount++;
352 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
353 Uart.state = STATE_MILLER_X;
354 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
355 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
356 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
357 Uart.parityBits <<= 1; // make room for the new parity bit
358 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
359 Uart.bitCount = 0;
360 Uart.shiftReg = 0;
361 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
362 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
363 Uart.parityBits = 0;
364 }
365 }
366 } else { // no modulation in both halves - Sequence Y
367 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
368 Uart.state = STATE_UNSYNCD;
369 Uart.bitCount--; // last "0" was part of EOC sequence
370 Uart.shiftReg <<= 1; // drop it
371 if(Uart.bitCount > 0) { // if we decoded some bits
372 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
373 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
374 Uart.parityBits <<= 1; // add a (void) parity bit
375 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
376 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
377 return true;
378 } else if (Uart.len & 0x0007) { // there are some parity bits to store
379 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
380 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
381 }
382 if (Uart.len) {
383 return true; // we are finished with decoding the raw data sequence
384 } else {
385 UartReset(); // Nothing received - start over
386 }
387 }
388 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
389 UartReset();
390 } else { // a logic "0"
391 Uart.bitCount++;
392 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
393 Uart.state = STATE_MILLER_Y;
394 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
395 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
396 Uart.parityBits <<= 1; // make room for the parity bit
397 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
398 Uart.bitCount = 0;
399 Uart.shiftReg = 0;
400 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
401 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
402 Uart.parityBits = 0;
403 }
404 }
405 }
406 }
407 }
408
409 }
410
411 return false; // not finished yet, need more data
412 }
413
414
415
416 //=============================================================================
417 // ISO 14443 Type A - Manchester decoder
418 //=============================================================================
419 // Basics:
420 // This decoder is used when the PM3 acts as a reader.
421 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
422 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
423 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
424 // The Manchester decoder needs to identify the following sequences:
425 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
426 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
427 // 8 ticks unmodulated: Sequence F = end of communication
428 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
429 // Note 1: the bitstream may start at any time. We therefore need to sync.
430 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
431 static tDemod Demod;
432
433 // Lookup-Table to decide if 4 raw bits are a modulation.
434 // We accept three or four "1" in any position
435 const bool Mod_Manchester_LUT[] = {
436 false, false, false, false, false, false, false, true,
437 false, false, false, true, false, true, true, true
438 };
439
440 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
441 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
442
443
444 static void DemodReset()
445 {
446 Demod.state = DEMOD_UNSYNCD;
447 Demod.len = 0; // number of decoded data bytes
448 Demod.parityLen = 0;
449 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
450 Demod.parityBits = 0; //
451 Demod.collisionPos = 0; // Position of collision bit
452 Demod.twoBits = 0xffff; // buffer for 2 Bits
453 Demod.highCnt = 0;
454 Demod.startTime = 0;
455 Demod.endTime = 0;
456 }
457
458 static void DemodInit(uint8_t *data, uint8_t *parity)
459 {
460 Demod.output = data;
461 Demod.parity = parity;
462 DemodReset();
463 }
464
465 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
466 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
467 {
468
469 Demod.twoBits = (Demod.twoBits << 8) | bit;
470
471 if (Demod.state == DEMOD_UNSYNCD) {
472
473 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
474 if (Demod.twoBits == 0x0000) {
475 Demod.highCnt++;
476 } else {
477 Demod.highCnt = 0;
478 }
479 } else {
480 Demod.syncBit = 0xFFFF; // not set
481 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
482 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
483 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
484 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
485 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
486 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
487 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
488 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
489 if (Demod.syncBit != 0xFFFF) {
490 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
491 Demod.startTime -= Demod.syncBit;
492 Demod.bitCount = offset; // number of decoded data bits
493 Demod.state = DEMOD_MANCHESTER_DATA;
494 }
495 }
496
497 } else {
498
499 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
500 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
501 if (!Demod.collisionPos) {
502 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
503 }
504 } // modulation in first half only - Sequence D = 1
505 Demod.bitCount++;
506 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
507 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
508 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
509 Demod.parityBits <<= 1; // make room for the parity bit
510 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
511 Demod.bitCount = 0;
512 Demod.shiftReg = 0;
513 if((Demod.len&0x0007) == 0) { // every 8 data bytes
514 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
515 Demod.parityBits = 0;
516 }
517 }
518 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
519 } else { // no modulation in first half
520 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
521 Demod.bitCount++;
522 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
523 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
524 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
525 Demod.parityBits <<= 1; // make room for the new parity bit
526 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
527 Demod.bitCount = 0;
528 Demod.shiftReg = 0;
529 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
530 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
531 Demod.parityBits = 0;
532 }
533 }
534 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
535 } else { // no modulation in both halves - End of communication
536 if(Demod.bitCount > 0) { // there are some remaining data bits
537 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
538 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
539 Demod.parityBits <<= 1; // add a (void) parity bit
540 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
541 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
542 return true;
543 } else if (Demod.len & 0x0007) { // there are some parity bits to store
544 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
545 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
546 }
547 if (Demod.len) {
548 return true; // we are finished with decoding the raw data sequence
549 } else { // nothing received. Start over
550 DemodReset();
551 }
552 }
553 }
554
555 }
556
557 return false; // not finished yet, need more data
558 }
559
560 //=============================================================================
561 // Finally, a `sniffer' for ISO 14443 Type A
562 // Both sides of communication!
563 //=============================================================================
564
565 //-----------------------------------------------------------------------------
566 // Record the sequence of commands sent by the reader to the tag, with
567 // triggering so that we start recording at the point that the tag is moved
568 // near the reader.
569 //-----------------------------------------------------------------------------
570 void RAMFUNC SnoopIso14443a(uint8_t param) {
571 // param:
572 // bit 0 - trigger from first card answer
573 // bit 1 - trigger from first reader 7-bit request
574
575 LEDsoff();
576
577 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
578
579 // Allocate memory from BigBuf for some buffers
580 // free all previous allocations first
581 BigBuf_free();
582
583 // The command (reader -> tag) that we're receiving.
584 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
585 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
586
587 // The response (tag -> reader) that we're receiving.
588 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
589 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
590
591 // The DMA buffer, used to stream samples from the FPGA
592 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
593
594 // init trace buffer
595 clear_trace();
596 set_tracing(true);
597
598 uint8_t *data = dmaBuf;
599 uint8_t previous_data = 0;
600 int maxDataLen = 0;
601 int dataLen = 0;
602 bool TagIsActive = false;
603 bool ReaderIsActive = false;
604
605 // Set up the demodulator for tag -> reader responses.
606 DemodInit(receivedResponse, receivedResponsePar);
607
608 // Set up the demodulator for the reader -> tag commands
609 UartInit(receivedCmd, receivedCmdPar);
610
611 // Setup and start DMA.
612 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
613
614 // We won't start recording the frames that we acquire until we trigger;
615 // a good trigger condition to get started is probably when we see a
616 // response from the tag.
617 // triggered == false -- to wait first for card
618 bool triggered = !(param & 0x03);
619
620 // And now we loop, receiving samples.
621 for(uint32_t rsamples = 0; true; ) {
622
623 if(BUTTON_PRESS()) {
624 DbpString("cancelled by button");
625 break;
626 }
627
628 LED_A_ON();
629 WDT_HIT();
630
631 int register readBufDataP = data - dmaBuf;
632 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
633 if (readBufDataP <= dmaBufDataP){
634 dataLen = dmaBufDataP - readBufDataP;
635 } else {
636 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
637 }
638 // test for length of buffer
639 if(dataLen > maxDataLen) {
640 maxDataLen = dataLen;
641 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
642 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
643 break;
644 }
645 }
646 if(dataLen < 1) continue;
647
648 // primary buffer was stopped( <-- we lost data!
649 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
650 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
651 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
652 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
653 }
654 // secondary buffer sets as primary, secondary buffer was stopped
655 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
656 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
657 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
658 }
659
660 LED_A_OFF();
661
662 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
663
664 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
665 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
666 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
667 LED_C_ON();
668
669 // check - if there is a short 7bit request from reader
670 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = true;
671
672 if(triggered) {
673 if (!LogTrace(receivedCmd,
674 Uart.len,
675 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
676 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
677 Uart.parity,
678 true)) break;
679 }
680 /* And ready to receive another command. */
681 UartReset();
682 /* And also reset the demod code, which might have been */
683 /* false-triggered by the commands from the reader. */
684 DemodReset();
685 LED_B_OFF();
686 }
687 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
688 }
689
690 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
691 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
692 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
693 LED_B_ON();
694
695 if (!LogTrace(receivedResponse,
696 Demod.len,
697 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
698 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
699 Demod.parity,
700 false)) break;
701
702 if ((!triggered) && (param & 0x01)) triggered = true;
703
704 // And ready to receive another response.
705 DemodReset();
706 // And reset the Miller decoder including itS (now outdated) input buffer
707 UartInit(receivedCmd, receivedCmdPar);
708
709 LED_C_OFF();
710 }
711 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
712 }
713 }
714
715 previous_data = *data;
716 rsamples++;
717 data++;
718 if(data == dmaBuf + DMA_BUFFER_SIZE) {
719 data = dmaBuf;
720 }
721 } // main cycle
722
723 DbpString("COMMAND FINISHED");
724
725 FpgaDisableSscDma();
726 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
727 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
728 LEDsoff();
729 }
730
731 //-----------------------------------------------------------------------------
732 // Prepare tag messages
733 //-----------------------------------------------------------------------------
734 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
735 {
736 ToSendReset();
737
738 // Correction bit, might be removed when not needed
739 ToSendStuffBit(0);
740 ToSendStuffBit(0);
741 ToSendStuffBit(0);
742 ToSendStuffBit(0);
743 ToSendStuffBit(1); // 1
744 ToSendStuffBit(0);
745 ToSendStuffBit(0);
746 ToSendStuffBit(0);
747
748 // Send startbit
749 ToSend[++ToSendMax] = SEC_D;
750 LastProxToAirDuration = 8 * ToSendMax - 4;
751
752 for(uint16_t i = 0; i < len; i++) {
753 uint8_t b = cmd[i];
754
755 // Data bits
756 for(uint16_t j = 0; j < 8; j++) {
757 if(b & 1) {
758 ToSend[++ToSendMax] = SEC_D;
759 } else {
760 ToSend[++ToSendMax] = SEC_E;
761 }
762 b >>= 1;
763 }
764
765 // Get the parity bit
766 if (parity[i>>3] & (0x80>>(i&0x0007))) {
767 ToSend[++ToSendMax] = SEC_D;
768 LastProxToAirDuration = 8 * ToSendMax - 4;
769 } else {
770 ToSend[++ToSendMax] = SEC_E;
771 LastProxToAirDuration = 8 * ToSendMax;
772 }
773 }
774
775 // Send stopbit
776 ToSend[++ToSendMax] = SEC_F;
777
778 // Convert from last byte pos to length
779 ToSendMax++;
780 }
781
782
783 static void Code4bitAnswerAsTag(uint8_t cmd)
784 {
785 int i;
786
787 ToSendReset();
788
789 // Correction bit, might be removed when not needed
790 ToSendStuffBit(0);
791 ToSendStuffBit(0);
792 ToSendStuffBit(0);
793 ToSendStuffBit(0);
794 ToSendStuffBit(1); // 1
795 ToSendStuffBit(0);
796 ToSendStuffBit(0);
797 ToSendStuffBit(0);
798
799 // Send startbit
800 ToSend[++ToSendMax] = SEC_D;
801
802 uint8_t b = cmd;
803 for(i = 0; i < 4; i++) {
804 if(b & 1) {
805 ToSend[++ToSendMax] = SEC_D;
806 LastProxToAirDuration = 8 * ToSendMax - 4;
807 } else {
808 ToSend[++ToSendMax] = SEC_E;
809 LastProxToAirDuration = 8 * ToSendMax;
810 }
811 b >>= 1;
812 }
813
814 // Send stopbit
815 ToSend[++ToSendMax] = SEC_F;
816
817 // Convert from last byte pos to length
818 ToSendMax++;
819 }
820
821
822 static uint8_t *LastReaderTraceTime = NULL;
823
824 static void EmLogTraceReader(void) {
825 // remember last reader trace start to fix timing info later
826 LastReaderTraceTime = BigBuf_get_addr() + BigBuf_get_traceLen();
827 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
828 }
829
830
831 static void FixLastReaderTraceTime(uint32_t tag_StartTime) {
832 uint32_t reader_EndTime = Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG;
833 uint32_t reader_StartTime = Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG;
834 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
835 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
836 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
837 reader_StartTime = tag_StartTime - exact_fdt - reader_modlen;
838 LastReaderTraceTime[0] = (reader_StartTime >> 0) & 0xff;
839 LastReaderTraceTime[1] = (reader_StartTime >> 8) & 0xff;
840 LastReaderTraceTime[2] = (reader_StartTime >> 16) & 0xff;
841 LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff;
842 }
843
844
845 static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) {
846 uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG;
847 uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG;
848 LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false);
849 FixLastReaderTraceTime(tag_StartTime);
850 }
851
852
853 //-----------------------------------------------------------------------------
854 // Wait for commands from reader
855 // Stop when button is pressed
856 // Or return true when command is captured
857 //-----------------------------------------------------------------------------
858 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
859 {
860 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
861 // only, since we are receiving, not transmitting).
862 // Signal field is off with the appropriate LED
863 LED_D_OFF();
864 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
865
866 // Now run a `software UART' on the stream of incoming samples.
867 UartInit(received, parity);
868
869 // clear RXRDY:
870 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
871
872 for(;;) {
873 WDT_HIT();
874
875 if(BUTTON_PRESS()) return false;
876
877 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
878 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
879 if(MillerDecoding(b, 0)) {
880 *len = Uart.len;
881 EmLogTraceReader();
882 return true;
883 }
884 }
885 }
886 }
887
888
889 static int EmSend4bitEx(uint8_t resp);
890 int EmSend4bit(uint8_t resp);
891 static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
892 int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
893 int EmSendPrecompiledCmd(tag_response_info_t *response_info);
894
895
896 static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
897 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
898 // This will need the following byte array for a modulation sequence
899 // 144 data bits (18 * 8)
900 // 18 parity bits
901 // 2 Start and stop
902 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
903 // 1 just for the case
904 // ----------- +
905 // 166 bytes, since every bit that needs to be send costs us a byte
906 //
907
908
909 // Prepare the tag modulation bits from the message
910 GetParity(response_info->response, response_info->response_n, &(response_info->par));
911 CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par));
912
913 // Make sure we do not exceed the free buffer space
914 if (ToSendMax > max_buffer_size) {
915 Dbprintf("Out of memory, when modulating bits for tag answer:");
916 Dbhexdump(response_info->response_n, response_info->response, false);
917 return false;
918 }
919
920 // Copy the byte array, used for this modulation to the buffer position
921 memcpy(response_info->modulation, ToSend, ToSendMax);
922
923 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
924 response_info->modulation_n = ToSendMax;
925 response_info->ProxToAirDuration = LastProxToAirDuration;
926
927 return true;
928 }
929
930
931 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
932 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
933 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation
934 // -> need 273 bytes buffer
935 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
936
937 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_t **buffer, size_t *max_buffer_size) {
938
939 // Retrieve and store the current buffer index
940 response_info->modulation = *buffer;
941
942 // Forward the prepare tag modulation function to the inner function
943 if (prepare_tag_modulation(response_info, *max_buffer_size)) {
944 // Update the free buffer offset and the remaining buffer size
945 *buffer += ToSendMax;
946 *max_buffer_size -= ToSendMax;
947 return true;
948 } else {
949 return false;
950 }
951 }
952
953 //-----------------------------------------------------------------------------
954 // Main loop of simulated tag: receive commands from reader, decide what
955 // response to send, and send it.
956 //-----------------------------------------------------------------------------
957 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
958 {
959 uint8_t sak;
960
961 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
962 uint8_t response1[2];
963
964 switch (tagType) {
965 case 1: { // MIFARE Classic
966 // Says: I am Mifare 1k - original line
967 response1[0] = 0x04;
968 response1[1] = 0x00;
969 sak = 0x08;
970 } break;
971 case 2: { // MIFARE Ultralight
972 // Says: I am a stupid memory tag, no crypto
973 response1[0] = 0x04;
974 response1[1] = 0x00;
975 sak = 0x00;
976 } break;
977 case 3: { // MIFARE DESFire
978 // Says: I am a DESFire tag, ph33r me
979 response1[0] = 0x04;
980 response1[1] = 0x03;
981 sak = 0x20;
982 } break;
983 case 4: { // ISO/IEC 14443-4
984 // Says: I am a javacard (JCOP)
985 response1[0] = 0x04;
986 response1[1] = 0x00;
987 sak = 0x28;
988 } break;
989 case 5: { // MIFARE TNP3XXX
990 // Says: I am a toy
991 response1[0] = 0x01;
992 response1[1] = 0x0f;
993 sak = 0x01;
994 } break;
995 default: {
996 Dbprintf("Error: unkown tagtype (%d)",tagType);
997 return;
998 } break;
999 }
1000
1001 // The second response contains the (mandatory) first 24 bits of the UID
1002 uint8_t response2[5] = {0x00};
1003
1004 // Check if the uid uses the (optional) part
1005 uint8_t response2a[5] = {0x00};
1006
1007 if (uid_2nd) {
1008 response2[0] = 0x88;
1009 num_to_bytes(uid_1st,3,response2+1);
1010 num_to_bytes(uid_2nd,4,response2a);
1011 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1012
1013 // Configure the ATQA and SAK accordingly
1014 response1[0] |= 0x40;
1015 sak |= 0x04;
1016 } else {
1017 num_to_bytes(uid_1st,4,response2);
1018 // Configure the ATQA and SAK accordingly
1019 response1[0] &= 0xBF;
1020 sak &= 0xFB;
1021 }
1022
1023 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1024 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1025
1026 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1027 uint8_t response3[3] = {0x00};
1028 response3[0] = sak;
1029 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1030
1031 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1032 uint8_t response3a[3] = {0x00};
1033 response3a[0] = sak & 0xFB;
1034 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1035
1036 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1037 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1038 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1039 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1040 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1041 // TC(1) = 0x02: CID supported, NAD not supported
1042 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1043
1044 #define TAG_RESPONSE_COUNT 7
1045 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1046 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1047 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1048 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1049 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1050 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1051 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1052 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1053 };
1054
1055 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1056 // Such a response is less time critical, so we can prepare them on the fly
1057 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1058 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1059 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1060 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1061 tag_response_info_t dynamic_response_info = {
1062 .response = dynamic_response_buffer,
1063 .response_n = 0,
1064 .modulation = dynamic_modulation_buffer,
1065 .modulation_n = 0
1066 };
1067
1068 // We need to listen to the high-frequency, peak-detected path.
1069 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1070
1071 BigBuf_free_keep_EM();
1072
1073 // allocate buffers:
1074 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1075 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1076 uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1077 size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
1078 // clear trace
1079 clear_trace();
1080 set_tracing(true);
1081
1082 // Prepare the responses of the anticollision phase
1083 // there will be not enough time to do this at the moment the reader sends it REQA
1084 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1085 prepare_allocated_tag_modulation(&responses[i], &free_buffer_pointer, &free_buffer_size);
1086 }
1087
1088 int len = 0;
1089
1090 // To control where we are in the protocol
1091 int order = 0;
1092 int lastorder;
1093
1094 // Just to allow some checks
1095 int happened = 0;
1096 int happened2 = 0;
1097 int cmdsRecvd = 0;
1098
1099 cmdsRecvd = 0;
1100 tag_response_info_t* p_response;
1101
1102 LED_A_ON();
1103 for(;;) {
1104 // Clean receive command buffer
1105 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1106 DbpString("Button press");
1107 break;
1108 }
1109
1110 p_response = NULL;
1111
1112 // Okay, look at the command now.
1113 lastorder = order;
1114 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1115 p_response = &responses[0]; order = 1;
1116 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1117 p_response = &responses[0]; order = 6;
1118 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1119 p_response = &responses[1]; order = 2;
1120 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1121 p_response = &responses[2]; order = 20;
1122 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1123 p_response = &responses[3]; order = 3;
1124 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1125 p_response = &responses[4]; order = 30;
1126 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1127 EmSendCmdEx(data+(4*receivedCmd[1]),16);
1128 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1129 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1130 p_response = NULL;
1131 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1132 p_response = NULL;
1133 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1134 p_response = &responses[5]; order = 7;
1135 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1136 if (tagType == 1 || tagType == 2) { // RATS not supported
1137 EmSend4bit(CARD_NACK_NA);
1138 p_response = NULL;
1139 } else {
1140 p_response = &responses[6]; order = 70;
1141 }
1142 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1143 uint32_t nr = bytes_to_num(receivedCmd,4);
1144 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1145 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1146 } else {
1147 // Check for ISO 14443A-4 compliant commands, look at left nibble
1148 switch (receivedCmd[0]) {
1149
1150 case 0x0B:
1151 case 0x0A: { // IBlock (command)
1152 dynamic_response_info.response[0] = receivedCmd[0];
1153 dynamic_response_info.response[1] = 0x00;
1154 dynamic_response_info.response[2] = 0x90;
1155 dynamic_response_info.response[3] = 0x00;
1156 dynamic_response_info.response_n = 4;
1157 } break;
1158
1159 case 0x1A:
1160 case 0x1B: { // Chaining command
1161 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1162 dynamic_response_info.response_n = 2;
1163 } break;
1164
1165 case 0xaa:
1166 case 0xbb: {
1167 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1168 dynamic_response_info.response_n = 2;
1169 } break;
1170
1171 case 0xBA: { //
1172 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1173 dynamic_response_info.response_n = 2;
1174 } break;
1175
1176 case 0xCA:
1177 case 0xC2: { // Readers sends deselect command
1178 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1179 dynamic_response_info.response_n = 2;
1180 } break;
1181
1182 default: {
1183 // Never seen this command before
1184 Dbprintf("Received unknown command (len=%d):",len);
1185 Dbhexdump(len,receivedCmd,false);
1186 // Do not respond
1187 dynamic_response_info.response_n = 0;
1188 } break;
1189 }
1190
1191 if (dynamic_response_info.response_n > 0) {
1192 // Copy the CID from the reader query
1193 dynamic_response_info.response[1] = receivedCmd[1];
1194
1195 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1196 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1197 dynamic_response_info.response_n += 2;
1198
1199 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1200 Dbprintf("Error preparing tag response");
1201 break;
1202 }
1203 p_response = &dynamic_response_info;
1204 }
1205 }
1206
1207 // Count number of wakeups received after a halt
1208 if(order == 6 && lastorder == 5) { happened++; }
1209
1210 // Count number of other messages after a halt
1211 if(order != 6 && lastorder == 5) { happened2++; }
1212
1213 if(cmdsRecvd > 999) {
1214 DbpString("1000 commands later...");
1215 break;
1216 }
1217 cmdsRecvd++;
1218
1219 if (p_response != NULL) {
1220 EmSendPrecompiledCmd(p_response);
1221 }
1222
1223 if (!tracing) {
1224 Dbprintf("Trace Full. Simulation stopped.");
1225 break;
1226 }
1227 }
1228
1229 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1230 LED_A_OFF();
1231 BigBuf_free_keep_EM();
1232 }
1233
1234
1235 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1236 // of bits specified in the delay parameter.
1237 static void PrepareDelayedTransfer(uint16_t delay)
1238 {
1239 uint8_t bitmask = 0;
1240 uint8_t bits_to_shift = 0;
1241 uint8_t bits_shifted = 0;
1242
1243 delay &= 0x07;
1244 if (delay) {
1245 for (uint16_t i = 0; i < delay; i++) {
1246 bitmask |= (0x01 << i);
1247 }
1248 ToSend[ToSendMax++] = 0x00;
1249 for (uint16_t i = 0; i < ToSendMax; i++) {
1250 bits_to_shift = ToSend[i] & bitmask;
1251 ToSend[i] = ToSend[i] >> delay;
1252 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1253 bits_shifted = bits_to_shift;
1254 }
1255 }
1256 }
1257
1258
1259 //-------------------------------------------------------------------------------------
1260 // Transmit the command (to the tag) that was placed in ToSend[].
1261 // Parameter timing:
1262 // if NULL: transfer at next possible time, taking into account
1263 // request guard time, startup frame guard time and frame delay time
1264 // if == 0: transfer immediately and return time of transfer
1265 // if != 0: delay transfer until time specified
1266 //-------------------------------------------------------------------------------------
1267 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1268 {
1269
1270 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1271
1272 uint32_t ThisTransferTime = 0;
1273
1274 if (timing) {
1275 if(*timing == 0) { // Measure time
1276 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1277 } else {
1278 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1279 }
1280 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1281 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1282 LastTimeProxToAirStart = *timing;
1283 } else {
1284 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1285 while(GetCountSspClk() < ThisTransferTime);
1286 LastTimeProxToAirStart = ThisTransferTime;
1287 }
1288
1289 // clear TXRDY
1290 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1291
1292 uint16_t c = 0;
1293 for(;;) {
1294 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1295 AT91C_BASE_SSC->SSC_THR = cmd[c];
1296 c++;
1297 if(c >= len) {
1298 break;
1299 }
1300 }
1301 }
1302
1303 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1304 }
1305
1306
1307 //-----------------------------------------------------------------------------
1308 // Prepare reader command (in bits, support short frames) to send to FPGA
1309 //-----------------------------------------------------------------------------
1310 static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1311 {
1312 int i, j;
1313 int last;
1314 uint8_t b;
1315
1316 ToSendReset();
1317
1318 // Start of Communication (Seq. Z)
1319 ToSend[++ToSendMax] = SEC_Z;
1320 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1321 last = 0;
1322
1323 size_t bytecount = nbytes(bits);
1324 // Generate send structure for the data bits
1325 for (i = 0; i < bytecount; i++) {
1326 // Get the current byte to send
1327 b = cmd[i];
1328 size_t bitsleft = MIN((bits-(i*8)),8);
1329
1330 for (j = 0; j < bitsleft; j++) {
1331 if (b & 1) {
1332 // Sequence X
1333 ToSend[++ToSendMax] = SEC_X;
1334 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1335 last = 1;
1336 } else {
1337 if (last == 0) {
1338 // Sequence Z
1339 ToSend[++ToSendMax] = SEC_Z;
1340 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1341 } else {
1342 // Sequence Y
1343 ToSend[++ToSendMax] = SEC_Y;
1344 last = 0;
1345 }
1346 }
1347 b >>= 1;
1348 }
1349
1350 // Only transmit parity bit if we transmitted a complete byte
1351 if (j == 8 && parity != NULL) {
1352 // Get the parity bit
1353 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1354 // Sequence X
1355 ToSend[++ToSendMax] = SEC_X;
1356 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1357 last = 1;
1358 } else {
1359 if (last == 0) {
1360 // Sequence Z
1361 ToSend[++ToSendMax] = SEC_Z;
1362 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1363 } else {
1364 // Sequence Y
1365 ToSend[++ToSendMax] = SEC_Y;
1366 last = 0;
1367 }
1368 }
1369 }
1370 }
1371
1372 // End of Communication: Logic 0 followed by Sequence Y
1373 if (last == 0) {
1374 // Sequence Z
1375 ToSend[++ToSendMax] = SEC_Z;
1376 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1377 } else {
1378 // Sequence Y
1379 ToSend[++ToSendMax] = SEC_Y;
1380 last = 0;
1381 }
1382 ToSend[++ToSendMax] = SEC_Y;
1383
1384 // Convert to length of command:
1385 ToSendMax++;
1386 }
1387
1388
1389 //-----------------------------------------------------------------------------
1390 // Wait for commands from reader
1391 // Stop when button is pressed (return 1) or field was gone (return 2)
1392 // Or return 0 when command is captured
1393 //-----------------------------------------------------------------------------
1394 int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1395 {
1396 *len = 0;
1397
1398 uint32_t timer = 0, vtime = 0;
1399 int analogCnt = 0;
1400 int analogAVG = 0;
1401
1402 // Set ADC to read field strength
1403 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1404 AT91C_BASE_ADC->ADC_MR =
1405 ADC_MODE_PRESCALE(63) |
1406 ADC_MODE_STARTUP_TIME(1) |
1407 ADC_MODE_SAMPLE_HOLD_TIME(15);
1408 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1409 // start ADC
1410 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1411
1412 // Run a 'software UART' on the stream of incoming samples.
1413 UartInit(received, parity);
1414
1415 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
1416 do {
1417 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1418 AT91C_BASE_SSC->SSC_THR = SEC_F;
1419 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void) b;
1420 }
1421 } while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3));
1422
1423 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1424 // only, since we are receiving, not transmitting).
1425 // Signal field is off with the appropriate LED
1426 LED_D_OFF();
1427 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1428
1429 for(;;) {
1430 WDT_HIT();
1431
1432 if (BUTTON_PRESS()) return 1;
1433
1434 // test if the field exists
1435 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1436 analogCnt++;
1437 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1438 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1439 if (analogCnt >= 32) {
1440 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1441 vtime = GetTickCount();
1442 if (!timer) timer = vtime;
1443 // 50ms no field --> card to idle state
1444 if (vtime - timer > 50) return 2;
1445 } else
1446 if (timer) timer = 0;
1447 analogCnt = 0;
1448 analogAVG = 0;
1449 }
1450 }
1451
1452 // receive and test the miller decoding
1453 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1454 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1455 if(MillerDecoding(b, 0)) {
1456 *len = Uart.len;
1457 EmLogTraceReader();
1458 return 0;
1459 }
1460 }
1461
1462 }
1463 }
1464
1465
1466 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
1467 {
1468 uint8_t b;
1469 uint16_t i = 0;
1470 bool correctionNeeded;
1471
1472 // Modulate Manchester
1473 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1474
1475 // include correction bit if necessary
1476 if (Uart.bitCount == 7)
1477 {
1478 // Short tags (7 bits) don't have parity, determine the correct value from MSB
1479 correctionNeeded = Uart.output[0] & 0x40;
1480 }
1481 else
1482 {
1483 // Look at the last parity bit
1484 correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7));
1485 }
1486
1487 if(correctionNeeded) {
1488 // 1236, so correction bit needed
1489 i = 0;
1490 } else {
1491 i = 1;
1492 }
1493
1494 // clear receiving shift register and holding register
1495 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1496 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1497 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1498 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1499
1500 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1501 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1502 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1503 if (AT91C_BASE_SSC->SSC_RHR) break;
1504 }
1505
1506 LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0);
1507
1508 // send cycle
1509 for(; i < respLen; ) {
1510 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1511 AT91C_BASE_SSC->SSC_THR = resp[i++];
1512 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1513 }
1514
1515 if(BUTTON_PRESS()) {
1516 break;
1517 }
1518 }
1519
1520 return 0;
1521 }
1522
1523
1524 static int EmSend4bitEx(uint8_t resp){
1525 Code4bitAnswerAsTag(resp);
1526 int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
1527 // do the tracing for the previous reader request and this tag answer:
1528 EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration);
1529 return res;
1530 }
1531
1532
1533 int EmSend4bit(uint8_t resp){
1534 return EmSend4bitEx(resp);
1535 }
1536
1537
1538 static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1539 CodeIso14443aAsTagPar(resp, respLen, par);
1540 int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
1541 // do the tracing for the previous reader request and this tag answer:
1542 EmLogTraceTag(resp, respLen, par, LastProxToAirDuration);
1543 return res;
1544 }
1545
1546
1547 int EmSendCmdEx(uint8_t *resp, uint16_t respLen){
1548 uint8_t par[MAX_PARITY_SIZE];
1549 GetParity(resp, respLen, par);
1550 return EmSendCmdExPar(resp, respLen, par);
1551 }
1552
1553
1554 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1555 uint8_t par[MAX_PARITY_SIZE];
1556 GetParity(resp, respLen, par);
1557 return EmSendCmdExPar(resp, respLen, par);
1558 }
1559
1560
1561 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1562 return EmSendCmdExPar(resp, respLen, par);
1563 }
1564
1565
1566 int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
1567 int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n);
1568 // do the tracing for the previous reader request and this tag answer:
1569 EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration);
1570 return ret;
1571 }
1572
1573
1574 //-----------------------------------------------------------------------------
1575 // Wait a certain time for tag response
1576 // If a response is captured return true
1577 // If it takes too long return false
1578 //-----------------------------------------------------------------------------
1579 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1580 {
1581 uint32_t c;
1582
1583 // Set FPGA mode to "reader listen mode", no modulation (listen
1584 // only, since we are receiving, not transmitting).
1585 // Signal field is on with the appropriate LED
1586 LED_D_ON();
1587 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1588
1589 // Now get the answer from the card
1590 DemodInit(receivedResponse, receivedResponsePar);
1591
1592 // clear RXRDY:
1593 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1594
1595 c = 0;
1596 for(;;) {
1597 WDT_HIT();
1598
1599 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1600 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1601 if(ManchesterDecoding(b, offset, 0)) {
1602 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1603 return true;
1604 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1605 return false;
1606 }
1607 }
1608 }
1609 }
1610
1611
1612 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1613 {
1614 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1615
1616 // Send command to tag
1617 TransmitFor14443a(ToSend, ToSendMax, timing);
1618 if(trigger)
1619 LED_A_ON();
1620
1621 // Log reader command in trace buffer
1622 if (tracing) {
1623 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
1624 }
1625 }
1626
1627
1628 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1629 {
1630 ReaderTransmitBitsPar(frame, len*8, par, timing);
1631 }
1632
1633
1634 static void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1635 {
1636 // Generate parity and redirect
1637 uint8_t par[MAX_PARITY_SIZE];
1638 GetParity(frame, len/8, par);
1639 ReaderTransmitBitsPar(frame, len, par, timing);
1640 }
1641
1642
1643 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1644 {
1645 // Generate parity and redirect
1646 uint8_t par[MAX_PARITY_SIZE];
1647 GetParity(frame, len, par);
1648 ReaderTransmitBitsPar(frame, len*8, par, timing);
1649 }
1650
1651
1652 static int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1653 {
1654 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false;
1655 if (tracing) {
1656 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
1657 }
1658 return Demod.len;
1659 }
1660
1661
1662 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1663 {
1664 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false;
1665 if (tracing) {
1666 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
1667 }
1668 return Demod.len;
1669 }
1670
1671
1672 static void iso14a_set_ATS_times(uint8_t *ats) {
1673
1674 uint8_t tb1;
1675 uint8_t fwi, sfgi;
1676 uint32_t fwt, sfgt;
1677
1678 if (ats[0] > 1) { // there is a format byte T0
1679 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
1680 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
1681 tb1 = ats[3];
1682 } else {
1683 tb1 = ats[2];
1684 }
1685 fwi = (tb1 & 0xf0) >> 4; // frame waiting time integer (FWI)
1686 if (fwi != 15) {
1687 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
1688 iso14a_set_timeout(fwt/(8*16));
1689 }
1690 sfgi = tb1 & 0x0f; // startup frame guard time integer (SFGI)
1691 if (sfgi != 0 && sfgi != 15) {
1692 sfgt = 256 * 16 * (1 << sfgi); // startup frame guard time (SFGT) in 1/fc
1693 NextTransferTime = MAX(NextTransferTime, Demod.endTime + (sfgt - DELAY_AIR2ARM_AS_READER - DELAY_ARM2AIR_AS_READER)/16);
1694 }
1695 }
1696 }
1697 }
1698
1699
1700 static int GetATQA(uint8_t *resp, uint8_t *resp_par) {
1701
1702 #define WUPA_RETRY_TIMEOUT 10 // 10ms
1703 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1704
1705 uint32_t save_iso14a_timeout = iso14a_get_timeout();
1706 iso14a_set_timeout(1236/(16*8)+1); // response to WUPA is expected at exactly 1236/fc. No need to wait longer.
1707
1708 uint32_t start_time = GetTickCount();
1709 int len;
1710
1711 // we may need several tries if we did send an unknown command or a wrong authentication before...
1712 do {
1713 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1714 ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
1715 // Receive the ATQA
1716 len = ReaderReceive(resp, resp_par);
1717 } while (len == 0 && GetTickCount() <= start_time + WUPA_RETRY_TIMEOUT);
1718
1719 iso14a_set_timeout(save_iso14a_timeout);
1720 return len;
1721 }
1722
1723
1724 // performs iso14443a anticollision (optional) and card select procedure
1725 // fills the uid and cuid pointer unless NULL
1726 // fills the card info record unless NULL
1727 // if anticollision is false, then the UID must be provided in uid_ptr[]
1728 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1729 // requests ATS unless no_rats is true
1730 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) {
1731 uint8_t sel_all[] = { 0x93,0x20 };
1732 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1733 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1734 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1735 uint8_t resp_par[MAX_PARITY_SIZE];
1736 byte_t uid_resp[4];
1737 size_t uid_resp_len;
1738
1739 uint8_t sak = 0x04; // cascade uid
1740 int cascade_level = 0;
1741 int len;
1742
1743 // init card struct
1744 if(p_hi14a_card) {
1745 p_hi14a_card->uidlen = 0;
1746 memset(p_hi14a_card->uid, 0, 10);
1747 p_hi14a_card->ats_len = 0;
1748 }
1749
1750 if (!GetATQA(resp, resp_par)) {
1751 return 0;
1752 }
1753
1754 if(p_hi14a_card) {
1755 memcpy(p_hi14a_card->atqa, resp, 2);
1756 }
1757
1758 if (anticollision) {
1759 // clear uid
1760 if (uid_ptr) {
1761 memset(uid_ptr,0,10);
1762 }
1763 }
1764
1765 // check for proprietary anticollision:
1766 if ((resp[0] & 0x1F) == 0) {
1767 return 3;
1768 }
1769
1770 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1771 // which case we need to make a cascade 2 request and select - this is a long UID
1772 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1773 for(; sak & 0x04; cascade_level++) {
1774 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1775 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1776
1777 if (anticollision) {
1778 // SELECT_ALL
1779 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1780 if (!ReaderReceive(resp, resp_par)) return 0;
1781
1782 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1783 memset(uid_resp, 0, 4);
1784 uint16_t uid_resp_bits = 0;
1785 uint16_t collision_answer_offset = 0;
1786 // anti-collision-loop:
1787 while (Demod.collisionPos) {
1788 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1789 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1790 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1791 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1792 }
1793 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1794 uid_resp_bits++;
1795 // construct anticollosion command:
1796 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1797 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1798 sel_uid[2+i] = uid_resp[i];
1799 }
1800 collision_answer_offset = uid_resp_bits%8;
1801 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1802 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1803 }
1804 // finally, add the last bits and BCC of the UID
1805 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1806 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1807 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1808 }
1809
1810 } else { // no collision, use the response to SELECT_ALL as current uid
1811 memcpy(uid_resp, resp, 4);
1812 }
1813 } else {
1814 if (cascade_level < num_cascades - 1) {
1815 uid_resp[0] = 0x88;
1816 memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
1817 } else {
1818 memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
1819 }
1820 }
1821 uid_resp_len = 4;
1822
1823 // calculate crypto UID. Always use last 4 Bytes.
1824 if(cuid_ptr) {
1825 *cuid_ptr = bytes_to_num(uid_resp, 4);
1826 }
1827
1828 // Construct SELECT UID command
1829 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1830 memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
1831 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1832 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1833 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1834
1835 // Receive the SAK
1836 if (!ReaderReceive(resp, resp_par)) return 0;
1837 sak = resp[0];
1838
1839 // Test if more parts of the uid are coming
1840 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1841 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1842 // http://www.nxp.com/documents/application_note/AN10927.pdf
1843 uid_resp[0] = uid_resp[1];
1844 uid_resp[1] = uid_resp[2];
1845 uid_resp[2] = uid_resp[3];
1846 uid_resp_len = 3;
1847 }
1848
1849 if(uid_ptr && anticollision) {
1850 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1851 }
1852
1853 if(p_hi14a_card) {
1854 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1855 p_hi14a_card->uidlen += uid_resp_len;
1856 }
1857 }
1858
1859 if(p_hi14a_card) {
1860 p_hi14a_card->sak = sak;
1861 }
1862
1863 // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0)
1864 if( (sak & 0x20) == 0) return 2;
1865
1866 if (!no_rats) {
1867 // Request for answer to select
1868 AppendCrc14443a(rats, 2);
1869 ReaderTransmit(rats, sizeof(rats), NULL);
1870
1871 if (!(len = ReaderReceive(resp, resp_par))) return 0;
1872
1873 if(p_hi14a_card) {
1874 memcpy(p_hi14a_card->ats, resp, len);
1875 p_hi14a_card->ats_len = len;
1876 }
1877
1878 // reset the PCB block number
1879 iso14_pcb_blocknum = 0;
1880
1881 // set default timeout and delay next transfer based on ATS
1882 iso14a_set_ATS_times(resp);
1883
1884 }
1885 return 1;
1886 }
1887
1888
1889 void iso14443a_setup(uint8_t fpga_minor_mode) {
1890 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1891 // Set up the synchronous serial port
1892 FpgaSetupSsc();
1893 // connect Demodulated Signal to ADC:
1894 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1895
1896 // Signal field is on with the appropriate LED
1897 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1898 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1899 LED_D_ON();
1900 } else {
1901 LED_D_OFF();
1902 }
1903 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1904
1905 // Start the timer
1906 StartCountSspClk();
1907
1908 DemodReset();
1909 UartReset();
1910 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1911 iso14a_set_timeout(1060); // 10ms default
1912 }
1913
1914 /* Peter Fillmore 2015
1915 Added card id field to the function
1916 info from ISO14443A standard
1917 b1 = Block Number
1918 b2 = RFU (always 1)
1919 b3 = depends on block
1920 b4 = Card ID following if set to 1
1921 b5 = depends on block type
1922 b6 = depends on block type
1923 b7,b8 = block type.
1924 Coding of I-BLOCK:
1925 b8 b7 b6 b5 b4 b3 b2 b1
1926 0 0 0 x x x 1 x
1927 b5 = chaining bit
1928 Coding of R-block:
1929 b8 b7 b6 b5 b4 b3 b2 b1
1930 1 0 1 x x 0 1 x
1931 b5 = ACK/NACK
1932 Coding of S-block:
1933 b8 b7 b6 b5 b4 b3 b2 b1
1934 1 1 x x x 0 1 0
1935 b5,b6 = 00 - DESELECT
1936 11 - WTX
1937 */
1938 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1939 uint8_t parity[MAX_PARITY_SIZE];
1940 uint8_t real_cmd[cmd_len + 4];
1941
1942 // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
1943 real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00)
1944 // put block number into the PCB
1945 real_cmd[0] |= iso14_pcb_blocknum;
1946 memcpy(real_cmd + 1, cmd, cmd_len);
1947 AppendCrc14443a(real_cmd, cmd_len + 1);
1948
1949 ReaderTransmit(real_cmd, cmd_len + 3, NULL);
1950
1951 size_t len = ReaderReceive(data, parity);
1952 uint8_t *data_bytes = (uint8_t *) data;
1953
1954 if (!len) {
1955 return 0; //DATA LINK ERROR
1956 } else{
1957 // S-Block WTX
1958 while((data_bytes[0] & 0xF2) == 0xF2) {
1959 uint32_t save_iso14a_timeout = iso14a_get_timeout();
1960 // temporarily increase timeout
1961 iso14a_set_timeout(MAX((data_bytes[1] & 0x3f) * save_iso14a_timeout, MAX_ISO14A_TIMEOUT));
1962 // Transmit WTX back
1963 // byte1 - WTXM [1..59]. command FWT=FWT*WTXM
1964 data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b
1965 // now need to fix CRC.
1966 AppendCrc14443a(data_bytes, len - 2);
1967 // transmit S-Block
1968 ReaderTransmit(data_bytes, len, NULL);
1969 // retrieve the result again (with increased timeout)
1970 len = ReaderReceive(data, parity);
1971 data_bytes = data;
1972 // restore timeout
1973 iso14a_set_timeout(save_iso14a_timeout);
1974 }
1975
1976 // if we received an I- or R(ACK)-Block with a block number equal to the
1977 // current block number, toggle the current block number
1978 if (len >= 3 // PCB+CRC = 3 bytes
1979 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1980 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1981 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1982 {
1983 iso14_pcb_blocknum ^= 1;
1984 }
1985
1986 // crc check
1987 if (len >=3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) {
1988 return -1;
1989 }
1990
1991 }
1992
1993 // cut frame byte
1994 len -= 1;
1995 // memmove(data_bytes, data_bytes + 1, len);
1996 for (int i = 0; i < len; i++)
1997 data_bytes[i] = data_bytes[i + 1];
1998
1999 return len;
2000 }
2001
2002
2003 //-----------------------------------------------------------------------------
2004 // Read an ISO 14443a tag. Send out commands and store answers.
2005 //
2006 //-----------------------------------------------------------------------------
2007 void ReaderIso14443a(UsbCommand *c)
2008 {
2009 iso14a_command_t param = c->arg[0];
2010 uint8_t *cmd = c->d.asBytes;
2011 size_t len = c->arg[1] & 0xffff;
2012 size_t lenbits = c->arg[1] >> 16;
2013 uint32_t timeout = c->arg[2];
2014 uint32_t arg0 = 0;
2015 byte_t buf[USB_CMD_DATA_SIZE] = {0};
2016 uint8_t par[MAX_PARITY_SIZE];
2017 bool cantSELECT = false;
2018
2019 set_tracing(true);
2020
2021 if(param & ISO14A_CLEAR_TRACE) {
2022 clear_trace();
2023 }
2024
2025 if(param & ISO14A_REQUEST_TRIGGER) {
2026 iso14a_set_trigger(true);
2027 }
2028
2029 if(param & ISO14A_CONNECT) {
2030 LED_A_ON();
2031 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
2032 if(!(param & ISO14A_NO_SELECT)) {
2033 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2034 arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS);
2035
2036 // if we cant select then we cant send data
2037 if (arg0 != 1 && arg0 != 2) {
2038 // 1 - all is OK with ATS, 2 - without ATS
2039 cantSELECT = true;
2040 }
2041
2042 LED_B_ON();
2043 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2044 LED_B_OFF();
2045 }
2046 }
2047
2048 if(param & ISO14A_SET_TIMEOUT) {
2049 iso14a_set_timeout(timeout);
2050 }
2051
2052 if(param & ISO14A_APDU && !cantSELECT) {
2053 arg0 = iso14_apdu(cmd, len, buf);
2054 LED_B_ON();
2055 cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf));
2056 LED_B_OFF();
2057 }
2058
2059 if(param & ISO14A_RAW && !cantSELECT) {
2060 if(param & ISO14A_APPEND_CRC) {
2061 if(param & ISO14A_TOPAZMODE) {
2062 AppendCrc14443b(cmd,len);
2063 } else {
2064 AppendCrc14443a(cmd,len);
2065 }
2066 len += 2;
2067 if (lenbits) lenbits += 16;
2068 }
2069 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2070 if(param & ISO14A_TOPAZMODE) {
2071 int bits_to_send = lenbits;
2072 uint16_t i = 0;
2073 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2074 bits_to_send -= 7;
2075 while (bits_to_send > 0) {
2076 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2077 bits_to_send -= 8;
2078 }
2079 } else {
2080 GetParity(cmd, lenbits/8, par);
2081 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2082 }
2083 } else { // want to send complete bytes only
2084 if(param & ISO14A_TOPAZMODE) {
2085 uint16_t i = 0;
2086 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2087 while (i < len) {
2088 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2089 }
2090 } else {
2091 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2092 }
2093 }
2094 arg0 = ReaderReceive(buf, par);
2095
2096 LED_B_ON();
2097 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2098 LED_B_OFF();
2099 }
2100
2101 if(param & ISO14A_REQUEST_TRIGGER) {
2102 iso14a_set_trigger(false);
2103 }
2104
2105 if(param & ISO14A_NO_DISCONNECT) {
2106 return;
2107 }
2108
2109 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2110 LEDsoff();
2111 }
2112
2113
2114 // Determine the distance between two nonces.
2115 // Assume that the difference is small, but we don't know which is first.
2116 // Therefore try in alternating directions.
2117 static int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2118
2119 uint16_t i;
2120 uint32_t nttmp1, nttmp2;
2121
2122 if (nt1 == nt2) return 0;
2123
2124 nttmp1 = nt1;
2125 nttmp2 = nt2;
2126
2127 for (i = 1; i < 32768; i++) {
2128 nttmp1 = prng_successor(nttmp1, 1);
2129 if (nttmp1 == nt2) return i;
2130 nttmp2 = prng_successor(nttmp2, 1);
2131 if (nttmp2 == nt1) return -i;
2132 }
2133
2134 return(-99999); // either nt1 or nt2 are invalid nonces
2135 }
2136
2137
2138 //-----------------------------------------------------------------------------
2139 // Recover several bits of the cypher stream. This implements (first stages of)
2140 // the algorithm described in "The Dark Side of Security by Obscurity and
2141 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2142 // (article by Nicolas T. Courtois, 2009)
2143 //-----------------------------------------------------------------------------
2144 void ReaderMifare(bool first_try)
2145 {
2146 // Mifare AUTH
2147 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2148 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2149 static uint8_t mf_nr_ar3;
2150
2151 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
2152 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
2153
2154 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2155
2156 // free eventually allocated BigBuf memory. We want all for tracing.
2157 BigBuf_free();
2158
2159 clear_trace();
2160 set_tracing(true);
2161
2162 uint8_t nt_diff = 0;
2163 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2164 static uint8_t par_low = 0;
2165 bool led_on = true;
2166 uint8_t uid[10] ={0};
2167 uint32_t cuid;
2168
2169 uint32_t nt = 0;
2170 uint32_t previous_nt = 0;
2171 static uint32_t nt_attacked = 0;
2172 uint8_t par_list[8] = {0x00};
2173 uint8_t ks_list[8] = {0x00};
2174
2175 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2176 uint32_t sync_time = GetCountSspClk() & 0xfffffff8;
2177 static int32_t sync_cycles;
2178 int catch_up_cycles = 0;
2179 int last_catch_up = 0;
2180 uint16_t elapsed_prng_sequences;
2181 uint16_t consecutive_resyncs = 0;
2182 int isOK = 0;
2183
2184 if (first_try) {
2185 mf_nr_ar3 = 0;
2186 par[0] = par_low = 0;
2187 sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
2188 nt_attacked = 0;
2189 }
2190 else {
2191 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2192 mf_nr_ar3++;
2193 mf_nr_ar[3] = mf_nr_ar3;
2194 par[0] = par_low;
2195 }
2196
2197 LED_A_ON();
2198 LED_B_OFF();
2199 LED_C_OFF();
2200
2201
2202 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2203 #define MAX_SYNC_TRIES 32
2204 #define SYNC_TIME_BUFFER 16 // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle
2205 #define NUM_DEBUG_INFOS 8 // per strategy
2206 #define MAX_STRATEGY 3
2207 uint16_t unexpected_random = 0;
2208 uint16_t sync_tries = 0;
2209 int16_t debug_info_nr = -1;
2210 uint16_t strategy = 0;
2211 int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
2212 uint32_t select_time;
2213 uint32_t halt_time;
2214
2215 for(uint16_t i = 0; true; i++) {
2216
2217 LED_C_ON();
2218 WDT_HIT();
2219
2220 // Test if the action was cancelled
2221 if(BUTTON_PRESS()) {
2222 isOK = -1;
2223 break;
2224 }
2225
2226 if (strategy == 2) {
2227 // test with additional hlt command
2228 halt_time = 0;
2229 int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
2230 if (len && MF_DBGLEVEL >= 3) {
2231 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
2232 }
2233 }
2234
2235 if (strategy == 3) {
2236 // test with FPGA power off/on
2237 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2238 SpinDelay(200);
2239 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2240 SpinDelay(100);
2241 }
2242
2243 if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
2244 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2245 continue;
2246 }
2247 select_time = GetCountSspClk();
2248
2249 elapsed_prng_sequences = 1;
2250 if (debug_info_nr == -1) {
2251 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2252 catch_up_cycles = 0;
2253
2254 // if we missed the sync time already or are about to miss it, advance to the next nonce repeat
2255 while(sync_time < GetCountSspClk() + SYNC_TIME_BUFFER) {
2256 elapsed_prng_sequences++;
2257 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2258 }
2259
2260 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2261 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2262 } else {
2263 // collect some information on tag nonces for debugging:
2264 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2265 if (strategy == 0) {
2266 // nonce distances at fixed time after card select:
2267 sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
2268 } else if (strategy == 1) {
2269 // nonce distances at fixed time between authentications:
2270 sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
2271 } else if (strategy == 2) {
2272 // nonce distances at fixed time after halt:
2273 sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
2274 } else {
2275 // nonce_distances at fixed time after power on
2276 sync_time = DEBUG_FIXED_SYNC_CYCLES;
2277 }
2278 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2279 }
2280
2281 // Receive the (4 Byte) "random" nonce
2282 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2283 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2284 continue;
2285 }
2286
2287 previous_nt = nt;
2288 nt = bytes_to_num(receivedAnswer, 4);
2289
2290 // Transmit reader nonce with fake par
2291 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2292
2293 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2294 int nt_distance = dist_nt(previous_nt, nt);
2295 if (nt_distance == 0) {
2296 nt_attacked = nt;
2297 } else {
2298 if (nt_distance == -99999) { // invalid nonce received
2299 unexpected_random++;
2300 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
2301 isOK = -3; // Card has an unpredictable PRNG. Give up
2302 break;
2303 } else {
2304 continue; // continue trying...
2305 }
2306 }
2307 if (++sync_tries > MAX_SYNC_TRIES) {
2308 if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
2309 isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2310 break;
2311 } else { // continue for a while, just to collect some debug info
2312 debug_info[strategy][debug_info_nr] = nt_distance;
2313 debug_info_nr++;
2314 if (debug_info_nr == NUM_DEBUG_INFOS) {
2315 strategy++;
2316 debug_info_nr = 0;
2317 }
2318 continue;
2319 }
2320 }
2321 sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
2322 if (sync_cycles <= 0) {
2323 sync_cycles += PRNG_SEQUENCE_LENGTH;
2324 }
2325 if (MF_DBGLEVEL >= 3) {
2326 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
2327 }
2328 continue;
2329 }
2330 }
2331
2332 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2333 catch_up_cycles = -dist_nt(nt_attacked, nt);
2334 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2335 catch_up_cycles = 0;
2336 continue;
2337 }
2338 catch_up_cycles /= elapsed_prng_sequences;
2339 if (catch_up_cycles == last_catch_up) {
2340 consecutive_resyncs++;
2341 }
2342 else {
2343 last_catch_up = catch_up_cycles;
2344 consecutive_resyncs = 0;
2345 }
2346 if (consecutive_resyncs < 3) {
2347 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2348 }
2349 else {
2350 sync_cycles = sync_cycles + catch_up_cycles;
2351 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2352 last_catch_up = 0;
2353 catch_up_cycles = 0;
2354 consecutive_resyncs = 0;
2355 }
2356 continue;
2357 }
2358
2359 consecutive_resyncs = 0;
2360
2361 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2362 if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2363 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2364
2365 if (nt_diff == 0) {
2366 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2367 }
2368
2369 led_on = !led_on;
2370 if(led_on) LED_B_ON(); else LED_B_OFF();
2371
2372 par_list[nt_diff] = SwapBits(par[0], 8);
2373 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2374
2375 // Test if the information is complete
2376 if (nt_diff == 0x07) {
2377 isOK = 1;
2378 break;
2379 }
2380
2381 nt_diff = (nt_diff + 1) & 0x07;
2382 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2383 par[0] = par_low;
2384 } else {
2385 if (nt_diff == 0 && first_try)
2386 {
2387 par[0]++;
2388 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2389 isOK = -2;
2390 break;
2391 }
2392 } else {
2393 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2394 }
2395 }
2396 }
2397
2398
2399 mf_nr_ar[3] &= 0x1F;
2400
2401 if (isOK == -4) {
2402 if (MF_DBGLEVEL >= 3) {
2403 for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
2404 for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
2405 Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
2406 }
2407 }
2408 }
2409 }
2410
2411 uint8_t buf[32];
2412 memcpy(buf + 0, uid, 4);
2413 num_to_bytes(nt, 4, buf + 4);
2414 memcpy(buf + 8, par_list, 8);
2415 memcpy(buf + 16, ks_list, 8);
2416 memcpy(buf + 24, mf_nr_ar, 8);
2417
2418 cmd_send(CMD_ACK, isOK, 0, 0, buf, 32);
2419
2420 // Thats it...
2421 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2422 LEDsoff();
2423
2424 set_tracing(false);
2425 }
2426
2427
2428 //-----------------------------------------------------------------------------
2429 // MIFARE sniffer.
2430 //
2431 //-----------------------------------------------------------------------------
2432 void RAMFUNC SniffMifare(uint8_t param) {
2433 // param:
2434 // bit 0 - trigger from first card answer
2435 // bit 1 - trigger from first reader 7-bit request
2436
2437 // C(red) A(yellow) B(green)
2438 LEDsoff();
2439 // init trace buffer
2440 clear_trace();
2441 set_tracing(true);
2442
2443 // The command (reader -> tag) that we're receiving.
2444 // The length of a received command will in most cases be no more than 18 bytes.
2445 // So 32 should be enough!
2446 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2447 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
2448 // The response (tag -> reader) that we're receiving.
2449 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2450 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
2451
2452 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2453
2454 // free eventually allocated BigBuf memory
2455 BigBuf_free();
2456 // allocate the DMA buffer, used to stream samples from the FPGA
2457 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
2458 uint8_t *data = dmaBuf;
2459 uint8_t previous_data = 0;
2460 int maxDataLen = 0;
2461 int dataLen = 0;
2462 bool ReaderIsActive = false;
2463 bool TagIsActive = false;
2464
2465 // Set up the demodulator for tag -> reader responses.
2466 DemodInit(receivedResponse, receivedResponsePar);
2467
2468 // Set up the demodulator for the reader -> tag commands
2469 UartInit(receivedCmd, receivedCmdPar);
2470
2471 // Setup for the DMA.
2472 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2473
2474 LED_D_OFF();
2475
2476 // init sniffer
2477 MfSniffInit();
2478
2479 // And now we loop, receiving samples.
2480 for(uint32_t sniffCounter = 0; true; ) {
2481
2482 if(BUTTON_PRESS()) {
2483 DbpString("Canceled by button.");
2484 break;
2485 }
2486
2487 LED_A_ON();
2488 WDT_HIT();
2489
2490 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2491 // check if a transaction is completed (timeout after 2000ms).
2492 // if yes, stop the DMA transfer and send what we have so far to the client
2493 if (MfSniffSend(2000)) {
2494 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2495 sniffCounter = 0;
2496 data = dmaBuf;
2497 maxDataLen = 0;
2498 ReaderIsActive = false;
2499 TagIsActive = false;
2500 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2501 }
2502 }
2503
2504 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2505 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2506 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2507 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2508 } else {
2509 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2510 }
2511 // test for length of buffer
2512 if(dataLen > maxDataLen) { // we are more behind than ever...
2513 maxDataLen = dataLen;
2514 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
2515 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
2516 break;
2517 }
2518 }
2519 if(dataLen < 1) continue;
2520
2521 // primary buffer was stopped ( <-- we lost data!
2522 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2523 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2524 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
2525 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
2526 }
2527 // secondary buffer sets as primary, secondary buffer was stopped
2528 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2529 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
2530 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2531 }
2532
2533 LED_A_OFF();
2534
2535 if (sniffCounter & 0x01) {
2536
2537 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2538 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2539 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2540 LED_B_ON();
2541 LED_C_OFF();
2542
2543 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break;
2544
2545 /* And ready to receive another command. */
2546 UartInit(receivedCmd, receivedCmdPar);
2547
2548 /* And also reset the demod code */
2549 DemodReset();
2550 }
2551 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2552 }
2553
2554 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2555 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2556 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2557 LED_B_OFF();
2558 LED_C_ON();
2559
2560 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break;
2561
2562 // And ready to receive another response.
2563 DemodReset();
2564 // And reset the Miller decoder including its (now outdated) input buffer
2565 UartInit(receivedCmd, receivedCmdPar);
2566 }
2567 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2568 }
2569 }
2570
2571 previous_data = *data;
2572 sniffCounter++;
2573 data++;
2574 if(data == dmaBuf + DMA_BUFFER_SIZE) {
2575 data = dmaBuf;
2576 }
2577
2578 } // main cycle
2579
2580 DbpString("COMMAND FINISHED.");
2581
2582 FpgaDisableSscDma();
2583 MfSniffEnd();
2584
2585 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
2586 LEDsoff();
2587 }
Impressum, Datenschutz