1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
23 * Function to do a modulation and then get samples.
25 * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t periods
, uint32_t useHighFreq
, uint8_t *command
)
31 /* Make sure the tag is reset */
32 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
33 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
36 uint16_t period_0
= periods
>> 16;
37 uint16_t period_1
= periods
& 0xFFFF;
39 // 95 == 125 KHz 88 == 124.8 KHz
40 int divisor_used
= (useHighFreq
) ? 88 : 95;
41 sample_config sc
= { 0,0,1, divisor_used
, 0};
42 setSamplingConfig(&sc
);
45 BigBuf_Clear_keep_EM();
47 LFSetupFPGAForADC(sc
.divisor
, 1);
49 // And a little more time for the tag to fully power up
52 // now modulate the reader field
53 while(*command
!= '\0' && *command
!= ' ') {
54 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
56 SpinDelayUs(delay_off
);
57 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
59 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
61 if(*(command
++) == '0')
62 SpinDelayUs(period_0
);
64 SpinDelayUs(period_1
);
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
68 SpinDelayUs(delay_off
);
69 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
73 DoAcquisition_config(false);
76 /* blank r/w tag data stream
77 ...0000000000000000 01111111
78 1010101010101010101010101010101010101010101010101010101010101010
81 101010101010101[0]000...
83 [5555fe852c5555555555555555fe0000]
87 // some hardcoded initial params
88 // when we read a TI tag we sample the zerocross line at 2Mhz
89 // TI tags modulate a 1 as 16 cycles of 123.2Khz
90 // TI tags modulate a 0 as 16 cycles of 134.2Khz
91 #define FSAMPLE 2000000
95 signed char *dest
= (signed char *)BigBuf_get_addr();
96 uint16_t n
= BigBuf_max_traceLen();
97 // 128 bit shift register [shift3:shift2:shift1:shift0]
98 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
100 int i
, cycles
=0, samples
=0;
101 // how many sample points fit in 16 cycles of each frequency
102 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
103 // when to tell if we're close enough to one freq or another
104 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
106 // TI tags charge at 134.2Khz
107 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
108 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
110 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
111 // connects to SSP_DIN and the SSP_DOUT logic level controls
112 // whether we're modulating the antenna (high)
113 // or listening to the antenna (low)
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
116 // get TI tag data into the buffer
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
121 for (i
=0; i
<n
-1; i
++) {
122 // count cycles by looking for lo to hi zero crossings
123 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
125 // after 16 cycles, measure the frequency
128 samples
=i
-samples
; // number of samples in these 16 cycles
130 // TI bits are coming to us lsb first so shift them
131 // right through our 128 bit right shift register
132 shift0
= (shift0
>>1) | (shift1
<< 31);
133 shift1
= (shift1
>>1) | (shift2
<< 31);
134 shift2
= (shift2
>>1) | (shift3
<< 31);
137 // check if the cycles fall close to the number
138 // expected for either the low or high frequency
139 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
140 // low frequency represents a 1
142 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
143 // high frequency represents a 0
145 // probably detected a gay waveform or noise
146 // use this as gaydar or discard shift register and start again
147 shift3
= shift2
= shift1
= shift0
= 0;
151 // for each bit we receive, test if we've detected a valid tag
153 // if we see 17 zeroes followed by 6 ones, we might have a tag
154 // remember the bits are backwards
155 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
156 // if start and end bytes match, we have a tag so break out of the loop
157 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
158 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
166 // if flag is set we have a tag
168 DbpString("Info: No valid tag detected.");
170 // put 64 bit data into shift1 and shift0
171 shift0
= (shift0
>>24) | (shift1
<< 8);
172 shift1
= (shift1
>>24) | (shift2
<< 8);
174 // align 16 bit crc into lower half of shift2
175 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
177 // if r/w tag, check ident match
178 if (shift3
& (1<<15) ) {
179 DbpString("Info: TI tag is rewriteable");
180 // only 15 bits compare, last bit of ident is not valid
181 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
182 DbpString("Error: Ident mismatch!");
184 DbpString("Info: TI tag ident is valid");
187 DbpString("Info: TI tag is readonly");
190 // WARNING the order of the bytes in which we calc crc below needs checking
191 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
192 // bytes in reverse or something
196 crc
= update_crc16(crc
, (shift0
)&0xff);
197 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
198 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
200 crc
= update_crc16(crc
, (shift1
)&0xff);
201 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
202 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
205 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
206 if (crc
!= (shift2
&0xffff)) {
207 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
209 DbpString("Info: CRC is good");
214 void WriteTIbyte(uint8_t b
)
218 // modulate 8 bits out to the antenna
222 // stop modulating antenna
229 // stop modulating antenna
239 void AcquireTiType(void)
242 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
243 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
244 #define TIBUFLEN 1250
247 uint32_t *buf
= (uint32_t *)BigBuf_get_addr();
249 //clear buffer now so it does not interfere with timing later
250 BigBuf_Clear_ext(false);
252 // Set up the synchronous serial port
253 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
254 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
256 // steal this pin from the SSP and use it to control the modulation
257 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
258 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
260 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
261 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
263 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
264 // 48/2 = 24 MHz clock must be divided by 12
265 AT91C_BASE_SSC
->SSC_CMR
= 12;
267 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
268 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
269 AT91C_BASE_SSC
->SSC_TCMR
= 0;
270 AT91C_BASE_SSC
->SSC_TFMR
= 0;
271 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
277 // Charge TI tag for 50ms.
280 // stop modulating antenna and listen
287 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
288 buf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
289 i
++; if(i
>= TIBUFLEN
) break;
294 // return stolen pin to SSP
295 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
296 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
298 char *dest
= (char *)BigBuf_get_addr();
302 for (i
= TIBUFLEN
-1; i
>= 0; i
--) {
303 for (j
= 0; j
< 32; j
++) {
304 if(buf
[i
] & (1 << j
)) {
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
320 crc
= update_crc16(crc
, (idlo
)&0xff);
321 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
322 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
323 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
324 crc
= update_crc16(crc
, (idhi
)&0xff);
325 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
326 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
327 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
329 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi
, (unsigned int) idlo
, crc
);
331 // TI tags charge at 134.2Khz
332 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
333 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
334 // connects to SSP_DIN and the SSP_DOUT logic level controls
335 // whether we're modulating the antenna (high)
336 // or listening to the antenna (low)
337 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
342 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
344 // writing algorithm:
345 // a high bit consists of a field off for 1ms and field on for 1ms
346 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
347 // initiate a charge time of 50ms (field on) then immediately start writing bits
348 // start by writing 0xBB (keyword) and 0xEB (password)
349 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
350 // finally end with 0x0300 (write frame)
351 // all data is sent lsb first
352 // finish with 15ms programming time
356 SpinDelay(50); // charge time
358 WriteTIbyte(0xbb); // keyword
359 WriteTIbyte(0xeb); // password
360 WriteTIbyte( (idlo
)&0xff );
361 WriteTIbyte( (idlo
>>8 )&0xff );
362 WriteTIbyte( (idlo
>>16)&0xff );
363 WriteTIbyte( (idlo
>>24)&0xff );
364 WriteTIbyte( (idhi
)&0xff );
365 WriteTIbyte( (idhi
>>8 )&0xff );
366 WriteTIbyte( (idhi
>>16)&0xff );
367 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
368 WriteTIbyte( (crc
)&0xff ); // crc lo
369 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
370 WriteTIbyte(0x00); // write frame lo
371 WriteTIbyte(0x03); // write frame hi
373 SpinDelay(50); // programming time
377 // get TI tag data into the buffer
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
381 DbpString("Now use `lf ti read` to check");
384 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
387 uint8_t *tab
= BigBuf_get_addr();
389 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
392 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
393 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
394 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
396 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
397 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
401 //wait until SSC_CLK goes HIGH
402 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
403 if(BUTTON_PRESS() || usb_poll_validate_length() ) {
404 DbpString("Stopped");
409 if (ledcontrol
) LED_D_ON();
416 if (ledcontrol
) LED_D_OFF();
418 //wait until SSC_CLK goes LOW
419 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
420 if( BUTTON_PRESS() || usb_poll_validate_length() ) {
421 DbpString("Stopped");
439 #define DEBUG_FRAME_CONTENTS 1
440 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
444 // compose fc/8 fc/10 waveform (FSK2)
445 static void fc(int c
, int *n
)
447 uint8_t *dest
= BigBuf_get_addr();
450 // for when we want an fc8 pattern every 4 logical bits
462 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
464 for (idx
=0; idx
<6; idx
++) {
476 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
478 for (idx
=0; idx
<5; idx
++) {
492 // compose fc/X fc/Y waveform (FSKx)
493 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
495 uint8_t *dest
= BigBuf_get_addr();
496 uint8_t halfFC
= fc
/2;
497 uint8_t wavesPerClock
= clock
/fc
;
498 uint8_t mod
= clock
% fc
; //modifier
499 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
500 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
501 // loop through clock - step field clock
502 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
503 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
504 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
505 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
508 if (mod
>0) (*modCnt
)++;
509 if ((mod
>0) && modAdjOk
){ //fsk2
510 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
511 memset(dest
+(*n
), 0, fc
-halfFC
);
512 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
516 if (mod
>0 && !modAdjOk
){ //fsk1
517 memset(dest
+(*n
), 0, mod
-(mod
/2));
518 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
523 // prepare a waveform pattern in the buffer based on the ID given then
524 // simulate a HID tag until the button is pressed
525 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
529 HID tag bitstream format
530 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
531 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
532 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
533 A fc8 is inserted before every 4 bits
534 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
535 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
539 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
543 // special start of frame marker containing invalid bit sequences
544 fc(8, &n
); fc(8, &n
); // invalid
545 fc(8, &n
); fc(10, &n
); // logical 0
546 fc(10, &n
); fc(10, &n
); // invalid
547 fc(8, &n
); fc(10, &n
); // logical 0
550 // manchester encode bits 43 to 32
551 for (i
=11; i
>=0; i
--) {
552 if ((i
%4)==3) fc(0,&n
);
554 fc(10, &n
); fc(8, &n
); // low-high transition
556 fc(8, &n
); fc(10, &n
); // high-low transition
561 // manchester encode bits 31 to 0
562 for (i
=31; i
>=0; i
--) {
563 if ((i
%4)==3) fc(0,&n
);
565 fc(10, &n
); fc(8, &n
); // low-high transition
567 fc(8, &n
); fc(10, &n
); // high-low transition
571 if (ledcontrol
) LED_A_ON();
572 SimulateTagLowFrequency(n
, 0, ledcontrol
);
573 if (ledcontrol
) LED_A_OFF();
576 // prepare a waveform pattern in the buffer based on the ID given then
577 // simulate a FSK tag until the button is pressed
578 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
579 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
583 uint8_t fcHigh
= arg1
>> 8;
584 uint8_t fcLow
= arg1
& 0xFF;
586 uint8_t clk
= arg2
& 0xFF;
587 uint8_t invert
= (arg2
>> 8) & 1;
589 for (i
=0; i
<size
; i
++){
590 if (BitStream
[i
] == invert
){
591 fcAll(fcLow
, &n
, clk
, &modCnt
);
593 fcAll(fcHigh
, &n
, clk
, &modCnt
);
596 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
598 if (ledcontrol
) LED_A_ON();
599 SimulateTagLowFrequency(n
, 0, ledcontrol
);
600 if (ledcontrol
) LED_A_OFF();
603 // compose ask waveform for one bit(ASK)
604 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
606 uint8_t *dest
= BigBuf_get_addr();
607 uint8_t halfClk
= clock
/2;
608 // c = current bit 1 or 0
610 memset(dest
+(*n
), c
, halfClk
);
611 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
613 memset(dest
+(*n
), c
, clock
);
618 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
620 uint8_t *dest
= BigBuf_get_addr();
621 uint8_t halfClk
= clock
/2;
623 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
624 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
626 memset(dest
+(*n
), c
^ *phase
, clock
);
632 static void stAskSimBit(int *n
, uint8_t clock
) {
633 uint8_t *dest
= BigBuf_get_addr();
634 uint8_t halfClk
= clock
/2;
635 //ST = .5 high .5 low 1.5 high .5 low 1 high
636 memset(dest
+(*n
), 1, halfClk
);
637 memset(dest
+(*n
) + halfClk
, 0, halfClk
);
638 memset(dest
+(*n
) + clock
, 1, clock
+ halfClk
);
639 memset(dest
+(*n
) + clock
*2 + halfClk
, 0, halfClk
);
640 memset(dest
+(*n
) + clock
*3, 1, clock
);
644 // args clock, ask/man or askraw, invert, transmission separator
645 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
649 uint8_t clk
= (arg1
>> 8) & 0xFF;
650 uint8_t encoding
= arg1
& 0xFF;
651 uint8_t separator
= arg2
& 1;
652 uint8_t invert
= (arg2
>> 8) & 1;
654 if (encoding
==2){ //biphase
656 for (i
=0; i
<size
; i
++){
657 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
659 if (phase
==1) { //run a second set inverted to keep phase in check
660 for (i
=0; i
<size
; i
++){
661 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
664 } else { // ask/manchester || ask/raw
665 for (i
=0; i
<size
; i
++){
666 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
668 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
669 for (i
=0; i
<size
; i
++){
670 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
674 if (separator
==1 && encoding
== 1)
675 stAskSimBit(&n
, clk
);
676 else if (separator
==1)
677 Dbprintf("sorry but separator option not yet available");
679 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
681 if (ledcontrol
) LED_A_ON();
682 SimulateTagLowFrequency(n
, 0, ledcontrol
);
683 if (ledcontrol
) LED_A_OFF();
686 //carrier can be 2,4 or 8
687 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
689 uint8_t *dest
= BigBuf_get_addr();
690 uint8_t halfWave
= waveLen
/2;
694 // write phase change
695 memset(dest
+(*n
), *curPhase
^1, halfWave
);
696 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
701 //write each normal clock wave for the clock duration
702 for (; i
< clk
; i
+=waveLen
){
703 memset(dest
+(*n
), *curPhase
, halfWave
);
704 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
709 // args clock, carrier, invert,
710 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
714 uint8_t clk
= arg1
>> 8;
715 uint8_t carrier
= arg1
& 0xFF;
716 uint8_t invert
= arg2
& 0xFF;
717 uint8_t curPhase
= 0;
718 for (i
=0; i
<size
; i
++){
719 if (BitStream
[i
] == curPhase
){
720 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
722 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
725 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
727 if (ledcontrol
) LED_A_ON();
728 SimulateTagLowFrequency(n
, 0, ledcontrol
);
729 if (ledcontrol
) LED_A_OFF();
732 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
733 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
735 uint8_t *dest
= BigBuf_get_addr();
737 uint32_t hi2
=0, hi
=0, lo
=0;
739 // Configure to go in 125Khz listen mode
740 LFSetupFPGAForADC(95, true);
743 BigBuf_Clear_keep_EM();
745 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
748 if (ledcontrol
) LED_A_ON();
750 DoAcquisition_default(-1,true);
752 size
= 50*128*2; //big enough to catch 2 sequences of largest format
753 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
755 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
756 // go over previously decoded manchester data and decode into usable tag ID
757 if (hi2
!= 0){ //extra large HID tags 88/192 bits
758 Dbprintf("TAG ID: %x%08x%08x (%d)",
762 (unsigned int) (lo
>>1) & 0xFFFF
764 } else { //standard HID tags 44/96 bits
767 uint32_t cardnum
= 0;
769 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
771 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
773 while(lo2
> 1){ //find last bit set to 1 (format len bit)
781 cardnum
= (lo
>>1)&0xFFFF;
785 cardnum
= (lo
>>1)&0x7FFFF;
786 fc
= ((hi
&0xF)<<12)|(lo
>>20);
789 cardnum
= (lo
>>1)&0xFFFF;
790 fc
= ((hi
&1)<<15)|(lo
>>17);
793 cardnum
= (lo
>>1)&0xFFFFF;
794 fc
= ((hi
&1)<<11)|(lo
>>21);
797 else { //if bit 38 is not set then 37 bit format is used
802 cardnum
= (lo
>>1)&0x7FFFF;
803 fc
= ((hi
&0xF)<<12)|(lo
>>20);
806 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
809 (unsigned int) (lo
>>1) & 0xFFFF,
810 (unsigned int) bitlen
,
812 (unsigned int) cardnum
);
815 if (ledcontrol
) LED_A_OFF();
822 hi2
= hi
= lo
= idx
= 0;
825 DbpString("Stopped");
826 if (ledcontrol
) LED_A_OFF();
829 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
830 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
832 uint8_t *dest
= BigBuf_get_addr();
836 BigBuf_Clear_keep_EM();
837 // Configure to go in 125Khz listen mode
838 LFSetupFPGAForADC(95, true);
840 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
843 if (ledcontrol
) LED_A_ON();
845 DoAcquisition_default(-1,true);
847 size
= 50*128*2; //big enough to catch 2 sequences of largest format
848 idx
= AWIDdemodFSK(dest
, &size
);
850 if (idx
<=0 || size
!=96) continue;
852 // 0 10 20 30 40 50 60
854 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
855 // -----------------------------------------------------------------------------
856 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
857 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
858 // |---26 bit---| |-----117----||-------------142-------------|
859 // b = format bit len, o = odd parity of last 3 bits
860 // f = facility code, c = card number
861 // w = wiegand parity
862 // (26 bit format shown)
864 //get raw ID before removing parities
865 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
866 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
867 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
869 size
= removeParity(dest
, idx
+8, 4, 1, 88);
870 if (size
!= 66) continue;
873 // 0 10 20 30 40 50 60
875 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
876 // -----------------------------------------------------------------------------
877 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
878 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
879 // |26 bit| |-117--| |-----142------|
881 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
882 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
883 // |50 bit| |----4000------||-----------2248975-------------|
885 // b = format bit len, o = odd parity of last 3 bits
886 // f = facility code, c = card number
887 // w = wiegand parity
890 uint32_t cardnum
= 0;
893 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
896 fc
= bytebits_to_byte(dest
+ 9, 8);
897 cardnum
= bytebits_to_byte(dest
+ 17, 16);
898 code1
= bytebits_to_byte(dest
+ 8,fmtLen
);
899 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
902 fc
= bytebits_to_byte(dest
+ 9, 16);
903 cardnum
= bytebits_to_byte(dest
+ 25, 32);
904 code1
= bytebits_to_byte(dest
+ 8, (fmtLen
-32) );
905 code2
= bytebits_to_byte(dest
+ 8 + (fmtLen
-32), 32);
906 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
910 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
911 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
912 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
913 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
915 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
916 code1
= bytebits_to_byte(dest
+8,fmtLen
);
917 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
922 if (ledcontrol
) LED_A_OFF();
928 DbpString("Stopped");
929 if (ledcontrol
) LED_A_OFF();
932 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
934 uint8_t *dest
= BigBuf_get_addr();
936 size_t size
=0, idx
=0;
937 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
941 BigBuf_Clear_keep_EM();
942 // Configure to go in 125Khz listen mode
943 LFSetupFPGAForADC(95, true);
945 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
948 if (ledcontrol
) LED_A_ON();
950 DoAcquisition_default(-1,true);
951 size
= BigBuf_max_traceLen();
952 //askdemod and manchester decode
953 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
954 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
957 if (errCnt
<0) continue;
959 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
962 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
966 (uint32_t)(lo
&0xFFFF),
967 (uint32_t)((lo
>>16LL) & 0xFF),
968 (uint32_t)(lo
& 0xFFFFFF));
970 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
973 (uint32_t)(lo
&0xFFFF),
974 (uint32_t)((lo
>>16LL) & 0xFF),
975 (uint32_t)(lo
& 0xFFFFFF));
979 if (ledcontrol
) LED_A_OFF();
981 *low
=lo
& 0xFFFFFFFF;
986 hi
= lo
= size
= idx
= 0;
987 clk
= invert
= errCnt
= 0;
989 DbpString("Stopped");
990 if (ledcontrol
) LED_A_OFF();
993 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
995 uint8_t *dest
= BigBuf_get_addr();
997 uint32_t code
=0, code2
=0;
999 uint8_t facilitycode
=0;
1002 uint16_t calccrc
= 0;
1005 BigBuf_Clear_keep_EM();
1007 // Configure to go in 125Khz listen mode
1008 LFSetupFPGAForADC(95, true);
1010 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1012 if (ledcontrol
) LED_A_ON();
1013 DoAcquisition_default(-1,true);
1014 //fskdemod and get start index
1016 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
1017 if (idx
<0) continue;
1021 //0 10 20 30 40 50 60
1023 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1024 //-----------------------------------------------------------------------------
1025 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1028 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1029 //preamble F0 E0 01 03 B6 75
1030 // How to calc checksum,
1031 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1032 // F0 + E0 + 01 + 03 + B6 = 28A
1036 //XSF(version)facility:codeone+codetwo
1038 if(findone
){ //only print binary if we are doing one
1039 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1040 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1041 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1042 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1043 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1044 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1045 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1047 code
= bytebits_to_byte(dest
+idx
,32);
1048 code2
= bytebits_to_byte(dest
+idx
+32,32);
1049 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1050 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1051 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1053 crc
= bytebits_to_byte(dest
+idx
+54,8);
1054 for (uint8_t i
=1; i
<6; ++i
)
1055 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
1057 calccrc
= 0xff - calccrc
;
1059 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
1061 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
1062 // if we're only looking for one tag
1064 if (ledcontrol
) LED_A_OFF();
1070 version
=facilitycode
=0;
1076 DbpString("Stopped");
1077 if (ledcontrol
) LED_A_OFF();
1080 /*------------------------------
1081 * T5555/T5557/T5567/T5577 routines
1082 *------------------------------
1083 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1085 * Relevant communication times in microsecond
1086 * To compensate antenna falling times shorten the write times
1087 * and enlarge the gap ones.
1088 * Q5 tags seems to have issues when these values changes.
1091 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1092 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1093 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1094 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1095 #define READ_GAP 15*8
1097 // VALUES TAKEN FROM EM4x function: SendForward
1098 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1099 // WRITE_GAP = 128; (16*8)
1100 // WRITE_1 = 256 32*8; (32*8)
1102 // These timings work for 4469/4269/4305 (with the 55*8 above)
1103 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1105 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1106 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1107 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1108 // T0 = TIMER_CLOCK1 / 125000 = 192
1109 // 1 Cycle = 8 microseconds(us) == 1 field clock
1111 void TurnReadLFOn(int delay
) {
1112 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1113 // Give it a bit of time for the resonant antenna to settle.
1115 // measure antenna strength.
1116 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1122 // Write one bit to card
1123 void T55xxWriteBit(int bit
) {
1125 TurnReadLFOn(WRITE_0
);
1127 TurnReadLFOn(WRITE_1
);
1128 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1129 SpinDelayUs(WRITE_GAP
);
1132 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1133 void T55xxResetRead(void) {
1135 //clear buffer now so it does not interfere with timing later
1136 BigBuf_Clear_keep_EM();
1138 // Set up FPGA, 125kHz
1139 LFSetupFPGAForADC(95, true);
1141 // Trigger T55x7 in mode.
1142 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1143 SpinDelayUs(START_GAP
);
1145 // reset tag - op code 00
1149 // Turn field on to read the response
1150 TurnReadLFOn(READ_GAP
);
1153 doT55x7Acquisition(BigBuf_max_traceLen());
1155 // Turn the field off
1156 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1157 cmd_send(CMD_ACK
,0,0,0,0,0);
1161 // Write one card block in page 0, no lock
1162 void T55xxWriteBlockExt(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1164 bool PwdMode
= arg
& 0x1;
1165 uint8_t Page
= (arg
& 0x2)>>1;
1168 // Set up FPGA, 125kHz
1169 LFSetupFPGAForADC(95, true);
1171 // Trigger T55x7 in mode.
1172 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1173 SpinDelayUs(START_GAP
);
1177 T55xxWriteBit(Page
); //Page 0
1180 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1181 T55xxWriteBit(Pwd
& i
);
1187 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1188 T55xxWriteBit(Data
& i
);
1190 // Send Block number
1191 for (i
= 0x04; i
!= 0; i
>>= 1)
1192 T55xxWriteBit(Block
& i
);
1194 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1195 // so wait a little more)
1196 TurnReadLFOn(20 * 1000);
1197 //could attempt to do a read to confirm write took
1198 // as the tag should repeat back the new block
1199 // until it is reset, but to confirm it we would
1200 // need to know the current block 0 config mode
1203 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1207 // Write one card block in page 0, no lock
1208 void T55xxWriteBlock(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1209 T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
);
1210 cmd_send(CMD_ACK
,0,0,0,0,0);
1213 // Read one card block in page [page]
1214 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1216 bool PwdMode
= arg0
& 0x1;
1217 uint8_t Page
= (arg0
& 0x2) >> 1;
1219 bool RegReadMode
= (Block
== 0xFF);
1221 //clear buffer now so it does not interfere with timing later
1222 BigBuf_Clear_ext(false);
1224 //make sure block is at max 7
1227 // Set up FPGA, 125kHz to power up the tag
1228 LFSetupFPGAForADC(95, true);
1230 // Trigger T55x7 Direct Access Mode with start gap
1231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1232 SpinDelayUs(START_GAP
);
1236 T55xxWriteBit(Page
); //Page 0
1240 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1241 T55xxWriteBit(Pwd
& i
);
1243 // Send a zero bit separation
1246 // Send Block number (if direct access mode)
1248 for (i
= 0x04; i
!= 0; i
>>= 1)
1249 T55xxWriteBit(Block
& i
);
1251 // Turn field on to read the response
1252 TurnReadLFOn(READ_GAP
);
1255 doT55x7Acquisition(12000);
1257 // Turn the field off
1258 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1259 cmd_send(CMD_ACK
,0,0,0,0,0);
1263 void T55xxWakeUp(uint32_t Pwd
){
1267 // Set up FPGA, 125kHz
1268 LFSetupFPGAForADC(95, true);
1270 // Trigger T55x7 Direct Access Mode
1271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1272 SpinDelayUs(START_GAP
);
1276 T55xxWriteBit(0); //Page 0
1279 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1280 T55xxWriteBit(Pwd
& i
);
1282 // Turn and leave field on to let the begin repeating transmission
1283 TurnReadLFOn(20*1000);
1286 /*-------------- Cloning routines -----------*/
1287 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1288 // write last block first and config block last (if included)
1289 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--)
1290 T55xxWriteBlockExt(blockdata
[i
-1], i
-1, 0, 0);
1293 // Copy HID id to card and setup block 0 config
1294 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1295 uint32_t data
[] = {0,0,0,0,0,0,0};
1296 uint8_t last_block
= 0;
1299 // Ensure no more than 84 bits supplied
1300 if (hi2
> 0xFFFFF) {
1301 DbpString("Tags can only have 84 bits.");
1304 // Build the 6 data blocks for supplied 84bit ID
1306 // load preamble (1D) & long format identifier (9E manchester encoded)
1307 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1308 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1309 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1310 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1311 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1312 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1313 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1315 // Ensure no more than 44 bits supplied
1317 DbpString("Tags can only have 44 bits.");
1320 // Build the 3 data blocks for supplied 44bit ID
1323 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1324 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1325 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1327 // load chip config block
1328 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1330 //TODO add selection of chip for Q5 or T55x7
1331 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1334 // Program the data blocks for supplied ID
1335 // and the block 0 for HID format
1336 WriteT55xx(data
, 0, last_block
+1);
1343 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1344 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1345 //TODO add selection of chip for Q5 or T55x7
1346 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1347 // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1350 // Program the data blocks for supplied ID
1351 // and the block 0 config
1352 WriteT55xx(data
, 0, 3);
1357 // Clone Indala 64-bit tag by UID to T55x7
1358 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1359 //Program the 2 data blocks for supplied 64bit UID
1360 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1361 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1362 //TODO add selection of chip for Q5 or T55x7
1363 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1365 WriteT55xx(data
, 0, 3);
1366 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1367 // T5567WriteBlock(0x603E1042,0);
1370 // Clone Indala 224-bit tag by UID to T55x7
1371 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1372 //Program the 7 data blocks for supplied 224bit UID
1373 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1374 // and the block 0 for Indala224 format
1375 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1376 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (7 << T55x7_MAXBLOCK_SHIFT
);
1377 //TODO add selection of chip for Q5 or T55x7
1378 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1379 WriteT55xx(data
, 0, 8);
1380 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1381 // T5567WriteBlock(0x603E10E2,0);
1384 // clone viking tag to T55xx
1385 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) {
1386 uint32_t data
[] = {T55x7_BITRATE_RF_32
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
};
1387 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1388 if (Q5
) data
[0] = (32 << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| 2 << T5555_MAXBLOCK_SHIFT
;
1389 // Program the data blocks for supplied ID and the block 0 config
1390 WriteT55xx(data
, 0, 3);
1392 cmd_send(CMD_ACK
,0,0,0,0,0);
1395 // Define 9bit header for EM410x tags
1396 #define EM410X_HEADER 0x1FF
1397 #define EM410X_ID_LENGTH 40
1399 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1401 uint64_t id
= EM410X_HEADER
;
1402 uint64_t rev_id
= 0; // reversed ID
1403 int c_parity
[4]; // column parity
1404 int r_parity
= 0; // row parity
1407 // Reverse ID bits given as parameter (for simpler operations)
1408 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1410 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1413 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1418 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1419 id_bit
= rev_id
& 1;
1422 // Don't write row parity bit at start of parsing
1424 id
= (id
<< 1) | r_parity
;
1425 // Start counting parity for new row
1432 // First elements in column?
1434 // Fill out first elements
1435 c_parity
[i
] = id_bit
;
1437 // Count column parity
1438 c_parity
[i
% 4] ^= id_bit
;
1441 id
= (id
<< 1) | id_bit
;
1445 // Insert parity bit of last row
1446 id
= (id
<< 1) | r_parity
;
1448 // Fill out column parity at the end of tag
1449 for (i
= 0; i
< 4; ++i
)
1450 id
= (id
<< 1) | c_parity
[i
];
1455 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1459 uint32_t data
[] = {0, (uint32_t)(id
>>32), (uint32_t)(id
& 0xFFFFFFFF)};
1461 clock
= (card
& 0xFF00) >> 8;
1462 clock
= (clock
== 0) ? 64 : clock
;
1463 Dbprintf("Clock rate: %d", clock
);
1464 if (card
& 0xFF) { //t55x7
1465 clock
= GetT55xxClockBit(clock
);
1467 Dbprintf("Invalid clock rate: %d", clock
);
1470 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1471 } else { //t5555 (Q5)
1472 clock
= (clock
-2)>>1; //n = (RF-2)/2
1473 data
[0] = (clock
<< T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1476 WriteT55xx(data
, 0, 3);
1479 Dbprintf("Tag %s written with 0x%08x%08x\n",
1480 card
? "T55x7":"T5555",
1481 (uint32_t)(id
>> 32),
1485 //-----------------------------------
1486 // EM4469 / EM4305 routines
1487 //-----------------------------------
1488 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1489 #define FWD_CMD_WRITE 0xA
1490 #define FWD_CMD_READ 0x9
1491 #define FWD_CMD_DISABLE 0x5
1493 uint8_t forwardLink_data
[64]; //array of forwarded bits
1494 uint8_t * forward_ptr
; //ptr for forward message preparation
1495 uint8_t fwd_bit_sz
; //forwardlink bit counter
1496 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1498 //====================================================================
1499 // prepares command bits
1501 //====================================================================
1502 //--------------------------------------------------------------------
1503 // VALUES TAKEN FROM EM4x function: SendForward
1504 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1505 // WRITE_GAP = 128; (16*8)
1506 // WRITE_1 = 256 32*8; (32*8)
1508 // These timings work for 4469/4269/4305 (with the 55*8 above)
1509 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1511 uint8_t Prepare_Cmd( uint8_t cmd
) {
1513 *forward_ptr
++ = 0; //start bit
1514 *forward_ptr
++ = 0; //second pause for 4050 code
1516 *forward_ptr
++ = cmd
;
1518 *forward_ptr
++ = cmd
;
1520 *forward_ptr
++ = cmd
;
1522 *forward_ptr
++ = cmd
;
1524 return 6; //return number of emited bits
1527 //====================================================================
1528 // prepares address bits
1530 //====================================================================
1531 uint8_t Prepare_Addr( uint8_t addr
) {
1533 register uint8_t line_parity
;
1538 *forward_ptr
++ = addr
;
1539 line_parity
^= addr
;
1543 *forward_ptr
++ = (line_parity
& 1);
1545 return 7; //return number of emited bits
1548 //====================================================================
1549 // prepares data bits intreleaved with parity bits
1551 //====================================================================
1552 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1554 register uint8_t line_parity
;
1555 register uint8_t column_parity
;
1556 register uint8_t i
, j
;
1557 register uint16_t data
;
1562 for(i
=0; i
<4; i
++) {
1564 for(j
=0; j
<8; j
++) {
1565 line_parity
^= data
;
1566 column_parity
^= (data
& 1) << j
;
1567 *forward_ptr
++ = data
;
1570 *forward_ptr
++ = line_parity
;
1575 for(j
=0; j
<8; j
++) {
1576 *forward_ptr
++ = column_parity
;
1577 column_parity
>>= 1;
1581 return 45; //return number of emited bits
1584 //====================================================================
1585 // Forward Link send function
1586 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1587 // fwd_bit_count set with number of bits to be sent
1588 //====================================================================
1589 void SendForward(uint8_t fwd_bit_count
) {
1591 fwd_write_ptr
= forwardLink_data
;
1592 fwd_bit_sz
= fwd_bit_count
;
1596 // Set up FPGA, 125kHz
1597 LFSetupFPGAForADC(95, true);
1599 // force 1st mod pulse (start gap must be longer for 4305)
1600 fwd_bit_sz
--; //prepare next bit modulation
1602 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1603 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1604 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1605 SpinDelayUs(16*8); //16 cycles on (8us each)
1607 // now start writting
1608 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1609 if(((*fwd_write_ptr
++) & 1) == 1)
1610 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1612 //These timings work for 4469/4269/4305 (with the 55*8 above)
1613 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1614 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1615 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1616 SpinDelayUs(9*8); //16 cycles on (8us each)
1621 void EM4xLogin(uint32_t Password
) {
1623 uint8_t fwd_bit_count
;
1625 forward_ptr
= forwardLink_data
;
1626 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1627 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1629 SendForward(fwd_bit_count
);
1631 //Wait for command to complete
1635 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1637 uint8_t fwd_bit_count
;
1638 uint8_t *dest
= BigBuf_get_addr();
1639 uint16_t bufsize
= BigBuf_max_traceLen();
1642 // Clear destination buffer before sending the command
1643 BigBuf_Clear_ext(false);
1645 //If password mode do login
1646 if (PwdMode
== 1) EM4xLogin(Pwd
);
1648 forward_ptr
= forwardLink_data
;
1649 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1650 fwd_bit_count
+= Prepare_Addr( Address
);
1652 // Connect the A/D to the peak-detected low-frequency path.
1653 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1654 // Now set up the SSC to get the ADC samples that are now streaming at us.
1657 SendForward(fwd_bit_count
);
1659 // Now do the acquisition
1662 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1663 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1665 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1666 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1668 if (i
>= bufsize
) break;
1672 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1673 cmd_send(CMD_ACK
,0,0,0,0,0);
1677 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1679 uint8_t fwd_bit_count
;
1681 //If password mode do login
1682 if (PwdMode
== 1) EM4xLogin(Pwd
);
1684 forward_ptr
= forwardLink_data
;
1685 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1686 fwd_bit_count
+= Prepare_Addr( Address
);
1687 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1689 SendForward(fwd_bit_count
);
1691 //Wait for write to complete
1693 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off