]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlf.c
CHG: `lf em` - some minor refactoring in 4x50 commands
[proxmark3-svn] / client / cmdlf.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency commands
9 //-----------------------------------------------------------------------------
10 #include "cmdlf.h"
11 static int CmdHelp(const char *Cmd);
12
13 int usage_lf_cmdread(void) {
14 PrintAndLog("Usage: lf cmdread d <delay period> z <zero period> o <one period> c <cmdbytes> [H]");
15 PrintAndLog("Options:");
16 PrintAndLog(" h This help");
17 PrintAndLog(" L Low frequency (125 KHz)");
18 PrintAndLog(" H High frequency (134 KHz)");
19 PrintAndLog(" d <delay> delay OFF period, (decimal)");
20 PrintAndLog(" z <zero> time period ZERO, (decimal)");
21 PrintAndLog(" o <one> time period ONE, (decimal)");
22 PrintAndLog(" c <cmd> Command bytes (in ones and zeros)");
23 PrintAndLog(" ************* All periods in microseconds (ms)");
24 PrintAndLog("Examples:");
25 PrintAndLog(" lf cmdread d 80 z 100 o 200 c 11000");
26 PrintAndLog(" lf cmdread d 80 z 100 o 100 c 11000 H");
27 return 0;
28 }
29 int usage_lf_read(void){
30 PrintAndLog("Usage: lf read [h] [s]");
31 PrintAndLog("Options:");
32 PrintAndLog(" h This help");
33 PrintAndLog(" s silent run no printout");
34 PrintAndLog("This function takes no arguments. ");
35 PrintAndLog("Use 'lf config' to set parameters.");
36 return 0;
37 }
38 int usage_lf_snoop(void) {
39 PrintAndLog("Snoop low frequence signal. Use 'lf config' to set parameters.");
40 PrintAndLog("Usage: lf snoop [h]");
41 PrintAndLog("Options:");
42 PrintAndLog(" h This help");
43 return 0;
44 }
45 int usage_lf_config(void) {
46 PrintAndLog("Usage: lf config [h] [H|<divisor>] [b <bps>] [d <decim>] [a 0|1]");
47 PrintAndLog("Options:");
48 PrintAndLog(" h This help");
49 PrintAndLog(" L Low frequency (125 KHz)");
50 PrintAndLog(" H High frequency (134 KHz)");
51 PrintAndLog(" q <divisor> Manually set divisor. 88-> 134KHz, 95-> 125 Hz");
52 PrintAndLog(" b <bps> Sets resolution of bits per sample. Default (max): 8");
53 PrintAndLog(" d <decim> Sets decimation. A value of N saves only 1 in N samples. Default: 1");
54 PrintAndLog(" a [0|1] Averaging - if set, will average the stored sample value when decimating. Default: 1");
55 PrintAndLog(" t <threshold> Sets trigger threshold. 0 means no threshold (range: 0-128)");
56 PrintAndLog("Examples:");
57 PrintAndLog(" lf config b 8 L");
58 PrintAndLog(" Samples at 125KHz, 8bps.");
59 PrintAndLog(" lf config H b 4 d 3");
60 PrintAndLog(" Samples at 134KHz, averages three samples into one, stored with ");
61 PrintAndLog(" a resolution of 4 bits per sample.");
62 PrintAndLog(" lf read");
63 PrintAndLog(" Performs a read (active field)");
64 PrintAndLog(" lf snoop");
65 PrintAndLog(" Performs a snoop (no active field)");
66 return 0;
67 }
68 int usage_lf_simfsk(void) {
69 PrintAndLog("Usage: lf simfsk [c <clock>] [i] [H <fcHigh>] [L <fcLow>] [d <hexdata>]");
70 PrintAndLog("Options:");
71 PrintAndLog(" h This help");
72 PrintAndLog(" c <clock> Manually set clock - can autodetect if using DemodBuffer");
73 PrintAndLog(" i invert data");
74 PrintAndLog(" H <fcHigh> Manually set the larger Field Clock");
75 PrintAndLog(" L <fcLow> Manually set the smaller Field Clock");
76 //PrintAndLog(" s TBD- -to enable a gap between playback repetitions - default: no gap");
77 PrintAndLog(" d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
78 PrintAndLog("\n NOTE: if you set one clock manually set them all manually");
79 return 0;
80 }
81 int usage_lf_simask(void) {
82 PrintAndLog("Usage: lf simask [c <clock>] [i] [b|m|r] [s] [d <raw hex to sim>]");
83 PrintAndLog("Options:");
84 PrintAndLog(" h This help");
85 PrintAndLog(" c <clock> Manually set clock - can autodetect if using DemodBuffer");
86 PrintAndLog(" i invert data");
87 PrintAndLog(" b sim ask/biphase");
88 PrintAndLog(" m sim ask/manchester - Default");
89 PrintAndLog(" r sim ask/raw");
90 PrintAndLog(" s add t55xx Sequence Terminator gap - default: no gaps (only manchester)");
91 PrintAndLog(" d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
92 return 0;
93 }
94 int usage_lf_simpsk(void) {
95 PrintAndLog("Usage: lf simpsk [1|2|3] [c <clock>] [i] [r <carrier>] [d <raw hex to sim>]");
96 PrintAndLog("Options:");
97 PrintAndLog(" h This help");
98 PrintAndLog(" c <clock> Manually set clock - can autodetect if using DemodBuffer");
99 PrintAndLog(" i invert data");
100 PrintAndLog(" 1 set PSK1 (default)");
101 PrintAndLog(" 2 set PSK2");
102 PrintAndLog(" 3 set PSK3");
103 PrintAndLog(" r <carrier> 2|4|8 are valid carriers: default = 2");
104 PrintAndLog(" d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
105 return 0;
106 }
107 int usage_lf_find(void){
108 PrintAndLog("Usage: lf search [h] <0|1> [u]");
109 PrintAndLog("");
110 PrintAndLog("Options:");
111 PrintAndLog(" h This help");
112 PrintAndLog(" <0|1> Use data from Graphbuffer, if not set, try reading data from tag.");
113 PrintAndLog(" u Search for Unknown tags, if not set, reads only known tags.");
114 PrintAndLog("Examples:");
115 PrintAndLog(" lf search = try reading data from tag & search for known tags");
116 PrintAndLog(" lf search 1 = use data from GraphBuffer & search for known tags");
117 PrintAndLog(" lf search u = try reading data from tag & search for known and unknown tags");
118 PrintAndLog(" lf search 1 u = use data from GraphBuffer & search for known and unknown tags");
119 return 0;
120 }
121
122
123 /* send a LF command before reading */
124 int CmdLFCommandRead(const char *Cmd) {
125
126 bool errors = FALSE;
127 bool useHighFreq = FALSE;
128 uint16_t one = 0, zero = 0;
129 uint8_t cmdp = 0;
130 UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K, {0,0,0}};
131
132 while(param_getchar(Cmd, cmdp) != 0x00) {
133 switch(param_getchar(Cmd, cmdp)) {
134 case 'h':
135 return usage_lf_cmdread();
136 case 'H':
137 useHighFreq = TRUE;
138 cmdp++;
139 break;
140 case 'L':
141 cmdp++;
142 break;
143 case 'c':
144 param_getstr(Cmd, cmdp+1, (char *)&c.d.asBytes);
145 cmdp+=2;
146 break;
147 case 'd':
148 c.arg[0] = param_get32ex(Cmd, cmdp+1, 0, 10);
149 cmdp+=2;
150 break;
151 case 'z':
152 zero = param_get32ex(Cmd, cmdp+1, 0, 10) & 0xFFFF;
153 cmdp+=2;
154 break;
155 case 'o':
156 one = param_get32ex(Cmd, cmdp+1, 0, 10) & 0xFFFF;
157 cmdp+=2;
158 break;
159 default:
160 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
161 errors = 1;
162 break;
163 }
164 if(errors) break;
165 }
166 // No args
167 if (cmdp == 0) errors = TRUE;
168
169 //Validations
170 if (errors) return usage_lf_cmdread();
171
172 // zero and one lengths
173 c.arg[1] = (uint32_t)(zero << 16 | one);
174
175 // add frequency 125 or 134
176 c.arg[2] = useHighFreq;
177
178 clearCommandBuffer();
179 SendCommand(&c);
180 return 0;
181 }
182
183 int CmdFlexdemod(const char *Cmd)
184 {
185 #define LONG_WAIT 100
186 int i, j, start, bit, sum;
187 int phase = 0;
188
189 for (i = 0; i < GraphTraceLen; ++i)
190 GraphBuffer[i] = (GraphBuffer[i] < 0) ? -1 : 1;
191
192 for (start = 0; start < GraphTraceLen - LONG_WAIT; start++) {
193 int first = GraphBuffer[start];
194 for (i = start; i < start + LONG_WAIT; i++) {
195 if (GraphBuffer[i] != first) {
196 break;
197 }
198 }
199 if (i == (start + LONG_WAIT))
200 break;
201 }
202
203 if (start == GraphTraceLen - LONG_WAIT) {
204 PrintAndLog("nothing to wait for");
205 return 0;
206 }
207
208 GraphBuffer[start] = 2;
209 GraphBuffer[start+1] = -2;
210 uint8_t bits[64] = {0x00};
211
212 i = start;
213 for (bit = 0; bit < 64; bit++) {
214 sum = 0;
215 for (int j = 0; j < 16; j++) {
216 sum += GraphBuffer[i++];
217 }
218 bits[bit] = (sum > 0) ? 1 : 0;
219 PrintAndLog("bit %d sum %d", bit, sum);
220 }
221
222 for (bit = 0; bit < 64; bit++) {
223 sum = 0;
224 for (j = 0; j < 16; j++)
225 sum += GraphBuffer[i++];
226
227 if (sum > 0 && bits[bit] != 1) PrintAndLog("oops1 at %d", bit);
228
229 if (sum < 0 && bits[bit] != 0) PrintAndLog("oops2 at %d", bit);
230
231 }
232
233 // HACK writing back to graphbuffer.
234 GraphTraceLen = 32*64;
235 i = 0;
236 for (bit = 0; bit < 64; bit++) {
237
238 phase = (bits[bit] == 0) ? 0 : 1;
239
240 for (j = 0; j < 32; j++) {
241 GraphBuffer[i++] = phase;
242 phase = !phase;
243 }
244 }
245 RepaintGraphWindow();
246 return 0;
247 }
248
249 int CmdIndalaDemod(const char *Cmd)
250 {
251 // PSK1, Bitrate 32,
252
253 // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID
254 int state = -1;
255 int count = 0;
256 int i, j;
257
258 // worst case with GraphTraceLen=64000 is < 4096
259 // under normal conditions it's < 2048
260 uint8_t rawbits[4096];
261
262 int rawbit = 0, worst = 0, worstPos = 0;
263 // PrintAndLog("Expecting a bit less than %d raw bits", GraphTraceLen / 32);
264
265 // loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2)
266 for (i = 0; i < GraphTraceLen-1; i += 2) {
267 count += 1;
268 if ((GraphBuffer[i] > GraphBuffer[i + 1]) && (state != 1)) {
269 // appears redundant - marshmellow
270 if (state == 0) {
271 for (j = 0; j < count - 8; j += 16) {
272 rawbits[rawbit++] = 0;
273 }
274 if ((abs(count - j)) > worst) {
275 worst = abs(count - j);
276 worstPos = i;
277 }
278 }
279 state = 1;
280 count = 0;
281 } else if ((GraphBuffer[i] < GraphBuffer[i + 1]) && (state != 0)) {
282 //appears redundant
283 if (state == 1) {
284 for (j = 0; j < count - 8; j += 16) {
285 rawbits[rawbit++] = 1;
286 }
287 if ((abs(count - j)) > worst) {
288 worst = abs(count - j);
289 worstPos = i;
290 }
291 }
292 state = 0;
293 count = 0;
294 }
295 }
296 if ( rawbit<1 ) return 0;
297
298 if (g_debugMode) {
299 PrintAndLog("Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen/32);
300 PrintAndLog("worst metric (0=best..7=worst): %d at pos %d", worst, worstPos);
301 }
302
303 // Finding the start of a UID
304 int uidlen, long_wait;
305 if (strcmp(Cmd, "224") == 0) {
306 uidlen = 224;
307 long_wait = 30;
308 } else {
309 uidlen = 64;
310 long_wait = 29;
311 }
312
313 int start;
314 int first = 0;
315 for (start = 0; start <= rawbit - uidlen; start++) {
316 first = rawbits[start];
317 for (i = start; i < start + long_wait; i++) {
318 if (rawbits[i] != first) {
319 break;
320 }
321 }
322 if (i == (start + long_wait)) {
323 break;
324 }
325 }
326
327 if (start == rawbit - uidlen + 1) {
328 if (g_debugMode) PrintAndLog("nothing to wait for");
329 return 0;
330 }
331
332 // Inverting signal if needed
333 if (first == 1) {
334 for (i = start; i < rawbit; i++)
335 rawbits[i] = !rawbits[i];
336 }
337
338 // Dumping UID
339 uint8_t bits[224] = {0x00};
340 char showbits[225] = {0x00};
341 int bit;
342 i = start;
343 int times = 0;
344
345 if (uidlen > rawbit) {
346 PrintAndLog("Warning: not enough raw bits to get a full UID");
347 for (bit = 0; bit < rawbit; bit++) {
348 bits[bit] = rawbits[i++];
349 // As we cannot know the parity, let's use "." and "/"
350 showbits[bit] = '.' + bits[bit];
351 }
352 showbits[bit+1]='\0';
353 PrintAndLog("Partial UID=%s", showbits);
354 return 0;
355 } else {
356 for (bit = 0; bit < uidlen; bit++) {
357 bits[bit] = rawbits[i++];
358 showbits[bit] = '0' + bits[bit];
359 }
360 times = 1;
361 }
362
363 //convert UID to HEX
364 uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
365 int idx;
366 uid1 = uid2 = 0;
367
368 if (uidlen==64){
369 for( idx=0; idx<64; idx++) {
370 if (showbits[idx] == '0') {
371 uid1 = (uid1<<1) | (uid2>>31);
372 uid2 = (uid2<<1) | 0;
373 } else {
374 uid1 = (uid1<<1) | (uid2>>31);
375 uid2 = (uid2<<1) | 1;
376 }
377 }
378 PrintAndLog("UID=%s (%x%08x)", showbits, uid1, uid2);
379 } else {
380 uid3 = uid4 = uid5 = uid6 = uid7 = 0;
381
382 for( idx=0; idx<224; idx++) {
383 uid1 = (uid1<<1) | (uid2>>31);
384 uid2 = (uid2<<1) | (uid3>>31);
385 uid3 = (uid3<<1) | (uid4>>31);
386 uid4 = (uid4<<1) | (uid5>>31);
387 uid5 = (uid5<<1) | (uid6>>31);
388 uid6 = (uid6<<1) | (uid7>>31);
389
390 if (showbits[idx] == '0')
391 uid7 = (uid7<<1) | 0;
392 else
393 uid7 = (uid7<<1) | 1;
394 }
395 PrintAndLog("UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
396 }
397
398 // Checking UID against next occurrences
399 int failed = 0;
400 for (; i + uidlen <= rawbit;) {
401 failed = 0;
402 for (bit = 0; bit < uidlen; bit++) {
403 if (bits[bit] != rawbits[i++]) {
404 failed = 1;
405 break;
406 }
407 }
408 if (failed == 1) {
409 break;
410 }
411 times += 1;
412 }
413
414 if (g_debugMode) PrintAndLog("Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen);
415
416 // Remodulating for tag cloning
417 // HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod)
418 // since this changes graphbuffer data.
419 GraphTraceLen = 32 * uidlen;
420 i = 0;
421 int phase = 0;
422 for (bit = 0; bit < uidlen; bit++) {
423 phase = (bits[bit] == 0) ? 0 : 1;
424 int j;
425 for (j = 0; j < 32; j++) {
426 GraphBuffer[i++] = phase;
427 phase = !phase;
428 }
429 }
430
431 RepaintGraphWindow();
432 return 1;
433 }
434
435 int CmdIndalaClone(const char *Cmd){
436 UsbCommand c;
437 unsigned int uid1, uid2, uid3, uid4, uid5, uid6, uid7;
438
439 uid1 = uid2 = uid3 = uid4 = uid5 = uid6 = uid7 = 0;
440 int n = 0, i = 0;
441
442 if (strchr(Cmd,'l') != 0) {
443 while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
444 uid1 = (uid1 << 4) | (uid2 >> 28);
445 uid2 = (uid2 << 4) | (uid3 >> 28);
446 uid3 = (uid3 << 4) | (uid4 >> 28);
447 uid4 = (uid4 << 4) | (uid5 >> 28);
448 uid5 = (uid5 << 4) | (uid6 >> 28);
449 uid6 = (uid6 << 4) | (uid7 >> 28);
450 uid7 = (uid7 << 4) | (n & 0xf);
451 }
452 PrintAndLog("Cloning 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7);
453 c.cmd = CMD_INDALA_CLONE_TAG_L;
454 c.d.asDwords[0] = uid1;
455 c.d.asDwords[1] = uid2;
456 c.d.asDwords[2] = uid3;
457 c.d.asDwords[3] = uid4;
458 c.d.asDwords[4] = uid5;
459 c.d.asDwords[5] = uid6;
460 c.d.asDwords[6] = uid7;
461 } else {
462 while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
463 uid1 = (uid1 << 4) | (uid2 >> 28);
464 uid2 = (uid2 << 4) | (n & 0xf);
465 }
466 PrintAndLog("Cloning 64bit tag with UID %x%08x", uid1, uid2);
467 c.cmd = CMD_INDALA_CLONE_TAG;
468 c.arg[0] = uid1;
469 c.arg[1] = uid2;
470 }
471
472 clearCommandBuffer();
473 SendCommand(&c);
474 return 0;
475 }
476
477 int CmdLFSetConfig(const char *Cmd) {
478 uint8_t divisor = 0;//Frequency divisor
479 uint8_t bps = 0; // Bits per sample
480 uint8_t decimation = 0; //How many to keep
481 bool averaging = 1; // Defaults to true
482 bool errors = FALSE;
483 int trigger_threshold = -1;//Means no change
484 uint8_t unsigned_trigg = 0;
485
486 uint8_t cmdp = 0;
487 while(param_getchar(Cmd, cmdp) != 0x00) {
488 switch(param_getchar(Cmd, cmdp)) {
489 case 'h':
490 return usage_lf_config();
491 case 'H':
492 divisor = 88;
493 cmdp++;
494 break;
495 case 'L':
496 divisor = 95;
497 cmdp++;
498 break;
499 case 'q':
500 errors |= param_getdec(Cmd, cmdp+1, &divisor);
501 cmdp+=2;
502 break;
503 case 't':
504 errors |= param_getdec(Cmd, cmdp+1, &unsigned_trigg);
505 cmdp+=2;
506 if(!errors) trigger_threshold = unsigned_trigg;
507 break;
508 case 'b':
509 errors |= param_getdec(Cmd, cmdp+1, &bps);
510 cmdp+=2;
511 break;
512 case 'd':
513 errors |= param_getdec(Cmd, cmdp+1, &decimation);
514 cmdp+=2;
515 break;
516 case 'a':
517 averaging = param_getchar(Cmd, cmdp+1) == '1';
518 cmdp+=2;
519 break;
520 default:
521 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
522 errors = 1;
523 break;
524 }
525 if(errors) break;
526 }
527
528 // No args
529 if (cmdp == 0) errors = 1;
530
531 //Validations
532 if (errors) return usage_lf_config();
533
534 //Bps is limited to 8
535 if (bps >> 4) bps = 8;
536
537 sample_config config = { decimation, bps, averaging, divisor, trigger_threshold };
538
539 UsbCommand c = {CMD_SET_LF_SAMPLING_CONFIG, {0,0,0} };
540 memcpy(c.d.asBytes, &config, sizeof(sample_config));
541 clearCommandBuffer();
542 SendCommand(&c);
543 return 0;
544 }
545
546 int CmdLFRead(const char *Cmd) {
547 bool arg1 = false;
548 uint8_t cmdp = param_getchar(Cmd, 0);
549
550 if ( cmdp == 'h' || cmdp == 'H') return usage_lf_read();
551
552 //suppress print
553 if ( cmdp == 's' || cmdp == 'S') arg1 = true;
554
555 UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K, {arg1,0,0}};
556 clearCommandBuffer();
557 SendCommand(&c);
558 if ( !WaitForResponseTimeout(CMD_ACK, NULL ,2500) ) {
559 PrintAndLog("command execution time out");
560 return 1;
561 }
562 return 0;
563 }
564
565 int CmdLFSnoop(const char *Cmd) {
566 uint8_t cmdp = param_getchar(Cmd, 0);
567 if(cmdp == 'h' || cmdp == 'H') return usage_lf_snoop();
568
569 UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES,{0,0,0}};
570 clearCommandBuffer();
571 SendCommand(&c);
572 WaitForResponse(CMD_ACK,NULL);
573 getSamples("", false);
574 return 0;
575 }
576
577 static void ChkBitstream(const char *str) {
578 // convert to bitstream if necessary
579 for (int i = 0; i < (int)(GraphTraceLen / 2); i++){
580 if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0) {
581 CmdGetBitStream("");
582 break;
583 }
584 }
585 }
586 //Attempt to simulate any wave in buffer (one bit per output sample)
587 // converts GraphBuffer to bitstream (based on zero crossings) if needed.
588 int CmdLFSim(const char *Cmd) {
589 int i,j;
590 static int gap;
591
592 sscanf(Cmd, "%i", &gap);
593
594 // convert to bitstream if necessary
595 ChkBitstream(Cmd);
596
597 if (g_debugMode)
598 printf("DEBUG: Sending [%d bytes]\n", GraphTraceLen);
599
600 //can send only 512 bits at a time (1 byte sent per bit...)
601 for (i = 0; i < GraphTraceLen; i += USB_CMD_DATA_SIZE) {
602 UsbCommand c = {CMD_DOWNLOADED_SIM_SAMPLES_125K, {i, 0, 0}};
603
604 for (j = 0; j < USB_CMD_DATA_SIZE; j++)
605 c.d.asBytes[j] = GraphBuffer[i+j];
606
607 clearCommandBuffer();
608 SendCommand(&c);
609 WaitForResponse(CMD_ACK, NULL);
610 printf(".");
611 }
612
613 PrintAndLog("Simulating");
614
615 UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}};
616 clearCommandBuffer();
617 SendCommand(&c);
618 return 0;
619 }
620
621 // by marshmellow - sim fsk data given clock, fcHigh, fcLow, invert
622 // - allow pull data from DemodBuffer
623 int CmdLFfskSim(const char *Cmd)
624 {
625 //might be able to autodetect FCs and clock from Graphbuffer if using demod buffer
626 // otherwise will need FChigh, FClow, Clock, and bitstream
627 uint8_t fcHigh = 0, fcLow = 0, clk = 0;
628 uint8_t invert = 0;
629 bool errors = FALSE;
630 char hexData[32] = {0x00}; // store entered hex data
631 uint8_t data[255] = {0x00};
632 int dataLen = 0;
633 uint8_t cmdp = 0;
634
635 while(param_getchar(Cmd, cmdp) != 0x00) {
636 switch(param_getchar(Cmd, cmdp)){
637 case 'h':
638 return usage_lf_simfsk();
639 case 'i':
640 invert = 1;
641 cmdp++;
642 break;
643 case 'c':
644 errors |= param_getdec(Cmd, cmdp+1, &clk);
645 cmdp += 2;
646 break;
647 case 'H':
648 errors |= param_getdec(Cmd, cmdp+1, &fcHigh);
649 cmdp += 2;
650 break;
651 case 'L':
652 errors |= param_getdec(Cmd, cmdp+1, &fcLow);
653 cmdp += 2;
654 break;
655 //case 's':
656 // separator = 1;
657 // cmdp++;
658 // break;
659 case 'd':
660 dataLen = param_getstr(Cmd, cmdp+1, hexData);
661 if (dataLen == 0)
662 errors = TRUE;
663 else
664 dataLen = hextobinarray((char *)data, hexData);
665
666 if (dataLen == 0) errors = TRUE;
667 if (errors) PrintAndLog ("Error getting hex data");
668 cmdp+=2;
669 break;
670 default:
671 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
672 errors = TRUE;
673 break;
674 }
675 if(errors) break;
676 }
677
678 // No args
679 if(cmdp == 0 && DemodBufferLen == 0)
680 errors = TRUE;
681
682 //Validations
683 if(errors) return usage_lf_simfsk();
684
685 if (dataLen == 0){ //using DemodBuffer
686 if (clk == 0 || fcHigh == 0 || fcLow == 0){ //manual settings must set them all
687 uint8_t ans = fskClocks(&fcHigh, &fcLow, &clk, 0);
688 if (ans==0){
689 if (!fcHigh) fcHigh = 10;
690 if (!fcLow) fcLow = 8;
691 if (!clk) clk = 50;
692 }
693 }
694 } else {
695 setDemodBuf(data, dataLen, 0);
696 }
697
698 //default if not found
699 if (clk == 0) clk = 50;
700 if (fcHigh == 0) fcHigh = 10;
701 if (fcLow == 0) fcLow = 8;
702
703 uint16_t arg1, arg2;
704 arg1 = fcHigh << 8 | fcLow;
705 arg2 = invert << 8 | clk;
706 size_t size = DemodBufferLen;
707 if (size > USB_CMD_DATA_SIZE) {
708 PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
709 size = USB_CMD_DATA_SIZE;
710 }
711 UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, size}};
712
713 memcpy(c.d.asBytes, DemodBuffer, size);
714 clearCommandBuffer();
715 SendCommand(&c);
716 return 0;
717 }
718
719 // by marshmellow - sim ask data given clock, invert, manchester or raw, separator
720 // - allow pull data from DemodBuffer
721 int CmdLFaskSim(const char *Cmd)
722 {
723 // autodetect clock from Graphbuffer if using demod buffer
724 // needs clock, invert, manchester/raw as m or r, separator as s, and bitstream
725 uint8_t encoding = 1, separator = 0, clk = 0, invert = 0;
726 bool errors = FALSE;
727 char hexData[32] = {0x00};
728 uint8_t data[255]= {0x00}; // store entered hex data
729 int dataLen = 0;
730 uint8_t cmdp = 0;
731
732 while(param_getchar(Cmd, cmdp) != 0x00) {
733 switch(param_getchar(Cmd, cmdp)) {
734 case 'H':
735 case 'h': return usage_lf_simask();
736 case 'i':
737 invert = 1;
738 cmdp++;
739 break;
740 case 'c':
741 errors |= param_getdec(Cmd, cmdp+1, &clk);
742 cmdp += 2;
743 break;
744 case 'b':
745 encoding = 2; //biphase
746 cmdp++;
747 break;
748 case 'm':
749 encoding = 1; //manchester
750 cmdp++;
751 break;
752 case 'r':
753 encoding = 0; //raw
754 cmdp++;
755 break;
756 case 's':
757 separator = 1;
758 cmdp++;
759 break;
760 case 'd':
761 dataLen = param_getstr(Cmd, cmdp+1, hexData);
762 if (dataLen == 0)
763 errors = TRUE;
764 else
765 dataLen = hextobinarray((char *)data, hexData);
766
767 if (dataLen == 0) errors = TRUE;
768 if (errors) PrintAndLog ("Error getting hex data, datalen: %d", dataLen);
769 cmdp += 2;
770 break;
771 default:
772 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
773 errors = TRUE;
774 break;
775 }
776 if(errors) break;
777 }
778
779 // No args
780 if(cmdp == 0 && DemodBufferLen == 0)
781 errors = TRUE;
782
783 //Validations
784 if(errors) return usage_lf_simask();
785
786 if (dataLen == 0){ //using DemodBuffer
787 if (clk == 0)
788 clk = GetAskClock("0", false, false);
789 } else {
790 setDemodBuf(data, dataLen, 0);
791 }
792 if (clk == 0) clk = 64;
793 if (encoding == 0) clk >>= 2; //askraw needs to double the clock speed
794
795 size_t size = DemodBufferLen;
796
797 if (size > USB_CMD_DATA_SIZE) {
798 PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
799 size = USB_CMD_DATA_SIZE;
800 }
801
802 PrintAndLog("preparing to sim ask data: %d bits", size);
803
804 uint16_t arg1, arg2;
805 arg1 = clk << 8 | encoding;
806 arg2 = invert << 8 | separator;
807
808 UsbCommand c = {CMD_ASK_SIM_TAG, {arg1, arg2, size}};
809 memcpy(c.d.asBytes, DemodBuffer, size);
810 clearCommandBuffer();
811 SendCommand(&c);
812 return 0;
813 }
814
815 // by marshmellow - sim psk data given carrier, clock, invert
816 // - allow pull data from DemodBuffer or parameters
817 int CmdLFpskSim(const char *Cmd) {
818 //might be able to autodetect FC and clock from Graphbuffer if using demod buffer
819 //will need carrier, Clock, and bitstream
820 uint8_t carrier=0, clk=0;
821 uint8_t invert=0;
822 bool errors = FALSE;
823 char hexData[32] = {0x00}; // store entered hex data
824 uint8_t data[255] = {0x00};
825 int dataLen = 0;
826 uint8_t cmdp = 0;
827 uint8_t pskType = 1;
828
829 while(param_getchar(Cmd, cmdp) != 0x00) {
830 switch(param_getchar(Cmd, cmdp)) {
831 case 'h':
832 return usage_lf_simpsk();
833 case 'i':
834 invert = 1;
835 cmdp++;
836 break;
837 case 'c':
838 errors |= param_getdec(Cmd,cmdp+1,&clk);
839 cmdp +=2;
840 break;
841 case 'r':
842 errors |= param_getdec(Cmd,cmdp+1,&carrier);
843 cmdp += 2;
844 break;
845 case '1':
846 pskType = 1;
847 cmdp++;
848 break;
849 case '2':
850 pskType = 2;
851 cmdp++;
852 break;
853 case '3':
854 pskType = 3;
855 cmdp++;
856 break;
857 case 'd':
858 dataLen = param_getstr(Cmd, cmdp+1, hexData);
859 if (dataLen == 0)
860 errors = TRUE;
861 else
862 dataLen = hextobinarray((char *)data, hexData);
863
864 if (dataLen == 0) errors = TRUE;
865 if (errors) PrintAndLog ("Error getting hex data");
866 cmdp+=2;
867 break;
868 default:
869 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
870 errors = TRUE;
871 break;
872 }
873 if (errors) break;
874 }
875 // No args
876 if (cmdp == 0 && DemodBufferLen == 0)
877 errors = TRUE;
878
879 //Validations
880 if (errors) return usage_lf_simpsk();
881
882 if (dataLen == 0){ //using DemodBuffer
883 PrintAndLog("Getting Clocks");
884
885 if (clk==0) clk = GetPskClock("", FALSE, FALSE);
886 PrintAndLog("clk: %d",clk);
887
888 if (!carrier) carrier = GetPskCarrier("", FALSE, FALSE);
889 PrintAndLog("carrier: %d", carrier);
890
891 } else {
892 setDemodBuf(data, dataLen, 0);
893 }
894
895 if (clk <= 0) clk = 32;
896
897 if (carrier == 0) carrier = 2;
898
899 if (pskType != 1){
900 if (pskType == 2){
901 //need to convert psk2 to psk1 data before sim
902 psk2TOpsk1(DemodBuffer, DemodBufferLen);
903 } else {
904 PrintAndLog("Sorry, PSK3 not yet available");
905 }
906 }
907 uint16_t arg1, arg2;
908 arg1 = clk << 8 | carrier;
909 arg2 = invert;
910 size_t size = DemodBufferLen;
911 if (size > USB_CMD_DATA_SIZE) {
912 PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
913 size = USB_CMD_DATA_SIZE;
914 }
915 UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}};
916 PrintAndLog("DEBUG: Sending DemodBuffer Length: %d", size);
917 memcpy(c.d.asBytes, DemodBuffer, size);
918 clearCommandBuffer();
919 SendCommand(&c);
920 return 0;
921 }
922
923 int CmdLFSimBidir(const char *Cmd) {
924 // Set ADC to twice the carrier for a slight supersampling
925 // HACK: not implemented in ARMSRC.
926 PrintAndLog("Not implemented yet.");
927 UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}};
928 SendCommand(&c);
929 return 0;
930 }
931
932 int CmdVchDemod(const char *Cmd) {
933 // Is this the entire sync pattern, or does this also include some
934 // data bits that happen to be the same everywhere? That would be
935 // lovely to know.
936 static const int SyncPattern[] = {
937 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
938 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
939 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
940 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
941 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
942 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
943 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
944 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
945 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
946 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
947 };
948
949 // So first, we correlate for the sync pattern, and mark that.
950 int bestCorrel = 0, bestPos = 0;
951 int i, j, sum = 0;
952
953 // It does us no good to find the sync pattern, with fewer than 2048 samples after it.
954
955 for (i = 0; i < (GraphTraceLen - 2048); i++) {
956 for (j = 0; j < ARRAYLEN(SyncPattern); j++) {
957 sum += GraphBuffer[i+j] * SyncPattern[j];
958 }
959 if (sum > bestCorrel) {
960 bestCorrel = sum;
961 bestPos = i;
962 }
963 }
964 PrintAndLog("best sync at %d [metric %d]", bestPos, bestCorrel);
965
966 char bits[257];
967 bits[256] = '\0';
968
969 int worst = INT_MAX, worstPos = 0;
970
971 for (i = 0; i < 2048; i += 8) {
972 sum = 0;
973 for (j = 0; j < 8; j++)
974 sum += GraphBuffer[bestPos+i+j];
975
976 if (sum < 0)
977 bits[i/8] = '.';
978 else
979 bits[i/8] = '1';
980
981 if(abs(sum) < worst) {
982 worst = abs(sum);
983 worstPos = i;
984 }
985 }
986 PrintAndLog("bits:");
987 PrintAndLog("%s", bits);
988 PrintAndLog("worst metric: %d at pos %d", worst, worstPos);
989
990 // clone
991 if (strcmp(Cmd, "clone")==0) {
992 GraphTraceLen = 0;
993 char *s;
994 for(s = bits; *s; s++) {
995 for(j = 0; j < 16; j++) {
996 GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0;
997 }
998 }
999 RepaintGraphWindow();
1000 }
1001 return 0;
1002 }
1003
1004 //by marshmellow
1005 int CmdLFfind(const char *Cmd) {
1006 int ans = 0;
1007 size_t minLength = 1000;
1008 char cmdp = param_getchar(Cmd, 0);
1009 char testRaw = param_getchar(Cmd, 1);
1010 if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') return usage_lf_find();
1011
1012 if (!offline && (cmdp != '1')){
1013 CmdLFRead("s");
1014 getSamples("30000", false);
1015 } else if (GraphTraceLen < minLength) {
1016 PrintAndLog("Data in Graphbuffer was too small.");
1017 return 0;
1018 }
1019 if (cmdp == 'u' || cmdp == 'U') testRaw = 'u';
1020
1021 PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag");
1022 PrintAndLog("False Positives ARE possible\n");
1023 PrintAndLog("\nChecking for known tags:\n");
1024
1025 size_t testLen = minLength;
1026
1027 // only run these tests if device is online
1028 if (!offline && (cmdp != '1')){
1029
1030 // only run if graphbuffer is just noise as it should be for hitag/cotag
1031 if (graphJustNoise(GraphBuffer, testLen)) {
1032
1033 ans=CmdLFHitagReader("26");
1034 if (ans==0)
1035 return 1;
1036
1037 ans=CmdCOTAGRead("");
1038 if (ans>0){
1039 PrintAndLog("\nValid COTAG ID Found!");
1040 return 1;
1041 }
1042 PrintAndLog("Signal looks just like noise. Quitting.");
1043 return 0;
1044 }
1045 }
1046
1047 ans=CmdFSKdemodIO("");
1048 if (ans>0) {
1049 PrintAndLog("\nValid IO Prox ID Found!");
1050 return 1;
1051 }
1052 ans=CmdFSKdemodPyramid("");
1053 if (ans>0) {
1054 PrintAndLog("\nValid Pyramid ID Found!");
1055 return 1;
1056 }
1057 ans=CmdFSKdemodParadox("");
1058 if (ans>0) {
1059 PrintAndLog("\nValid Paradox ID Found!");
1060 return 1;
1061 }
1062 ans=CmdFSKdemodAWID("");
1063 if (ans>0) {
1064 PrintAndLog("\nValid AWID ID Found!");
1065 return 1;
1066 }
1067 ans=CmdFSKdemodHID("");
1068 if (ans>0) {
1069 PrintAndLog("\nValid HID Prox ID Found!");
1070 return 1;
1071 }
1072 ans=CmdAskEM410xDemod("");
1073 if (ans>0) {
1074 PrintAndLog("\nValid EM410x ID Found!");
1075 return 1;
1076 }
1077 ans=CmdG_Prox_II_Demod("");
1078 if (ans>0) {
1079 PrintAndLog("\nValid Guardall G-Prox II ID Found!");
1080 return 1;
1081 }
1082 ans=CmdFDXBdemodBI("");
1083 if (ans>0) {
1084 PrintAndLog("\nValid FDX-B ID Found!");
1085 return 1;
1086 }
1087 ans=EM4x50Read("", false);
1088 if (ans>0) {
1089 PrintAndLog("\nValid EM4x50 ID Found!");
1090 return 1;
1091 }
1092 ans=CmdVikingDemod("");
1093 if (ans>0) {
1094 PrintAndLog("\nValid Viking ID Found!");
1095 return 1;
1096 }
1097 ans=CmdIndalaDecode("");
1098 if (ans>0) {
1099 PrintAndLog("\nValid Indala ID Found!");
1100 return 1;
1101 }
1102 ans=CmdPSKNexWatch("");
1103 if (ans>0) {
1104 PrintAndLog("\nValid NexWatch ID Found!");
1105 return 1;
1106 }
1107 ans=CmdPSKIdteck("");
1108 if (ans>0) {
1109 PrintAndLog("\nValid Idteck ID Found!");
1110 return 1;
1111 }
1112 ans=CmdJablotronDemod("");
1113 if (ans>0) {
1114 PrintAndLog("\nValid Jablotron ID Found!");
1115 return 1;
1116 }
1117 ans=CmdLFNedapDemod("");
1118 if (ans>0) {
1119 PrintAndLog("\nValid NEDAP ID Found!");
1120 return 1;
1121 }
1122 ans=CmdVisa2kDemod("");
1123 if (ans>0) {
1124 PrintAndLog("\nValid Visa2000 ID Found!");
1125 return 1;
1126 }
1127 ans=CmdNoralsyDemod("");
1128 if (ans>0) {
1129 PrintAndLog("\nValid Noralsy ID Found!");
1130 return 1;
1131 }
1132 ans=CmdPrescoDemod("");
1133 if (ans>0) {
1134 PrintAndLog("\nValid Presco ID Found!");
1135 return 1;
1136 }
1137
1138 // TIdemod?
1139 PrintAndLog("\nNo Known Tags Found!\n");
1140 if (testRaw=='u' || testRaw=='U'){
1141 //test unknown tag formats (raw mode)
1142 PrintAndLog("\nChecking for Unknown tags:\n");
1143 ans=AutoCorrelate(4000, FALSE, FALSE);
1144
1145 if (ans > 0) {
1146
1147 PrintAndLog("Possible Auto Correlation of %d repeating samples",ans);
1148
1149 if ( ans % 8 == 0) {
1150 int bytes = (ans / 8);
1151 PrintAndLog("Possible %d bytes", bytes);
1152 int blocks = 0;
1153 if ( bytes % 2 == 0) {
1154 blocks = (bytes / 2);
1155 PrintAndLog("Possible 2 blocks, width %d", blocks);
1156 }
1157 if ( bytes % 4 == 0) {
1158 blocks = (bytes / 4);
1159 PrintAndLog("Possible 4 blocks, width %d", blocks);
1160 }
1161 if ( bytes % 8 == 0) {
1162 blocks = (bytes / 8);
1163 PrintAndLog("Possible 8 blocks, width %d", blocks);
1164 }
1165 if ( bytes % 16 == 0) {
1166 blocks = (bytes / 16);
1167 PrintAndLog("Possible 16 blocks, width %d", blocks);
1168 }
1169 }
1170 }
1171
1172 ans=GetFskClock("",FALSE,FALSE);
1173 if (ans != 0){ //fsk
1174 ans=FSKrawDemod("",TRUE);
1175 if (ans>0) {
1176 PrintAndLog("\nUnknown FSK Modulated Tag Found!");
1177 return 1;
1178 }
1179 }
1180 bool st = TRUE;
1181 ans=ASKDemod_ext("0 0 0",TRUE,FALSE,1,&st);
1182 if (ans>0) {
1183 PrintAndLog("\nUnknown ASK Modulated and Manchester encoded Tag Found!");
1184 PrintAndLog("\nif it does not look right it could instead be ASK/Biphase - try 'data rawdemod ab'");
1185 return 1;
1186 }
1187
1188 ans=CmdPSK1rawDemod("");
1189 if (ans>0) {
1190 PrintAndLog("Possible unknown PSK1 Modulated Tag Found above!\n\nCould also be PSK2 - try 'data rawdemod p2'");
1191 PrintAndLog("\nCould also be PSK3 - [currently not supported]");
1192 PrintAndLog("\nCould also be NRZ - try 'data nrzrawdemod");
1193 return 1;
1194 }
1195 PrintAndLog("\nNo Data Found!\n");
1196 }
1197 return 0;
1198 }
1199
1200 static command_t CommandTable[] =
1201 {
1202 {"help", CmdHelp, 1, "This help"},
1203 {"animal", CmdLFFdx, 1, "{ Animal RFIDs... }"},
1204 {"awid", CmdLFAWID, 1, "{ AWID RFIDs... }"},
1205 {"cotag", CmdLFCOTAG, 1, "{ COTAG RFIDs... }"},
1206 {"em4x", CmdLFEM4X, 1, "{ EM4X RFIDs... }"},
1207 {"guard", CmdLFGuard, 1, "{ Guardall RFIDs... }"},
1208 {"hid", CmdLFHID, 1, "{ HID RFIDs... }"},
1209 {"hitag", CmdLFHitag, 1, "{ HITAG RFIDs... }"},
1210 // {"indala", CmdLFIndala, 1, "{ Indala RFIDs... }"},
1211 {"io", CmdLFIO, 1, "{ IOPROX RFIDs... }"},
1212 {"jablotron", CmdLFJablotron, 1, "{ Jablotron RFIDs... }"},
1213 {"nedap", CmdLFNedap, 1, "{ Nedap RFIDs... }"},
1214 {"noralsy", CmdLFNoralsy, 1, "{ Noralsy RFIDs... }"},
1215 {"pcf7931", CmdLFPCF7931, 1, "{ PCF7931 RFIDs... }"},
1216 {"presco", CmdLFPresco, 1, "{ Presco RFIDs... }"},
1217 {"pyramid", CmdLFPyramid, 1, "{ Farpointe/Pyramid RFIDs... }"},
1218 {"ti", CmdLFTI, 1, "{ TI RFIDs... }"},
1219 {"t55xx", CmdLFT55XX, 1, "{ T55xx RFIDs... }"},
1220 {"viking", CmdLFViking, 1, "{ Viking RFIDs... }"},
1221 {"visa2000", CmdLFVisa2k, 1, "{ Visa2000 RFIDs... }"},
1222 {"config", CmdLFSetConfig, 0, "Set config for LF sampling, bit/sample, decimation, frequency"},
1223 {"cmdread", CmdLFCommandRead, 0, "<off period> <'0' period> <'1' period> <command> ['h' 134] \n\t\t-- Modulate LF reader field to send command before read (all periods in microseconds)"},
1224 {"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"},
1225 {"indalademod", CmdIndalaDemod, 1, "['224'] -- Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
1226 {"indalaclone", CmdIndalaClone, 0, "<UID> ['l']-- Clone Indala to T55x7 (tag must be in antenna)(UID in HEX)(option 'l' for 224 UID"},
1227 {"read", CmdLFRead, 0, "['s' silent] Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"},
1228 {"search", CmdLFfind, 1, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) \n\t\t-- 'u' to search for unknown tags"},
1229 {"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
1230 {"simask", CmdLFaskSim, 0, "[clock] [invert <1|0>] [biphase/manchester/raw <'b'|'m'|'r'>] [msg separator 's'] [d <hexdata>] \n\t\t-- Simulate LF ASK tag from demodbuffer or input"},
1231 {"simfsk", CmdLFfskSim, 0, "[c <clock>] [i] [H <fcHigh>] [L <fcLow>] [d <hexdata>] \n\t\t-- Simulate LF FSK tag from demodbuffer or input"},
1232 {"simpsk", CmdLFpskSim, 0, "[1|2|3] [c <clock>] [i] [r <carrier>] [d <raw hex to sim>] \n\t\t-- Simulate LF PSK tag from demodbuffer or input"},
1233 {"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
1234 {"snoop", CmdLFSnoop, 0, "Snoop LF"},
1235 {"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"},
1236 {NULL, NULL, 0, NULL}
1237 };
1238
1239 int CmdLF(const char *Cmd) {
1240 clearCommandBuffer();
1241 CmdsParse(CommandTable, Cmd);
1242 return 0;
1243 }
1244
1245 int CmdHelp(const char *Cmd) {
1246 CmdsHelp(CommandTable);
1247 return 0;
1248 }
Impressum, Datenschutz