]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
CHG: `lf em` - some minor refactoring in 4x50 commands
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
21
22 #ifndef SHORT_COIL
23 # define SHORT_COIL() LOW(GPIO_SSC_DOUT)
24 #endif
25 #ifndef OPEN_COIL
26 # define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
27 #endif
28
29 /**
30 * Function to do a modulation and then get samples.
31 * @param delay_off
32 * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
33 * @param useHighFreg
34 * @param command
35 */
36 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command)
37 {
38 /* Make sure the tag is reset */
39 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
41 SpinDelay(200);
42
43 uint16_t period_0 = periods >> 16;
44 uint16_t period_1 = periods & 0xFFFF;
45
46 // 95 == 125 KHz 88 == 134.8 KHz
47 int divisor_used = (useHighFreq) ? 88 : 95;
48 sample_config sc = { 0,0,1, divisor_used, 0};
49 setSamplingConfig(&sc);
50
51 //clear read buffer
52 BigBuf_Clear_keep_EM();
53
54 LFSetupFPGAForADC(sc.divisor, 1);
55
56 // And a little more time for the tag to fully power up
57 SpinDelay(50);
58
59 // now modulate the reader field
60 while(*command != '\0' && *command != ' ') {
61 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
62 LED_D_OFF();
63 WaitUS(delay_off);
64 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
65
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
67 LED_D_ON();
68 if(*(command++) == '0')
69 WaitUS(period_0);
70 else
71 WaitUS(period_1);
72 }
73 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
74 LED_D_OFF();
75 WaitUS(delay_off);
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
77 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
78
79 // now do the read
80 DoAcquisition_config(false);
81
82 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
83 }
84
85 /* blank r/w tag data stream
86 ...0000000000000000 01111111
87 1010101010101010101010101010101010101010101010101010101010101010
88 0011010010100001
89 01111111
90 101010101010101[0]000...
91
92 [5555fe852c5555555555555555fe0000]
93 */
94 void ReadTItag(void)
95 {
96 StartTicks();
97 // some hardcoded initial params
98 // when we read a TI tag we sample the zerocross line at 2Mhz
99 // TI tags modulate a 1 as 16 cycles of 123.2Khz
100 // TI tags modulate a 0 as 16 cycles of 134.2Khz
101 #define FSAMPLE 2000000
102 #define FREQLO 123200
103 #define FREQHI 134200
104
105 signed char *dest = (signed char *)BigBuf_get_addr();
106 uint16_t n = BigBuf_max_traceLen();
107 // 128 bit shift register [shift3:shift2:shift1:shift0]
108 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
109
110 int i, cycles=0, samples=0;
111 // how many sample points fit in 16 cycles of each frequency
112 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
113 // when to tell if we're close enough to one freq or another
114 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
115
116 // TI tags charge at 134.2Khz
117 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
118 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
119
120 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
121 // connects to SSP_DIN and the SSP_DOUT logic level controls
122 // whether we're modulating the antenna (high)
123 // or listening to the antenna (low)
124 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
125
126 // get TI tag data into the buffer
127 AcquireTiType();
128
129 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
130
131 for (i=0; i<n-1; i++) {
132 // count cycles by looking for lo to hi zero crossings
133 if ( (dest[i]<0) && (dest[i+1]>0) ) {
134 cycles++;
135 // after 16 cycles, measure the frequency
136 if (cycles>15) {
137 cycles=0;
138 samples=i-samples; // number of samples in these 16 cycles
139
140 // TI bits are coming to us lsb first so shift them
141 // right through our 128 bit right shift register
142 shift0 = (shift0>>1) | (shift1 << 31);
143 shift1 = (shift1>>1) | (shift2 << 31);
144 shift2 = (shift2>>1) | (shift3 << 31);
145 shift3 >>= 1;
146
147 // check if the cycles fall close to the number
148 // expected for either the low or high frequency
149 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
150 // low frequency represents a 1
151 shift3 |= (1<<31);
152 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
153 // high frequency represents a 0
154 } else {
155 // probably detected a gay waveform or noise
156 // use this as gaydar or discard shift register and start again
157 shift3 = shift2 = shift1 = shift0 = 0;
158 }
159 samples = i;
160
161 // for each bit we receive, test if we've detected a valid tag
162
163 // if we see 17 zeroes followed by 6 ones, we might have a tag
164 // remember the bits are backwards
165 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
166 // if start and end bytes match, we have a tag so break out of the loop
167 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
168 cycles = 0xF0B; //use this as a flag (ugly but whatever)
169 break;
170 }
171 }
172 }
173 }
174 }
175
176 // if flag is set we have a tag
177 if (cycles!=0xF0B) {
178 DbpString("Info: No valid tag detected.");
179 } else {
180 // put 64 bit data into shift1 and shift0
181 shift0 = (shift0>>24) | (shift1 << 8);
182 shift1 = (shift1>>24) | (shift2 << 8);
183
184 // align 16 bit crc into lower half of shift2
185 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
186
187 // if r/w tag, check ident match
188 if (shift3 & (1<<15) ) {
189 DbpString("Info: TI tag is rewriteable");
190 // only 15 bits compare, last bit of ident is not valid
191 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
192 DbpString("Error: Ident mismatch!");
193 } else {
194 DbpString("Info: TI tag ident is valid");
195 }
196 } else {
197 DbpString("Info: TI tag is readonly");
198 }
199
200 // WARNING the order of the bytes in which we calc crc below needs checking
201 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
202 // bytes in reverse or something
203 // calculate CRC
204 uint32_t crc=0;
205
206 crc = update_crc16(crc, (shift0)&0xff);
207 crc = update_crc16(crc, (shift0>>8)&0xff);
208 crc = update_crc16(crc, (shift0>>16)&0xff);
209 crc = update_crc16(crc, (shift0>>24)&0xff);
210 crc = update_crc16(crc, (shift1)&0xff);
211 crc = update_crc16(crc, (shift1>>8)&0xff);
212 crc = update_crc16(crc, (shift1>>16)&0xff);
213 crc = update_crc16(crc, (shift1>>24)&0xff);
214
215 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
216 if (crc != (shift2&0xffff)) {
217 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
218 } else {
219 DbpString("Info: CRC is good");
220 }
221 }
222 StopTicks();
223 }
224
225 void WriteTIbyte(uint8_t b)
226 {
227 int i = 0;
228
229 // modulate 8 bits out to the antenna
230 for (i=0; i<8; i++)
231 {
232 if ( b & ( 1 << i ) ) {
233 // stop modulating antenna 1ms
234 LOW(GPIO_SSC_DOUT);
235 WaitUS(1000);
236 // modulate antenna 1ms
237 HIGH(GPIO_SSC_DOUT);
238 WaitUS(1000);
239 } else {
240 // stop modulating antenna 1ms
241 LOW(GPIO_SSC_DOUT);
242 WaitUS(300);
243 // modulate antenna 1m
244 HIGH(GPIO_SSC_DOUT);
245 WaitUS(1700);
246 }
247 }
248 }
249
250 void AcquireTiType(void)
251 {
252 int i, j, n;
253 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
254 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
255 #define TIBUFLEN 1250
256
257 // clear buffer
258 uint32_t *buf = (uint32_t *)BigBuf_get_addr();
259
260 //clear buffer now so it does not interfere with timing later
261 BigBuf_Clear_ext(false);
262
263 // Set up the synchronous serial port
264 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
265 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
266
267 // steal this pin from the SSP and use it to control the modulation
268 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
269 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
270
271 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
272 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
273
274 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
275 // 48/2 = 24 MHz clock must be divided by 12
276 AT91C_BASE_SSC->SSC_CMR = 12;
277
278 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
279 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
280 AT91C_BASE_SSC->SSC_TCMR = 0;
281 AT91C_BASE_SSC->SSC_TFMR = 0;
282 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
283 LED_D_ON();
284
285 // modulate antenna
286 HIGH(GPIO_SSC_DOUT);
287
288 // Charge TI tag for 50ms.
289 WaitMS(50);
290
291 // stop modulating antenna and listen
292 LOW(GPIO_SSC_DOUT);
293
294 LED_D_OFF();
295
296 i = 0;
297 for(;;) {
298 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
299 buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
300 i++; if(i >= TIBUFLEN) break;
301 }
302 WDT_HIT();
303 }
304
305 // return stolen pin to SSP
306 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
307 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
308
309 char *dest = (char *)BigBuf_get_addr();
310 n = TIBUFLEN * 32;
311
312 // unpack buffer
313 for (i = TIBUFLEN-1; i >= 0; i--) {
314 for (j = 0; j < 32; j++) {
315 if(buf[i] & (1 << j)) {
316 dest[--n] = 1;
317 } else {
318 dest[--n] = -1;
319 }
320 }
321 }
322 }
323
324 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
325 // if crc provided, it will be written with the data verbatim (even if bogus)
326 // if not provided a valid crc will be computed from the data and written.
327 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
328 {
329 StartTicks();
330 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
331 if(crc == 0) {
332 crc = update_crc16(crc, (idlo)&0xff);
333 crc = update_crc16(crc, (idlo>>8)&0xff);
334 crc = update_crc16(crc, (idlo>>16)&0xff);
335 crc = update_crc16(crc, (idlo>>24)&0xff);
336 crc = update_crc16(crc, (idhi)&0xff);
337 crc = update_crc16(crc, (idhi>>8)&0xff);
338 crc = update_crc16(crc, (idhi>>16)&0xff);
339 crc = update_crc16(crc, (idhi>>24)&0xff);
340 }
341 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc);
342
343 // TI tags charge at 134.2Khz
344 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
345 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
346 // connects to SSP_DIN and the SSP_DOUT logic level controls
347 // whether we're modulating the antenna (high)
348 // or listening to the antenna (low)
349 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
350 LED_A_ON();
351
352 // steal this pin from the SSP and use it to control the modulation
353 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
354 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
355
356 // writing algorithm:
357 // a high bit consists of a field off for 1ms and field on for 1ms
358 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
359 // initiate a charge time of 50ms (field on) then immediately start writing bits
360 // start by writing 0xBB (keyword) and 0xEB (password)
361 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
362 // finally end with 0x0300 (write frame)
363 // all data is sent lsb first
364 // finish with 15ms programming time
365
366 // modulate antenna
367 HIGH(GPIO_SSC_DOUT);
368 WaitMS(50); // charge time
369
370 WriteTIbyte(0xbb); // keyword
371 WriteTIbyte(0xeb); // password
372 WriteTIbyte( (idlo )&0xff );
373 WriteTIbyte( (idlo>>8 )&0xff );
374 WriteTIbyte( (idlo>>16)&0xff );
375 WriteTIbyte( (idlo>>24)&0xff );
376 WriteTIbyte( (idhi )&0xff );
377 WriteTIbyte( (idhi>>8 )&0xff );
378 WriteTIbyte( (idhi>>16)&0xff );
379 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
380 WriteTIbyte( (crc )&0xff ); // crc lo
381 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
382 WriteTIbyte(0x00); // write frame lo
383 WriteTIbyte(0x03); // write frame hi
384 HIGH(GPIO_SSC_DOUT);
385 WaitMS(50); // programming time
386
387 LED_A_OFF();
388
389 // get TI tag data into the buffer
390 AcquireTiType();
391
392 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
393 DbpString("Now use `lf ti read` to check");
394 StopTicks();
395 }
396
397 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
398 {
399 int i = 0;
400 uint8_t *buf = BigBuf_get_addr();
401
402 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
403 //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
404 //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
405
406 // set frequency, get values from 'lf config' command
407 sample_config *sc = getSamplingConfig();
408
409 if ( (sc->divisor == 1) || (sc->divisor < 0) || (sc->divisor > 255) )
410 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
411 else if (sc->divisor == 0)
412 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
413 else
414 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
415
416 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
417
418 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
419 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
420 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
421
422 // power on antenna
423 // OPEN_COIL();
424 // SpinDelay(50);
425
426 for(;;) {
427 WDT_HIT();
428
429 if (ledcontrol) LED_D_ON();
430
431 // wait until SSC_CLK goes HIGH
432 // used as a simple detection of a reader field?
433 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
434 WDT_HIT();
435 if ( usb_poll_validate_length() || BUTTON_PRESS() )
436 goto OUT;
437 }
438
439 if(buf[i])
440 OPEN_COIL();
441 else
442 SHORT_COIL();
443
444 //wait until SSC_CLK goes LOW
445 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
446 WDT_HIT();
447 if ( usb_poll_validate_length() || BUTTON_PRESS() )
448 goto OUT;
449 }
450
451 i++;
452 if(i == period) {
453 i = 0;
454 if (gap) {
455 WDT_HIT();
456 SHORT_COIL();
457 SpinDelayUs(gap);
458 }
459 }
460
461 if (ledcontrol) LED_D_OFF();
462 }
463 OUT:
464 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
465 LED_D_OFF();
466 DbpString("Simulation stopped");
467 return;
468 }
469
470 #define DEBUG_FRAME_CONTENTS 1
471 void SimulateTagLowFrequencyBidir(int divisor, int t0)
472 {
473 }
474
475 // compose fc/8 fc/10 waveform (FSK2)
476 static void fc(int c, int *n)
477 {
478 uint8_t *dest = BigBuf_get_addr();
479 int idx;
480
481 // for when we want an fc8 pattern every 4 logical bits
482 if(c==0) {
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=1;
485 dest[((*n)++)]=1;
486 dest[((*n)++)]=1;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 dest[((*n)++)]=0;
490 dest[((*n)++)]=0;
491 }
492
493 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
494 if(c==8) {
495 for (idx=0; idx<6; idx++) {
496 dest[((*n)++)]=1;
497 dest[((*n)++)]=1;
498 dest[((*n)++)]=1;
499 dest[((*n)++)]=1;
500 dest[((*n)++)]=0;
501 dest[((*n)++)]=0;
502 dest[((*n)++)]=0;
503 dest[((*n)++)]=0;
504 }
505 }
506
507 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
508 if(c==10) {
509 for (idx=0; idx<5; idx++) {
510 dest[((*n)++)]=1;
511 dest[((*n)++)]=1;
512 dest[((*n)++)]=1;
513 dest[((*n)++)]=1;
514 dest[((*n)++)]=1;
515 dest[((*n)++)]=0;
516 dest[((*n)++)]=0;
517 dest[((*n)++)]=0;
518 dest[((*n)++)]=0;
519 dest[((*n)++)]=0;
520 }
521 }
522 }
523 // compose fc/X fc/Y waveform (FSKx)
524 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
525 {
526 uint8_t *dest = BigBuf_get_addr();
527 uint8_t halfFC = fc/2;
528 uint8_t wavesPerClock = clock/fc;
529 uint8_t mod = clock % fc; //modifier
530 uint8_t modAdj = fc/mod; //how often to apply modifier
531 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
532 // loop through clock - step field clock
533 for (uint8_t idx=0; idx < wavesPerClock; idx++){
534 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
535 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
536 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
537 *n += fc;
538 }
539 if (mod>0) (*modCnt)++;
540 if ((mod>0) && modAdjOk){ //fsk2
541 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
542 memset(dest+(*n), 0, fc-halfFC);
543 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
544 *n += fc;
545 }
546 }
547 if (mod>0 && !modAdjOk){ //fsk1
548 memset(dest+(*n), 0, mod-(mod/2));
549 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
550 *n += mod;
551 }
552 }
553
554 // prepare a waveform pattern in the buffer based on the ID given then
555 // simulate a HID tag until the button is pressed
556 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
557 {
558 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
559 set_tracing(FALSE);
560
561 int n = 0, i = 0;
562 /*
563 HID tag bitstream format
564 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
565 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
566 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
567 A fc8 is inserted before every 4 bits
568 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
569 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
570 */
571
572 if (hi > 0xFFF) {
573 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
574 return;
575 }
576 fc(0,&n);
577 // special start of frame marker containing invalid bit sequences
578 fc(8, &n); fc(8, &n); // invalid
579 fc(8, &n); fc(10, &n); // logical 0
580 fc(10, &n); fc(10, &n); // invalid
581 fc(8, &n); fc(10, &n); // logical 0
582
583 WDT_HIT();
584 // manchester encode bits 43 to 32
585 for (i=11; i>=0; i--) {
586 if ((i%4)==3) fc(0,&n);
587 if ((hi>>i)&1) {
588 fc(10, &n); fc(8, &n); // low-high transition
589 } else {
590 fc(8, &n); fc(10, &n); // high-low transition
591 }
592 }
593
594 WDT_HIT();
595 // manchester encode bits 31 to 0
596 for (i=31; i>=0; i--) {
597 if ((i%4)==3) fc(0,&n);
598 if ((lo>>i)&1) {
599 fc(10, &n); fc(8, &n); // low-high transition
600 } else {
601 fc(8, &n); fc(10, &n); // high-low transition
602 }
603 }
604 WDT_HIT();
605
606 if (ledcontrol) LED_A_ON();
607 SimulateTagLowFrequency(n, 0, ledcontrol);
608 if (ledcontrol) LED_A_OFF();
609 }
610
611 // prepare a waveform pattern in the buffer based on the ID given then
612 // simulate a FSK tag until the button is pressed
613 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
614 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
615 {
616 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
617
618 // free eventually allocated BigBuf memory
619 BigBuf_free(); BigBuf_Clear_ext(false);
620 clear_trace();
621 set_tracing(FALSE);
622
623 int ledcontrol = 1, n = 0, i = 0;
624 uint8_t fcHigh = arg1 >> 8;
625 uint8_t fcLow = arg1 & 0xFF;
626 uint16_t modCnt = 0;
627 uint8_t clk = arg2 & 0xFF;
628 uint8_t invert = (arg2 >> 8) & 1;
629
630 for (i=0; i<size; i++){
631
632 if (BitStream[i] == invert)
633 fcAll(fcLow, &n, clk, &modCnt);
634 else
635 fcAll(fcHigh, &n, clk, &modCnt);
636 }
637 WDT_HIT();
638
639 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n);
640
641 if (ledcontrol) LED_A_ON();
642 SimulateTagLowFrequency(n, 0, ledcontrol);
643 if (ledcontrol) LED_A_OFF();
644 }
645
646 // compose ask waveform for one bit(ASK)
647 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
648 {
649 uint8_t *dest = BigBuf_get_addr();
650 uint8_t halfClk = clock/2;
651 // c = current bit 1 or 0
652 if (manchester==1){
653 memset(dest+(*n), c, halfClk);
654 memset(dest+(*n) + halfClk, c^1, halfClk);
655 } else {
656 memset(dest+(*n), c, clock);
657 }
658 *n += clock;
659 }
660
661 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
662 {
663 uint8_t *dest = BigBuf_get_addr();
664 uint8_t halfClk = clock/2;
665 if (c){
666 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
667 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
668 } else {
669 memset(dest+(*n), c ^ *phase, clock);
670 *phase ^= 1;
671 }
672 *n += clock;
673 }
674
675 static void stAskSimBit(int *n, uint8_t clock) {
676 uint8_t *dest = BigBuf_get_addr();
677 uint8_t halfClk = clock/2;
678 //ST = .5 high .5 low 1.5 high .5 low 1 high
679 memset(dest+(*n), 1, halfClk);
680 memset(dest+(*n) + halfClk, 0, halfClk);
681 memset(dest+(*n) + clock, 1, clock + halfClk);
682 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
683 memset(dest+(*n) + clock*3, 1, clock);
684 *n += clock*4;
685 }
686
687 // args clock, ask/man or askraw, invert, transmission separator
688 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
689 {
690 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
691 set_tracing(FALSE);
692
693 int ledcontrol = 1, n = 0, i = 0;
694 uint8_t clk = (arg1 >> 8) & 0xFF;
695 uint8_t encoding = arg1 & 0xFF;
696 uint8_t separator = arg2 & 1;
697 uint8_t invert = (arg2 >> 8) & 1;
698
699 if (encoding == 2){ //biphase
700 uint8_t phase = 0;
701 for (i=0; i<size; i++){
702 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
703 }
704 if (phase == 1) { //run a second set inverted to keep phase in check
705 for (i=0; i<size; i++){
706 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
707 }
708 }
709 } else { // ask/manchester || ask/raw
710 for (i=0; i<size; i++){
711 askSimBit(BitStream[i]^invert, &n, clk, encoding);
712 }
713 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
714 for (i=0; i<size; i++){
715 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
716 }
717 }
718 }
719 if (separator==1 && encoding == 1)
720 stAskSimBit(&n, clk);
721 else if (separator==1)
722 Dbprintf("sorry but separator option not yet available");
723
724 WDT_HIT();
725
726 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
727
728 if (ledcontrol) LED_A_ON();
729 SimulateTagLowFrequency(n, 0, ledcontrol);
730 if (ledcontrol) LED_A_OFF();
731 }
732
733 //carrier can be 2,4 or 8
734 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
735 {
736 uint8_t *dest = BigBuf_get_addr();
737 uint8_t halfWave = waveLen/2;
738 //uint8_t idx;
739 int i = 0;
740 if (phaseChg){
741 // write phase change
742 memset(dest+(*n), *curPhase^1, halfWave);
743 memset(dest+(*n) + halfWave, *curPhase, halfWave);
744 *n += waveLen;
745 *curPhase ^= 1;
746 i += waveLen;
747 }
748 //write each normal clock wave for the clock duration
749 for (; i < clk; i+=waveLen){
750 memset(dest+(*n), *curPhase, halfWave);
751 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
752 *n += waveLen;
753 }
754 }
755
756 // args clock, carrier, invert,
757 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
758 {
759 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
760 set_tracing(FALSE);
761
762 int ledcontrol = 1, n = 0, i = 0;
763 uint8_t clk = arg1 >> 8;
764 uint8_t carrier = arg1 & 0xFF;
765 uint8_t invert = arg2 & 0xFF;
766 uint8_t curPhase = 0;
767 for (i=0; i<size; i++){
768 if (BitStream[i] == curPhase){
769 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
770 } else {
771 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
772 }
773 }
774
775 WDT_HIT();
776
777 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
778
779 if (ledcontrol) LED_A_ON();
780 SimulateTagLowFrequency(n, 0, ledcontrol);
781 if (ledcontrol) LED_A_OFF();
782 }
783
784 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
785 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
786 {
787 uint8_t *dest = BigBuf_get_addr();
788 size_t size = 0;
789 uint32_t hi2=0, hi=0, lo=0;
790 int idx=0;
791 // Configure to go in 125Khz listen mode
792 LFSetupFPGAForADC(95, true);
793
794 //clear read buffer
795 BigBuf_Clear_keep_EM();
796
797 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
798
799 WDT_HIT();
800 if (ledcontrol) LED_A_ON();
801
802 DoAcquisition_default(0, true);
803 // FSK demodulator
804 size = 50*128*2; //big enough to catch 2 sequences of largest format
805 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
806
807 if (idx>0 && lo>0 && (size==96 || size==192)){
808 // go over previously decoded manchester data and decode into usable tag ID
809 if (hi2 != 0){ //extra large HID tags 88/192 bits
810 Dbprintf("TAG ID: %x%08x%08x (%d)",
811 (unsigned int) hi2,
812 (unsigned int) hi,
813 (unsigned int) lo,
814 (unsigned int) (lo>>1) & 0xFFFF
815 );
816 } else { //standard HID tags 44/96 bits
817 uint8_t bitlen = 0;
818 uint32_t fc = 0;
819 uint32_t cardnum = 0;
820
821 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
822 uint32_t lo2=0;
823 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
824 uint8_t idx3 = 1;
825 while(lo2 > 1){ //find last bit set to 1 (format len bit)
826 lo2=lo2 >> 1;
827 idx3++;
828 }
829 bitlen = idx3+19;
830 fc =0;
831 cardnum=0;
832 if(bitlen == 26){
833 cardnum = (lo>>1)&0xFFFF;
834 fc = (lo>>17)&0xFF;
835 }
836 if(bitlen == 37){
837 cardnum = (lo>>1)&0x7FFFF;
838 fc = ((hi&0xF)<<12)|(lo>>20);
839 }
840 if(bitlen == 34){
841 cardnum = (lo>>1)&0xFFFF;
842 fc= ((hi&1)<<15)|(lo>>17);
843 }
844 if(bitlen == 35){
845 cardnum = (lo>>1)&0xFFFFF;
846 fc = ((hi&1)<<11)|(lo>>21);
847 }
848 }
849 else { //if bit 38 is not set then 37 bit format is used
850 bitlen= 37;
851 fc =0;
852 cardnum=0;
853 if(bitlen==37){
854 cardnum = (lo>>1)&0x7FFFF;
855 fc = ((hi&0xF)<<12)|(lo>>20);
856 }
857 }
858 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
859 (unsigned int) hi,
860 (unsigned int) lo,
861 (unsigned int) (lo>>1) & 0xFFFF,
862 (unsigned int) bitlen,
863 (unsigned int) fc,
864 (unsigned int) cardnum);
865 }
866 if (findone){
867 if (ledcontrol) LED_A_OFF();
868 *high = hi;
869 *low = lo;
870 break;
871 }
872 // reset
873 }
874 hi2 = hi = lo = idx = 0;
875 WDT_HIT();
876 }
877 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
878 DbpString("Stopped");
879 if (ledcontrol) LED_A_OFF();
880 }
881
882 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
883 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
884 {
885 uint8_t *dest = BigBuf_get_addr();
886 size_t size;
887 int idx=0;
888 //clear read buffer
889 BigBuf_Clear_keep_EM();
890 // Configure to go in 125Khz listen mode
891 LFSetupFPGAForADC(95, true);
892
893 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
894
895 WDT_HIT();
896 if (ledcontrol) LED_A_ON();
897
898 DoAcquisition_default(-1,true);
899 // FSK demodulator
900 size = 50*128*2; //big enough to catch 2 sequences of largest format
901 idx = AWIDdemodFSK(dest, &size);
902
903 if (idx<=0 || size!=96) continue;
904 // Index map
905 // 0 10 20 30 40 50 60
906 // | | | | | | |
907 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
908 // -----------------------------------------------------------------------------
909 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
910 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
911 // |---26 bit---| |-----117----||-------------142-------------|
912 // b = format bit len, o = odd parity of last 3 bits
913 // f = facility code, c = card number
914 // w = wiegand parity
915 // (26 bit format shown)
916
917 //get raw ID before removing parities
918 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
919 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
920 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
921
922 size = removeParity(dest, idx+8, 4, 1, 88);
923 if (size != 66) continue;
924
925 // Index map
926 // 0 10 20 30 40 50 60
927 // | | | | | | |
928 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
929 // -----------------------------------------------------------------------------
930 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
931 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
932 // |26 bit| |-117--| |-----142------|
933 //
934 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
935 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
936 // |50 bit| |----4000------||-----------2248975-------------|
937 //
938 // b = format bit len, o = odd parity of last 3 bits
939 // f = facility code, c = card number
940 // w = wiegand parity
941
942 uint32_t fc = 0;
943 uint32_t cardnum = 0;
944 uint32_t code1 = 0;
945 uint32_t code2 = 0;
946 uint8_t fmtLen = bytebits_to_byte(dest,8);
947 switch(fmtLen) {
948 case 26:
949 fc = bytebits_to_byte(dest + 9, 8);
950 cardnum = bytebits_to_byte(dest + 17, 16);
951 code1 = bytebits_to_byte(dest + 8,fmtLen);
952 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
953 break;
954 case 50:
955 fc = bytebits_to_byte(dest + 9, 16);
956 cardnum = bytebits_to_byte(dest + 25, 32);
957 code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
958 code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
959 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
960 break;
961 default:
962 if (fmtLen > 32 ) {
963 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
964 code1 = bytebits_to_byte(dest+8,fmtLen-32);
965 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
966 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
967 } else {
968 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
969 code1 = bytebits_to_byte(dest+8,fmtLen);
970 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
971 }
972 break;
973 }
974 if (findone)
975 break;
976
977 idx = 0;
978 WDT_HIT();
979 }
980
981 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
982 DbpString("Stopped");
983 if (ledcontrol) LED_A_OFF();
984 }
985
986 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
987 {
988 uint8_t *dest = BigBuf_get_addr();
989
990 size_t size=0, idx=0;
991 int clk=0, invert=0, errCnt=0, maxErr=20;
992 uint32_t hi=0;
993 uint64_t lo=0;
994 //clear read buffer
995 BigBuf_Clear_keep_EM();
996 // Configure to go in 125Khz listen mode
997 LFSetupFPGAForADC(95, true);
998
999 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1000
1001 WDT_HIT();
1002 if (ledcontrol) LED_A_ON();
1003
1004 DoAcquisition_default(-1,true);
1005 size = BigBuf_max_traceLen();
1006 //askdemod and manchester decode
1007 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
1008 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
1009 WDT_HIT();
1010
1011 if (errCnt<0) continue;
1012
1013 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
1014 if (errCnt){
1015 if (size>64){
1016 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1017 hi,
1018 (uint32_t)(lo>>32),
1019 (uint32_t)lo,
1020 (uint32_t)(lo&0xFFFF),
1021 (uint32_t)((lo>>16LL) & 0xFF),
1022 (uint32_t)(lo & 0xFFFFFF));
1023 } else {
1024 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1025 (uint32_t)(lo>>32),
1026 (uint32_t)lo,
1027 (uint32_t)(lo&0xFFFF),
1028 (uint32_t)((lo>>16LL) & 0xFF),
1029 (uint32_t)(lo & 0xFFFFFF));
1030 }
1031
1032 if (findone){
1033 if (ledcontrol) LED_A_OFF();
1034 *high=lo>>32;
1035 *low=lo & 0xFFFFFFFF;
1036 break;
1037 }
1038 }
1039 WDT_HIT();
1040 hi = lo = size = idx = 0;
1041 clk = invert = errCnt = 0;
1042 }
1043 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1044 DbpString("Stopped");
1045 if (ledcontrol) LED_A_OFF();
1046 }
1047
1048 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1049 {
1050 uint8_t *dest = BigBuf_get_addr();
1051 int idx=0;
1052 uint32_t code=0, code2=0;
1053 uint8_t version=0;
1054 uint8_t facilitycode=0;
1055 uint16_t number=0;
1056 uint8_t crc = 0;
1057 uint16_t calccrc = 0;
1058
1059 //clear read buffer
1060 BigBuf_Clear_keep_EM();
1061
1062 // Configure to go in 125Khz listen mode
1063 LFSetupFPGAForADC(95, true);
1064
1065 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1066 WDT_HIT();
1067 if (ledcontrol) LED_A_ON();
1068 DoAcquisition_default(-1,true);
1069 //fskdemod and get start index
1070 WDT_HIT();
1071 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1072 if (idx<0) continue;
1073 //valid tag found
1074
1075 //Index map
1076 //0 10 20 30 40 50 60
1077 //| | | | | | |
1078 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1079 //-----------------------------------------------------------------------------
1080 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1081 //
1082 //Checksum:
1083 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1084 //preamble F0 E0 01 03 B6 75
1085 // How to calc checksum,
1086 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1087 // F0 + E0 + 01 + 03 + B6 = 28A
1088 // 28A & FF = 8A
1089 // FF - 8A = 75
1090 // Checksum: 0x75
1091 //XSF(version)facility:codeone+codetwo
1092 //Handle the data
1093 // if(findone){ //only print binary if we are doing one
1094 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1095 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1096 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1097 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1098 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1099 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1100 // Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1101 // }
1102 code = bytebits_to_byte(dest+idx,32);
1103 code2 = bytebits_to_byte(dest+idx+32,32);
1104 version = bytebits_to_byte(dest+idx+27,8); //14,4
1105 facilitycode = bytebits_to_byte(dest+idx+18,8);
1106 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1107
1108 crc = bytebits_to_byte(dest+idx+54,8);
1109 for (uint8_t i=1; i<6; ++i)
1110 calccrc += bytebits_to_byte(dest+idx+9*i,8);
1111 calccrc &= 0xff;
1112 calccrc = 0xff - calccrc;
1113
1114 char *crcStr = (crc == calccrc) ? "ok":"!crc";
1115
1116 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
1117 // if we're only looking for one tag
1118 if (findone){
1119 if (ledcontrol) LED_A_OFF();
1120 *high=code;
1121 *low=code2;
1122 break;
1123 }
1124 code=code2=0;
1125 version=facilitycode=0;
1126 number=0;
1127 idx=0;
1128
1129 WDT_HIT();
1130 }
1131 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1132 DbpString("Stopped");
1133 if (ledcontrol) LED_A_OFF();
1134 }
1135
1136 /*------------------------------
1137 * T5555/T5557/T5567/T5577 routines
1138 *------------------------------
1139 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1140 *
1141 * Relevant communication times in microsecond
1142 * To compensate antenna falling times shorten the write times
1143 * and enlarge the gap ones.
1144 * Q5 tags seems to have issues when these values changes.
1145 */
1146
1147 #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
1148 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
1149 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
1150 #define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
1151 #define READ_GAP 15*8
1152
1153 // VALUES TAKEN FROM EM4x function: SendForward
1154 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1155 // WRITE_GAP = 128; (16*8)
1156 // WRITE_1 = 256 32*8; (32*8)
1157
1158 // These timings work for 4469/4269/4305 (with the 55*8 above)
1159 // WRITE_0 = 23*8 , 9*8
1160
1161 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1162 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1163 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1164 // T0 = TIMER_CLOCK1 / 125000 = 192
1165 // 1 Cycle = 8 microseconds(us) == 1 field clock
1166
1167 // new timer:
1168 // = 1us = 1.5ticks
1169 // 1fc = 8us = 12ticks
1170 void TurnReadLFOn(uint32_t delay) {
1171 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1172
1173 // measure antenna strength.
1174 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1175
1176 // Give it a bit of time for the resonant antenna to settle.
1177 WaitUS(delay);
1178 }
1179
1180 // Write one bit to card
1181 void T55xxWriteBit(int bit) {
1182 if (!bit)
1183 TurnReadLFOn(WRITE_0);
1184 else
1185 TurnReadLFOn(WRITE_1);
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1187 WaitUS(WRITE_GAP);
1188 }
1189
1190 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1191 void T55xxResetRead(void) {
1192 LED_A_ON();
1193 //clear buffer now so it does not interfere with timing later
1194 BigBuf_Clear_keep_EM();
1195
1196 // Set up FPGA, 125kHz
1197 LFSetupFPGAForADC(95, true);
1198
1199 // Trigger T55x7 in mode.
1200 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1201 WaitUS(START_GAP);
1202
1203 // reset tag - op code 00
1204 T55xxWriteBit(0);
1205 T55xxWriteBit(0);
1206
1207 // Turn field on to read the response
1208 TurnReadLFOn(READ_GAP);
1209
1210 // Acquisition
1211 doT55x7Acquisition(BigBuf_max_traceLen());
1212
1213 // Turn the field off
1214 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1215 cmd_send(CMD_ACK,0,0,0,0,0);
1216 LED_A_OFF();
1217 }
1218
1219 // Write one card block in page 0, no lock
1220 void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
1221 LED_A_ON();
1222 bool PwdMode = arg & 0x1;
1223 uint8_t Page = (arg & 0x2)>>1;
1224 uint32_t i = 0;
1225
1226 // Set up FPGA, 125kHz
1227 LFSetupFPGAForADC(95, true);
1228
1229 // Trigger T55x7 in mode.
1230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1231 WaitUS(START_GAP);
1232
1233 // Opcode 10
1234 T55xxWriteBit(1);
1235 T55xxWriteBit(Page); //Page 0
1236 if (PwdMode){
1237 // Send Pwd
1238 for (i = 0x80000000; i != 0; i >>= 1)
1239 T55xxWriteBit(Pwd & i);
1240 }
1241 // Send Lock bit
1242 T55xxWriteBit(0);
1243
1244 // Send Data
1245 for (i = 0x80000000; i != 0; i >>= 1)
1246 T55xxWriteBit(Data & i);
1247
1248 // Send Block number
1249 for (i = 0x04; i != 0; i >>= 1)
1250 T55xxWriteBit(Block & i);
1251
1252 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1253 // so wait a little more)
1254 TurnReadLFOn(20 * 1000);
1255
1256 //could attempt to do a read to confirm write took
1257 // as the tag should repeat back the new block
1258 // until it is reset, but to confirm it we would
1259 // need to know the current block 0 config mode
1260
1261 // turn field off
1262 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1263 LED_A_OFF();
1264 }
1265
1266 // Write one card block in page 0, no lock
1267 void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
1268 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1269 cmd_send(CMD_ACK,0,0,0,0,0);
1270 }
1271
1272 // Read one card block in page [page]
1273 void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1274 LED_A_ON();
1275 bool PwdMode = arg0 & 0x1;
1276 uint8_t Page = (arg0 & 0x2) >> 1;
1277 uint32_t i = 0;
1278 bool RegReadMode = (Block == 0xFF);
1279
1280 //clear buffer now so it does not interfere with timing later
1281 BigBuf_Clear_keep_EM();
1282
1283 //make sure block is at max 7
1284 Block &= 0x7;
1285
1286 // Set up FPGA, 125kHz to power up the tag
1287 LFSetupFPGAForADC(95, true);
1288 //SpinDelay(3);
1289
1290 // Trigger T55x7 Direct Access Mode with start gap
1291 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1292 WaitUS(START_GAP);
1293
1294 // Opcode 1[page]
1295 T55xxWriteBit(1);
1296 T55xxWriteBit(Page); //Page 0
1297
1298 if (PwdMode){
1299 // Send Pwd
1300 for (i = 0x80000000; i != 0; i >>= 1)
1301 T55xxWriteBit(Pwd & i);
1302 }
1303 // Send a zero bit separation
1304 T55xxWriteBit(0);
1305
1306 // Send Block number (if direct access mode)
1307 if (!RegReadMode)
1308 for (i = 0x04; i != 0; i >>= 1)
1309 T55xxWriteBit(Block & i);
1310
1311 // Turn field on to read the response
1312 TurnReadLFOn(READ_GAP);
1313
1314 // Acquisition
1315 doT55x7Acquisition(7679);
1316
1317 // Turn the field off
1318 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1319 cmd_send(CMD_ACK,0,0,0,0,0);
1320 LED_A_OFF();
1321 }
1322
1323 void T55xxWakeUp(uint32_t Pwd){
1324 LED_B_ON();
1325 uint32_t i = 0;
1326
1327 // Set up FPGA, 125kHz
1328 LFSetupFPGAForADC(95, true);
1329
1330 // Trigger T55x7 Direct Access Mode
1331 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1332 WaitUS(START_GAP);
1333
1334 // Opcode 10
1335 T55xxWriteBit(1);
1336 T55xxWriteBit(0); //Page 0
1337
1338 // Send Pwd
1339 for (i = 0x80000000; i != 0; i >>= 1)
1340 T55xxWriteBit(Pwd & i);
1341
1342 // Turn and leave field on to let the begin repeating transmission
1343 TurnReadLFOn(20*1000);
1344 }
1345
1346 /*-------------- Cloning routines -----------*/
1347 void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1348 // write last block first and config block last (if included)
1349 for (uint8_t i = numblocks+startblock; i > startblock; i--)
1350 T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
1351 }
1352
1353 // Copy HID id to card and setup block 0 config
1354 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1355 uint32_t data[] = {0,0,0,0,0,0,0};
1356 uint8_t last_block = 0;
1357
1358 if (longFMT){
1359 // Ensure no more than 84 bits supplied
1360 if (hi2 > 0xFFFFF) {
1361 DbpString("Tags can only have 84 bits.");
1362 return;
1363 }
1364 // Build the 6 data blocks for supplied 84bit ID
1365 last_block = 6;
1366 // load preamble (1D) & long format identifier (9E manchester encoded)
1367 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1368 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1369 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1370 data[3] = manchesterEncode2Bytes(hi >> 16);
1371 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1372 data[5] = manchesterEncode2Bytes(lo >> 16);
1373 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1374 } else {
1375 // Ensure no more than 44 bits supplied
1376 if (hi > 0xFFF) {
1377 DbpString("Tags can only have 44 bits.");
1378 return;
1379 }
1380 // Build the 3 data blocks for supplied 44bit ID
1381 last_block = 3;
1382 // load preamble
1383 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1384 data[2] = manchesterEncode2Bytes(lo >> 16);
1385 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1386 }
1387 // load chip config block
1388 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1389
1390 //TODO add selection of chip for Q5 or T55x7
1391 // data[0] = (((50-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1392
1393 LED_D_ON();
1394 WriteT55xx(data, 0, last_block+1);
1395 LED_D_OFF();
1396 }
1397
1398 void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1399 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1400 //TODO add selection of chip for Q5 or T55x7
1401 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1402 // data[0] = ( ((64-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1403
1404 LED_D_ON();
1405 // Program the data blocks for supplied ID
1406 // and the block 0 config
1407 WriteT55xx(data, 0, 3);
1408 LED_D_OFF();
1409 }
1410
1411 // Clone Indala 64-bit tag by UID to T55x7
1412 void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1413 //Program the 2 data blocks for supplied 64bit UID
1414 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1415 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1416 //TODO add selection of chip for Q5 or T55x7
1417 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1418
1419 WriteT55xx(data, 0, 3);
1420 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1421 // T5567WriteBlock(0x603E1042,0);
1422 }
1423 // Clone Indala 224-bit tag by UID to T55x7
1424 void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1425 //Program the 7 data blocks for supplied 224bit UID
1426 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1427 // and the block 0 for Indala224 format
1428 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1429 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
1430 //TODO add selection of chip for Q5 or T55x7
1431 // data[0] = (((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1432 WriteT55xx(data, 0, 8);
1433 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1434 // T5567WriteBlock(0x603E10E2,0);
1435 }
1436 // clone viking tag to T55xx
1437 void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1438 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1439 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1440 if (Q5) data[0] = (((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1441 // Program the data blocks for supplied ID and the block 0 config
1442 WriteT55xx(data, 0, 3);
1443 LED_D_OFF();
1444 cmd_send(CMD_ACK,0,0,0,0,0);
1445 }
1446
1447 // Define 9bit header for EM410x tags
1448 #define EM410X_HEADER 0x1FF
1449 #define EM410X_ID_LENGTH 40
1450
1451 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1452 int i, id_bit;
1453 uint64_t id = EM410X_HEADER;
1454 uint64_t rev_id = 0; // reversed ID
1455 int c_parity[4]; // column parity
1456 int r_parity = 0; // row parity
1457 uint32_t clock = 0;
1458
1459 // Reverse ID bits given as parameter (for simpler operations)
1460 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1461 if (i < 32) {
1462 rev_id = (rev_id << 1) | (id_lo & 1);
1463 id_lo >>= 1;
1464 } else {
1465 rev_id = (rev_id << 1) | (id_hi & 1);
1466 id_hi >>= 1;
1467 }
1468 }
1469
1470 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1471 id_bit = rev_id & 1;
1472
1473 if (i % 4 == 0) {
1474 // Don't write row parity bit at start of parsing
1475 if (i)
1476 id = (id << 1) | r_parity;
1477 // Start counting parity for new row
1478 r_parity = id_bit;
1479 } else {
1480 // Count row parity
1481 r_parity ^= id_bit;
1482 }
1483
1484 // First elements in column?
1485 if (i < 4)
1486 // Fill out first elements
1487 c_parity[i] = id_bit;
1488 else
1489 // Count column parity
1490 c_parity[i % 4] ^= id_bit;
1491
1492 // Insert ID bit
1493 id = (id << 1) | id_bit;
1494 rev_id >>= 1;
1495 }
1496
1497 // Insert parity bit of last row
1498 id = (id << 1) | r_parity;
1499
1500 // Fill out column parity at the end of tag
1501 for (i = 0; i < 4; ++i)
1502 id = (id << 1) | c_parity[i];
1503
1504 // Add stop bit
1505 id <<= 1;
1506
1507 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1508 LED_D_ON();
1509
1510 // Write EM410x ID
1511 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1512
1513 clock = (card & 0xFF00) >> 8;
1514 clock = (clock == 0) ? 64 : clock;
1515 Dbprintf("Clock rate: %d", clock);
1516 if (card & 0xFF) { //t55x7
1517 clock = GetT55xxClockBit(clock);
1518 if (clock == 0) {
1519 Dbprintf("Invalid clock rate: %d", clock);
1520 return;
1521 }
1522 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1523 } else { //t5555 (Q5)
1524 // t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1525 data[0] = ( ((clock-2) >> 1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1526 }
1527
1528 WriteT55xx(data, 0, 3);
1529
1530 LED_D_OFF();
1531 Dbprintf("Tag %s written with 0x%08x%08x\n",
1532 card ? "T55x7":"T5555",
1533 (uint32_t)(id >> 32),
1534 (uint32_t)id);
1535 }
1536
1537 //-----------------------------------
1538 // EM4469 / EM4305 routines
1539 //-----------------------------------
1540 // Below given command set.
1541 // Commands are including the even parity, binary mirrored
1542 #define FWD_CMD_LOGIN 0xC
1543 #define FWD_CMD_WRITE 0xA
1544 #define FWD_CMD_READ 0x9
1545 #define FWD_CMD_DISABLE 0x5
1546
1547 uint8_t forwardLink_data[64]; //array of forwarded bits
1548 uint8_t * forward_ptr; //ptr for forward message preparation
1549 uint8_t fwd_bit_sz; //forwardlink bit counter
1550 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1551
1552 //====================================================================
1553 // prepares command bits
1554 // see EM4469 spec
1555 //====================================================================
1556 //--------------------------------------------------------------------
1557 // VALUES TAKEN FROM EM4x function: SendForward
1558 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1559 // WRITE_GAP = 128; (16*8)
1560 // WRITE_1 = 256 32*8; (32*8)
1561
1562 // These timings work for 4469/4269/4305 (with the 55*8 above)
1563 // WRITE_0 = 23*8 , 9*8
1564
1565 uint8_t Prepare_Cmd( uint8_t cmd ) {
1566
1567 *forward_ptr++ = 0; //start bit
1568 *forward_ptr++ = 0; //second pause for 4050 code
1569
1570 *forward_ptr++ = cmd;
1571 cmd >>= 1;
1572 *forward_ptr++ = cmd;
1573 cmd >>= 1;
1574 *forward_ptr++ = cmd;
1575 cmd >>= 1;
1576 *forward_ptr++ = cmd;
1577
1578 return 6; //return number of emited bits
1579 }
1580
1581 //====================================================================
1582 // prepares address bits
1583 // see EM4469 spec
1584 //====================================================================
1585 uint8_t Prepare_Addr( uint8_t addr ) {
1586
1587 register uint8_t line_parity;
1588
1589 uint8_t i;
1590 line_parity = 0;
1591 for( i=0; i<6; i++ ) {
1592 *forward_ptr++ = addr;
1593 line_parity ^= addr;
1594 addr >>= 1;
1595 }
1596
1597 *forward_ptr++ = (line_parity & 1);
1598
1599 return 7; //return number of emited bits
1600 }
1601
1602 //====================================================================
1603 // prepares data bits intreleaved with parity bits
1604 // see EM4469 spec
1605 //====================================================================
1606 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1607
1608 register uint8_t line_parity;
1609 register uint8_t column_parity;
1610 register uint8_t i, j;
1611 register uint16_t data;
1612
1613 data = data_low;
1614 column_parity = 0;
1615
1616 for(i=0; i<4; i++) {
1617 line_parity = 0;
1618 for(j=0; j<8; j++) {
1619 line_parity ^= data;
1620 column_parity ^= (data & 1) << j;
1621 *forward_ptr++ = data;
1622 data >>= 1;
1623 }
1624 *forward_ptr++ = line_parity;
1625 if(i == 1)
1626 data = data_hi;
1627 }
1628
1629 for(j=0; j<8; j++) {
1630 *forward_ptr++ = column_parity;
1631 column_parity >>= 1;
1632 }
1633 *forward_ptr = 0;
1634
1635 return 45; //return number of emited bits
1636 }
1637
1638 //====================================================================
1639 // Forward Link send function
1640 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1641 // fwd_bit_count set with number of bits to be sent
1642 //====================================================================
1643 void SendForward(uint8_t fwd_bit_count) {
1644
1645 // iceman, 21.3us increments for the USclock verification.
1646 // 55FC * 8us == 440us / 21.3 === 20.65 steps. could be too short. Go for 56FC instead
1647 // 32FC * 8us == 256us / 21.3 == 12.018 steps. ok
1648 // 16FC * 8us == 128us / 21.3 == 6.009 steps. ok
1649
1650 #ifndef EM_START_GAP
1651 #define EM_START_GAP 60*8
1652 #endif
1653 #ifndef EM_ONE_GAP
1654 #define EM_ONE_GAP 32*8
1655 #endif
1656 #ifndef EM_ZERO_GAP
1657 # define EM_ZERO_GAP 16*8
1658 #endif
1659
1660 fwd_write_ptr = forwardLink_data;
1661 fwd_bit_sz = fwd_bit_count;
1662
1663 // Set up FPGA, 125kHz
1664 LFSetupFPGAForADC(95, true);
1665
1666 // force 1st mod pulse (start gap must be longer for 4305)
1667 fwd_bit_sz--; //prepare next bit modulation
1668 fwd_write_ptr++;
1669
1670 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1671 WaitUS(EM_START_GAP);
1672 TurnReadLFOn(16);
1673
1674 // now start writting with bitbanging the antenna.
1675 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1676 if(((*fwd_write_ptr++) & 1) == 1)
1677 WaitUS(EM_ONE_GAP);
1678 else {
1679 //These timings work for 4469/4269/4305
1680 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1681 WaitUS(20);
1682 TurnReadLFOn(12);
1683 }
1684 }
1685 }
1686
1687 void EM4xLogin(uint32_t pwd) {
1688 uint8_t len;
1689 forward_ptr = forwardLink_data;
1690 len = Prepare_Cmd( FWD_CMD_LOGIN );
1691 len += Prepare_Data( pwd & 0xFFFF, pwd >> 16 );
1692 SendForward(len);
1693 //WaitMS(20); - no wait for login command.
1694 // should receive
1695 // 0000 1010 ok.
1696 // 0000 0001 fail
1697 }
1698
1699 void EM4xReadWord(uint8_t addr, uint32_t pwd, uint8_t usepwd) {
1700
1701 LED_A_ON();
1702
1703 uint8_t len;
1704
1705 //clear buffer now so it does not interfere with timing later
1706 BigBuf_Clear_ext(false);
1707
1708 /* should we read answer from Logincommand?
1709 *
1710 * should receive
1711 * 0000 1010 ok.
1712 * 0000 0001 fail
1713 **/
1714 if (usepwd) EM4xLogin(pwd);
1715
1716 forward_ptr = forwardLink_data;
1717 len = Prepare_Cmd( FWD_CMD_READ );
1718 len += Prepare_Addr( addr );
1719
1720 SendForward(len);
1721
1722 DoAcquisition_config(TRUE);
1723
1724 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1725 cmd_send(CMD_ACK,0,0,0,0,0);
1726 LED_A_OFF();
1727 }
1728
1729 void EM4xWriteWord(uint32_t flag, uint32_t data, uint32_t pwd) {
1730
1731 LED_A_ON();
1732
1733 bool usePwd = (flag & 0xF);
1734 uint8_t addr = (flag >> 8) & 0xFF;
1735 uint8_t len;
1736
1737 //clear buffer now so it does not interfere with timing later
1738 BigBuf_Clear_ext(false);
1739
1740 /* should we read answer from Logincommand?
1741 *
1742 * should receive
1743 * 0000 1010 ok.
1744 * 0000 0001 fail
1745 **/
1746 if (usePwd) EM4xLogin(pwd);
1747
1748 forward_ptr = forwardLink_data;
1749 len = Prepare_Cmd( FWD_CMD_WRITE );
1750 len += Prepare_Addr( addr );
1751 len += Prepare_Data( data & 0xFFFF, data >> 16 );
1752
1753 SendForward(len);
1754
1755 //Wait 20ms for write to complete
1756 WaitMS(20);
1757 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1758 cmd_send(CMD_ACK,0,0,0,0,0);
1759 LED_A_OFF();
1760 }
1761
1762 /*
1763 Reading a COTAG.
1764
1765 COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1766 because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1767
1768 READER START SEQUENCE:
1769 burst 800 us, gap 2.2 msecs
1770 burst 3.6 msecs gap 2.2 msecs
1771 burst 800 us gap 2.2 msecs
1772 pulse 3.6 msecs
1773
1774 This triggers a COTAG tag to response
1775 */
1776 void Cotag(uint32_t arg0) {
1777 #ifndef OFF
1778 # define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1779 #endif
1780 #ifndef ON
1781 # define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1782 #endif
1783 uint8_t rawsignal = arg0 & 0xF;
1784
1785 LED_A_ON();
1786
1787 // Switching to LF image on FPGA. This might empty BigBuff
1788 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1789
1790 //clear buffer now so it does not interfere with timing later
1791 BigBuf_Clear_ext(false);
1792
1793 // Set up FPGA, 132kHz to power up the tag
1794 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
1795 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1796
1797 // Connect the A/D to the peak-detected low-frequency path.
1798 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1799
1800 // Now set up the SSC to get the ADC samples that are now streaming at us.
1801 FpgaSetupSsc();
1802
1803 // start clock - 1.5ticks is 1us
1804 StartTicks();
1805
1806 //send COTAG start pulse
1807 ON(740) OFF
1808 ON(3330) OFF
1809 ON(740) OFF
1810 ON(1000)
1811
1812 switch(rawsignal) {
1813 case 0: doCotagAcquisition(50000); break;
1814 case 1: doCotagAcquisitionManchester(); break;
1815 case 2: DoAcquisition_config(TRUE); break;
1816 }
1817
1818 // Turn the field off
1819 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1820 cmd_send(CMD_ACK,0,0,0,0,0);
1821 LED_A_OFF();
1822 }
1823
1824 /*
1825 * EM4305 support
1826 */
Impressum, Datenschutz