]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
CHG: @Marshmellow42 's fixes. ref: https://github.com/marshmellow42/proxmark3/commi...
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include "cmdlfem4x.h"
12
13 uint64_t g_em410xid = 0;
14
15 static int CmdHelp(const char *Cmd);
16
17 int CmdEMdemodASK(const char *Cmd)
18 {
19 char cmdp = param_getchar(Cmd, 0);
20 uint8_t findone = (cmdp == '1') ? 1 : 0;
21 UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}};
22 SendCommand(&c);
23 return 0;
24 }
25
26 /* Read the ID of an EM410x tag.
27 * Format:
28 * 1111 1111 1 <-- standard non-repeatable header
29 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
30 * ....
31 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
32 * 0 <-- stop bit, end of tag
33 */
34 int CmdEM410xRead(const char *Cmd)
35 {
36 uint32_t hi=0;
37 uint64_t lo=0;
38
39 if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
40 PrintAndLog("EM410x pattern found: ");
41 printEM410x(hi, lo);
42 if (hi){
43 PrintAndLog ("EM410x XL pattern found");
44 return 0;
45 }
46 g_em410xid = lo;
47 return 1;
48 }
49
50
51 int usage_lf_em410x_sim(void) {
52 PrintAndLog("Simulating EM410x tag");
53 PrintAndLog("");
54 PrintAndLog("Usage: lf em4x em410xsim [h] <uid> <clock>");
55 PrintAndLog("Options:");
56 PrintAndLog(" h - this help");
57 PrintAndLog(" uid - uid (10 HEX symbols)");
58 PrintAndLog(" clock - clock (32|64) (optional)");
59 PrintAndLog("samples:");
60 PrintAndLog(" lf em4x em410xsim 0F0368568B");
61 PrintAndLog(" lf em4x em410xsim 0F0368568B 32");
62 return 0;
63 }
64
65 // emulate an EM410X tag
66 int CmdEM410xSim(const char *Cmd)
67 {
68 int i, n, j, binary[4], parity[4];
69 uint8_t uid[5] = {0x00};
70
71 char cmdp = param_getchar(Cmd, 0);
72 if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
73
74 /* clock is 64 in EM410x tags */
75 uint8_t clock = 64;
76
77 if (param_gethex(Cmd, 0, uid, 10)) {
78 PrintAndLog("UID must include 10 HEX symbols");
79 return 0;
80 }
81
82 param_getdec(Cmd, 1, &clock);
83
84 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
85 PrintAndLog("Press pm3-button to about simulation");
86
87 /* clear our graph */
88 ClearGraph(0);
89
90 /* write 9 start bits */
91 for (i = 0; i < 9; i++)
92 AppendGraph(0, clock, 1);
93
94 /* for each hex char */
95 parity[0] = parity[1] = parity[2] = parity[3] = 0;
96 for (i = 0; i < 10; i++)
97 {
98 /* read each hex char */
99 sscanf(&Cmd[i], "%1x", &n);
100 for (j = 3; j >= 0; j--, n/= 2)
101 binary[j] = n % 2;
102
103 /* append each bit */
104 AppendGraph(0, clock, binary[0]);
105 AppendGraph(0, clock, binary[1]);
106 AppendGraph(0, clock, binary[2]);
107 AppendGraph(0, clock, binary[3]);
108
109 /* append parity bit */
110 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
111
112 /* keep track of column parity */
113 parity[0] ^= binary[0];
114 parity[1] ^= binary[1];
115 parity[2] ^= binary[2];
116 parity[3] ^= binary[3];
117 }
118
119 /* parity columns */
120 AppendGraph(0, clock, parity[0]);
121 AppendGraph(0, clock, parity[1]);
122 AppendGraph(0, clock, parity[2]);
123 AppendGraph(0, clock, parity[3]);
124
125 /* stop bit */
126 AppendGraph(1, clock, 0);
127
128 CmdLFSim("0"); //240 start_gap.
129 return 0;
130 }
131
132 /* Function is equivalent of lf read + data samples + em410xread
133 * looped until an EM410x tag is detected
134 *
135 * Why is CmdSamples("16000")?
136 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
137 * rate gets lower, then grow the number of samples
138 * Changed by martin, 4000 x 4 = 16000,
139 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
140 */
141 int CmdEM410xWatch(const char *Cmd)
142 {
143 do {
144 if (ukbhit()) {
145 printf("\naborted via keyboard!\n");
146 break;
147 }
148
149 CmdLFRead("s");
150 //getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)
151 getSamples("6144",true);
152 } while (!CmdEM410xRead(""));
153
154 return 0;
155 }
156
157 //currently only supports manchester modulations
158 // todo: helptext
159 int CmdEM410xWatchnSpoof(const char *Cmd)
160 {
161 // loops if the captured ID was in XL-format.
162 CmdEM410xWatch(Cmd);
163 PrintAndLog("# Replaying captured ID: %" PRIu64 , g_em410xid);
164 CmdLFaskSim("");
165 return 0;
166 }
167
168 int CmdEM410xWrite(const char *Cmd)
169 {
170 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
171 int card = 0xFF; // invalid card value
172 uint32_t clock = 0; // invalid clock value
173
174 sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
175
176 // Check ID
177 if (id == 0xFFFFFFFFFFFFFFFF) {
178 PrintAndLog("Error! ID is required.\n");
179 return 0;
180 }
181 if (id >= 0x10000000000) {
182 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
183 return 0;
184 }
185
186 // Check Card
187 if (card == 0xFF) {
188 PrintAndLog("Error! Card type required.\n");
189 return 0;
190 }
191 if (card < 0) {
192 PrintAndLog("Error! Bad card type selected.\n");
193 return 0;
194 }
195
196 // Check Clock
197 // Default: 64
198 if (clock == 0)
199 clock = 64;
200
201 // Allowed clock rates: 16, 32, 40 and 64
202 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
203 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
204 return 0;
205 }
206
207 if (card == 1) {
208 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
209 // NOTE: We really should pass the clock in as a separate argument, but to
210 // provide for backwards-compatibility for older firmware, and to avoid
211 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
212 // the clock rate in bits 8-15 of the card value
213 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
214 } else if (card == 0) {
215 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
216 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
217 } else {
218 PrintAndLog("Error! Bad card type selected.\n");
219 return 0;
220 }
221
222 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
223 SendCommand(&c);
224 return 0;
225 }
226
227 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
228 {
229 if (rows*cols>size) return FALSE;
230 uint8_t colP=0;
231 //assume last col is a parity and do not test
232 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
233 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
234 colP ^= BitStream[(rowNum*cols)+colNum];
235 }
236 if (colP != pType) return FALSE;
237 }
238 return TRUE;
239 }
240
241 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
242 {
243 if (rows*cols>size) return FALSE;
244 uint8_t rowP=0;
245 //assume last row is a parity row and do not test
246 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
247 for (uint8_t colNum = 0; colNum < cols; colNum++) {
248 rowP ^= BitStream[(rowNum*cols)+colNum];
249 }
250 if (rowP != pType) return FALSE;
251 }
252 return TRUE;
253 }
254
255 // EM word parity test.
256 // 9*5 = 45 bits in total
257 // 012345678|r1
258 // 012345678|r2
259 // 012345678|r3
260 // 012345678|r4
261 // ------------
262 //c012345678| 0
263 // |- must be zero
264
265 bool EMwordparitytest(uint8_t *bits){
266
267 // last row/col parity must be 0
268 if (bits[44] != 0 ) return FALSE;
269
270 // col parity check
271 uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits+9, 8) ^ bytebits_to_byte(bits+18, 8) ^ bytebits_to_byte(bits+27, 8);
272 uint8_t c2 = bytebits_to_byte(bits+36, 8);
273 if ( c1 != c2 ) return FALSE;
274
275 // row parity check
276 uint8_t rowP = 0;
277 for ( uint8_t i = 0; i < 36; ++i ) {
278
279 rowP ^= bits[i];
280 if ( i>0 && (i % 9) == 0) {
281
282 if ( rowP != EVEN )
283 return FALSE;
284
285 rowP = 0;
286 }
287 }
288 // all checks ok.
289 return TRUE;
290 }
291
292
293 //////////////// 4050 / 4450 commands
294 int usage_lf_em4x50_dump(void) {
295 PrintAndLog("Dump EM4x50/EM4x69. Tag must be on antenna. ");
296 PrintAndLog("");
297 PrintAndLog("Usage: lf em 4x50dump [h] <pwd>");
298 PrintAndLog("Options:");
299 PrintAndLog(" h - this help");
300 PrintAndLog(" pwd - password (hex) (optional)");
301 PrintAndLog("samples:");
302 PrintAndLog(" lf em 4x50dump");
303 PrintAndLog(" lf em 4x50dump 11223344");
304 return 0;
305 }
306 int usage_lf_em4x50_read(void) {
307 PrintAndLog("Read EM 4x50/EM4x69. Tag must be on antenna. ");
308 PrintAndLog("");
309 PrintAndLog("Usage: lf em 4x50read [h] <address> <pwd>");
310 PrintAndLog("Options:");
311 PrintAndLog(" h - this help");
312 PrintAndLog(" address - memory address to read. (0-15)");
313 PrintAndLog(" pwd - password (hex) (optional)");
314 PrintAndLog("samples:");
315 PrintAndLog(" lf em 4x50read 1");
316 PrintAndLog(" lf em 4x50read 1 11223344");
317 return 0;
318 }
319 int usage_lf_em4x50_write(void) {
320 PrintAndLog("Write EM 4x50/4x69. Tag must be on antenna. ");
321 PrintAndLog("");
322 PrintAndLog("Usage: lf em 4x50write [h] <address> <data> <pwd>");
323 PrintAndLog("Options:");
324 PrintAndLog(" h - this help");
325 PrintAndLog(" address - memory address to write to. (0-15)");
326 PrintAndLog(" data - data to write (hex)");
327 PrintAndLog(" pwd - password (hex) (optional)");
328 PrintAndLog("samples:");
329 PrintAndLog(" lf em 4x50write 1 deadc0de");
330 PrintAndLog(" lf em 4x50write 1 deadc0de 11223344");
331 return 0;
332 }
333
334 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
335 {
336 if (size<45) return 0;
337
338 uint32_t code = bytebits_to_byte(BitStream,8);
339 code = code<<8 | bytebits_to_byte(BitStream+9,8);
340 code = code<<8 | bytebits_to_byte(BitStream+18,8);
341 code = code<<8 | bytebits_to_byte(BitStream+27,8);
342
343 if (verbose || g_debugMode){
344 for (uint8_t i = 0; i<5; i++){
345 if (i == 4) PrintAndLog(""); //parity byte spacer
346 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
347 BitStream[i*9],
348 BitStream[i*9+1],
349 BitStream[i*9+2],
350 BitStream[i*9+3],
351 BitStream[i*9+4],
352 BitStream[i*9+5],
353 BitStream[i*9+6],
354 BitStream[i*9+7],
355 BitStream[i*9+8],
356 bytebits_to_byte(BitStream+i*9,8)
357 );
358 }
359 if (pTest)
360 PrintAndLog("Parity Passed");
361 else
362 PrintAndLog("Parity Failed");
363 }
364 return code;
365 }
366
367
368 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
369 * Format:
370 *
371 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
372 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
373 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
374 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
375 * CCCCCCCC <- column parity bits
376 * 0 <- stop bit
377 * LW <- Listen Window
378 *
379 * This pattern repeats for every block of data being transmitted.
380 * Transmission starts with two Listen Windows (LW - a modulated
381 * pattern of 320 cycles each (32/32/128/64/64)).
382 *
383 * Note that this data may or may not be the UID. It is whatever data
384 * is stored in the blocks defined in the control word First and Last
385 * Word Read values. UID is stored in block 32.
386 */
387 //completed by Marshmellow
388 int EM4x50Read(const char *Cmd, bool verbose) {
389 uint8_t fndClk[] = {8,16,32,40,50,64,128};
390 int clk = 0;
391 int invert = 0;
392 int tol = 0;
393 int i, j, startblock, skip, block, start, end, low, high, minClk;
394 bool complete = false;
395 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
396 uint32_t Code[6];
397 char tmp[6];
398 char tmp2[20];
399 int phaseoff;
400 high = low = 0;
401 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
402
403 // get user entry if any
404 sscanf(Cmd, "%i %i", &clk, &invert);
405
406 // save GraphBuffer - to restore it later
407 save_restoreGB(1);
408
409 // first get high and low values
410 for (i = 0; i < GraphTraceLen; i++) {
411 if (GraphBuffer[i] > high)
412 high = GraphBuffer[i];
413 else if (GraphBuffer[i] < low)
414 low = GraphBuffer[i];
415 }
416
417 i = 0;
418 j = 0;
419 minClk = 255;
420 // get to first full low to prime loop and skip incomplete first pulse
421 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
422 ++i;
423 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
424 ++i;
425 skip = i;
426
427 // populate tmpbuff buffer with pulse lengths
428 while (i < GraphTraceLen) {
429 // measure from low to low
430 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
431 ++i;
432 start= i;
433 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
434 ++i;
435 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
436 ++i;
437 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
438 break;
439 }
440 tmpbuff[j++]= i - start;
441 if (i-start < minClk && i < GraphTraceLen) {
442 minClk = i - start;
443 }
444 }
445 // set clock
446 if (!clk) {
447 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
448 tol = fndClk[clkCnt]/8;
449 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
450 clk=fndClk[clkCnt];
451 break;
452 }
453 }
454 if (!clk) {
455 PrintAndLog("ERROR: EM4x50 - didn't find a clock");
456 return 0;
457 }
458 } else tol = clk/8;
459
460 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
461 start = -1;
462 for (i= 0; i < j - 4 ; ++i) {
463 skip += tmpbuff[i];
464 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
465 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
466 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
467 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
468 {
469 start= i + 4;
470 break;
471 }
472 }
473 startblock = i + 4;
474
475 // skip over the remainder of LW
476 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
477 if (tmpbuff[i+3]>clk)
478 phaseoff = tmpbuff[i+3]-clk;
479 else
480 phaseoff = 0;
481 // now do it again to find the end
482 end = skip;
483 for (i += 3; i < j - 4 ; ++i) {
484 end += tmpbuff[i];
485 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
486 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
487 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
488 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
489 {
490 complete= true;
491 break;
492 }
493 }
494 end = i;
495 // report back
496 if (verbose || g_debugMode) {
497 if (start >= 0) {
498 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
499 } else {
500 PrintAndLog("No data found!, clock tried:%d",clk);
501 PrintAndLog("Try again with more samples.");
502 PrintAndLog(" or after a 'data askedge' command to clean up the read");
503 return 0;
504 }
505 } else if (start < 0) return 0;
506 start = skip;
507 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
508 // get rid of leading crap
509 snprintf(tmp, sizeof(tmp), "%i", skip);
510 CmdLtrim(tmp);
511 bool pTest;
512 bool AllPTest = true;
513 // now work through remaining buffer printing out data blocks
514 block = 0;
515 i = startblock;
516 while (block < 6) {
517 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
518 skip = phaseoff;
519
520 // look for LW before start of next block
521 for ( ; i < j - 4 ; ++i) {
522 skip += tmpbuff[i];
523 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
524 if (tmpbuff[i+1] >= clk-tol)
525 break;
526 }
527 if (i >= j-4) break; //next LW not found
528 skip += clk;
529 if (tmpbuff[i+1]>clk)
530 phaseoff = tmpbuff[i+1]-clk;
531 else
532 phaseoff = 0;
533 i += 2;
534 if (ASKDemod(tmp2, false, false, 1) < 1) {
535 save_restoreGB(0);
536 return 0;
537 }
538 //set DemodBufferLen to just one block
539 DemodBufferLen = skip/clk;
540 //test parities
541 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
542 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
543 AllPTest &= pTest;
544 //get output
545 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
546 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
547 //skip to start of next block
548 snprintf(tmp,sizeof(tmp),"%i",skip);
549 CmdLtrim(tmp);
550 block++;
551 if (i >= end) break; //in case chip doesn't output 6 blocks
552 }
553 //print full code:
554 if (verbose || g_debugMode || AllPTest){
555 if (!complete) {
556 PrintAndLog("*** Warning!");
557 PrintAndLog("Partial data - no end found!");
558 PrintAndLog("Try again with more samples.");
559 }
560 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
561 end = block;
562 for (block=0; block < end; block++){
563 PrintAndLog("Block %d: %08x",block,Code[block]);
564 }
565 if (AllPTest) {
566 PrintAndLog("Parities Passed");
567 } else {
568 PrintAndLog("Parities Failed");
569 PrintAndLog("Try cleaning the read samples with 'data askedge'");
570 }
571 }
572
573 //restore GraphBuffer
574 save_restoreGB(0);
575 return (int)AllPTest;
576 }
577
578 int CmdEM4x50Read(const char *Cmd) {
579 uint8_t ctmp = param_getchar(Cmd, 0);
580 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read();
581 return EM4x50Read(Cmd, true);
582 }
583 int CmdEM4x50Write(const char *Cmd){
584 uint8_t ctmp = param_getchar(Cmd, 0);
585 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write();
586 PrintAndLog("no implemented yet");
587 return 0;
588 }
589 int CmdEM4x50Dump(const char *Cmd){
590 uint8_t ctmp = param_getchar(Cmd, 0);
591 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump();
592 PrintAndLog("no implemented yet");
593 return 0;
594 }
595
596 #define EM_PREAMBLE_LEN 6
597 // download samples from device and copy to Graphbuffer
598 bool downloadSamplesEM(){
599
600 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
601 uint8_t got[6000];
602 GetFromBigBuf(got, sizeof(got), 0);
603 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) {
604 PrintAndLog("command execution time out");
605 return FALSE;
606 }
607 setGraphBuf(got, sizeof(got));
608 return TRUE;
609 }
610
611 // em_demod
612 bool doPreambleSearch(size_t *startIdx){
613
614 // sanity check
615 if ( DemodBufferLen < EM_PREAMBLE_LEN) {
616 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 demodbuffer too small");
617 return FALSE;
618 }
619
620 // set size to 20 to only test first 14 positions for the preamble
621 size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20;
622 *startIdx = 0;
623 // skip first two 0 bits as they might have been missed in the demod
624 uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0};
625
626 if ( !preambleSearchEx(DemodBuffer, preamble, EM_PREAMBLE_LEN, &size, startIdx, TRUE)) {
627 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", *startIdx);
628 return FALSE;
629 }
630 return TRUE;
631 }
632
633 bool detectFSK(){
634 // detect fsk clock
635 if (!GetFskClock("", FALSE, FALSE)) {
636 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed");
637 return FALSE;
638 }
639 // demod
640 int ans = FSKrawDemod("0 0", FALSE);
641 if (!ans) {
642 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed");
643 return FALSE;
644 }
645 return TRUE;
646 }
647 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
648 bool detectPSK(){
649 int ans = GetPskClock("", FALSE, FALSE);
650 if (ans <= 0) {
651 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed");
652 return FALSE;
653 }
654 //demod
655 //try psk1 -- 0 0 6 (six errors?!?)
656 ans = PSKDemod("0 0 6", FALSE);
657 if (!ans) {
658 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed");
659
660 //try psk1 inverted
661 ans = PSKDemod("0 1 6", FALSE);
662 if (!ans) {
663 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed");
664 return FALSE;
665 }
666 }
667 // either PSK1 or PSK1 inverted is ok from here.
668 // lets check PSK2 later.
669 return TRUE;
670 }
671 // try manchester - NOTE: ST only applies to T55x7 tags.
672 bool detectASK_MAN(){
673 bool stcheck = FALSE;
674 int ans = ASKDemod_ext("0 0 0", FALSE, FALSE, 1, &stcheck);
675 if (!ans) {
676 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed");
677 return FALSE;
678 }
679 return TRUE;
680 }
681 bool detectASK_BI(){
682 int ans = ASKbiphaseDemod("0 0 1", FALSE);
683 if (!ans) {
684 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed");
685
686 ans = ASKbiphaseDemod("0 1 1", FALSE);
687 if (!ans) {
688 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed");
689 return FALSE;
690 }
691 }
692 return TRUE;
693 }
694
695 // param: idx - start index in demoded data.
696 bool setDemodBufferEM(uint32_t *word, size_t idx){
697
698 //test for even parity bits.
699 uint8_t parity[45] = {0};
700 memcpy( parity, DemodBuffer, 45);
701 if (!EMwordparitytest(parity) ){
702 PrintAndLog("DEBUG: Error - EM Parity tests failed");
703 return FALSE;
704 }
705
706 // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
707 if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) {
708 if (g_debugMode) PrintAndLog("DEBUG: Error - EM, failed removing parity");
709 return FALSE;
710 }
711 setDemodBuf(DemodBuffer, 32, 0);
712 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
713 return TRUE;
714 }
715
716 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
717 // should cover 90% of known used configs
718 // the rest will need to be manually demoded for now...
719 bool demodEM4x05resp(uint32_t *word) {
720 size_t idx = 0;
721
722 if (detectASK_MAN() && doPreambleSearch( &idx ))
723 return setDemodBufferEM(word, idx);
724
725 if (detectASK_BI() && doPreambleSearch( &idx ))
726 return setDemodBufferEM(word, idx);
727
728 if (detectFSK() && doPreambleSearch( &idx ))
729 return setDemodBufferEM(word, idx);
730
731 if (detectPSK()) {
732 if (doPreambleSearch( &idx ))
733 return setDemodBufferEM(word, idx);
734
735 psk1TOpsk2(DemodBuffer, DemodBufferLen);
736 if (doPreambleSearch( &idx ))
737 return setDemodBufferEM(word, idx);
738 }
739 return FALSE;
740 }
741
742 //////////////// 4205 / 4305 commands
743 int usage_lf_em4x05_dump(void) {
744 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
745 PrintAndLog("");
746 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
747 PrintAndLog("Options:");
748 PrintAndLog(" h - this help");
749 PrintAndLog(" pwd - password (hex) (optional)");
750 PrintAndLog("samples:");
751 PrintAndLog(" lf em 4x05dump");
752 PrintAndLog(" lf em 4x05dump 11223344");
753 return 0;
754 }
755 int usage_lf_em4x05_read(void) {
756 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
757 PrintAndLog("");
758 PrintAndLog("Usage: lf em 4x05read [h] <address> <pwd>");
759 PrintAndLog("Options:");
760 PrintAndLog(" h - this help");
761 PrintAndLog(" address - memory address to read. (0-15)");
762 PrintAndLog(" pwd - password (hex) (optional)");
763 PrintAndLog("samples:");
764 PrintAndLog(" lf em 4x05read 1");
765 PrintAndLog(" lf em 4x05read 1 11223344");
766 return 0;
767 }
768 int usage_lf_em4x05_write(void) {
769 PrintAndLog("Write EM4x05/4x69. Tag must be on antenna. ");
770 PrintAndLog("");
771 PrintAndLog("Usage: lf em 4x05write [h] <address> <data> <pwd>");
772 PrintAndLog("Options:");
773 PrintAndLog(" h - this help");
774 PrintAndLog(" address - memory address to write to. (0-15)");
775 PrintAndLog(" data - data to write (hex)");
776 PrintAndLog(" pwd - password (hex) (optional)");
777 PrintAndLog("samples:");
778 PrintAndLog(" lf em 4x05write 1 deadc0de");
779 PrintAndLog(" lf em 4x05write 1 deadc0de 11223344");
780 return 0;
781 }
782 int usage_lf_em4x05_info(void) {
783 PrintAndLog("Tag information EM4205/4305/4469//4569 tags. Tag must be on antenna.");
784 PrintAndLog("");
785 PrintAndLog("Usage: lf em 4x05info [h] <pwd>");
786 PrintAndLog("Options:");
787 PrintAndLog(" h - this help");
788 PrintAndLog(" pwd - password (hex) (optional)");
789 PrintAndLog("samples:");
790 PrintAndLog(" lf em 4x05info");
791 PrintAndLog(" lf em 4x05info deadc0de");
792 return 0;
793 }
794
795 int CmdEM4x05Dump(const char *Cmd) {
796 uint8_t addr = 0;
797 uint32_t pwd = 0;
798 bool usePwd = false;
799 uint8_t ctmp = param_getchar(Cmd, 0);
800 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump();
801
802 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
803 pwd = param_get32ex(Cmd, 0, 1, 16);
804
805 if ( pwd != 1 )
806 usePwd = true;
807
808 int success = 1;
809 PrintAndLog("Addr | data | ascii");
810 PrintAndLog("-----+--------+------");
811 for (; addr < 16; addr++) {
812 if (addr == 2) {
813 if (usePwd) {
814 PrintAndLog(" %02u | %08X", addr, pwd);
815 } else {
816 PrintAndLog(" 02 | cannot read");
817 }
818 } else {
819 //success &= EM4x05Read(addr, pwd, usePwd);
820 }
821 }
822
823 return success;
824 }
825 //ICEMAN; mentalnote to self: -1 is not doable for uint32_t..
826 int CmdEM4x05Read(const char *Cmd) {
827 int addr, pwd;
828 bool usePwd = false;
829 uint8_t ctmp = param_getchar(Cmd, 0);
830 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read();
831
832 addr = param_get8ex(Cmd, 0, -1, 10);
833 pwd = param_get32ex(Cmd, 1, -1, 16);
834
835 if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
836 PrintAndLog("Address must be between 0 and 15");
837 return 1;
838 }
839 if ( pwd == -1 )
840 PrintAndLog("Reading address %d", addr);
841 else {
842 usePwd = true;
843 PrintAndLog("Reading address %d | password %08X", addr, pwd);
844 }
845
846 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
847 clearCommandBuffer();
848 SendCommand(&c);
849 UsbCommand resp;
850 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
851 PrintAndLog("Command timed out");
852 return -1;
853 }
854
855 if (!downloadSamplesEM())
856 return -1;
857
858 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
859 if (graphJustNoise(GraphBuffer, testLen)) {
860 PrintAndLog("Tag not found");
861 return -1;
862 }
863
864 //attempt demod
865 uint32_t word = 0;
866 int isOk = demodEM4x05resp(&word);
867 if (isOk)
868 PrintAndLog("Got Address %02d | %08X",addr, word);
869 else
870 PrintAndLog("Read failed");
871
872 return isOk;
873 }
874
875 int CmdEM4x05Write(const char *Cmd) {
876 uint8_t ctmp = param_getchar(Cmd, 0);
877 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write();
878
879 bool usePwd = false;
880 int addr = 16; // default to invalid address
881 int data = 0xFFFFFFFF; // default to blank data
882 int pwd = 0xFFFFFFFF; // default to blank password
883
884 addr = param_get8ex(Cmd, 0, -1, 10);
885 data = param_get32ex(Cmd, 1, -1, 16);
886 pwd = param_get32ex(Cmd, 2, -1, 16);
887
888 if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
889 PrintAndLog("Address must be between 0 and 15");
890 return 1;
891 }
892 if ( pwd == -1 )
893 PrintAndLog("Writing address %d data %08X", addr, data);
894 else {
895 usePwd = true;
896 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
897 }
898
899 uint16_t flag = (addr << 8 ) | usePwd;
900
901 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
902 clearCommandBuffer();
903 SendCommand(&c);
904 UsbCommand resp;
905 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
906 PrintAndLog("Error occurred, device did not respond during write operation.");
907 return -1;
908 }
909
910 if (!downloadSamplesEM())
911 return -1;
912
913
914 //attempt demod:
915 //need 0 bits demoded (after preamble) to verify write cmd
916 uint32_t dummy = 0;
917 int isOk = demodEM4x05resp(&dummy);
918 if (isOk)
919 PrintAndLog("Write Verified");
920 else
921 PrintAndLog("Write could not be verified");
922 return isOk;
923 }
924
925 void printEM4x05config(uint32_t wordData) {
926 uint16_t datarate = (((wordData & 0x3F)+1)*2);
927 uint8_t encoder = ((wordData >> 6) & 0xF);
928 char enc[14];
929 memset(enc,0,sizeof(enc));
930
931 uint8_t PSKcf = (wordData >> 10) & 0x3;
932 char cf[10];
933 memset(cf,0,sizeof(cf));
934 uint8_t delay = (wordData >> 12) & 0x3;
935 char cdelay[33];
936 memset(cdelay,0,sizeof(cdelay));
937 uint8_t LWR = (wordData >> 14) & 0xF; //last word read
938
939 switch (encoder) {
940 case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
941 case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
942 case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
943 case 3: snprintf(enc,sizeof(enc),"Miller"); break;
944 case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
945 case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
946 case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
947 case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
948 case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
949 case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
950 default: snprintf(enc,sizeof(enc),"Unknown"); break;
951 }
952
953 switch (PSKcf) {
954 case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
955 case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
956 case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
957 case 3: snprintf(cf,sizeof(cf),"unknown"); break;
958 }
959
960 switch (delay) {
961 case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
962 case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
963 case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
964 case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
965 }
966 PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
967 PrintAndLog("Config Breakdown:", wordData);
968 PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
969 PrintAndLog(" Encoder: %u | %s", encoder, enc);
970 PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
971 PrintAndLog(" Delay: %u | %s", delay, cdelay);
972 PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR);
973 PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");
974 PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");
975 PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");
976 PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required");
977 PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
978 PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
979 PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
980 PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
981 }
982
983 void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
984 switch (chipType) {
985 case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
986 case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
987 case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
988 //add more here when known
989 default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
990 }
991
992 switch (cap) {
993 case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
994 case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
995 case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
996 case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
997 default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
998 }
999
1000 PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
1001 if (serial != 0) {
1002 PrintAndLog("\n Serial #: %08X\n", serial);
1003 }
1004 }
1005
1006 void printEM4x05ProtectionBits(uint32_t wordData) {
1007 for (uint8_t i = 0; i < 15; i++) {
1008 PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1009 if (i==14) {
1010 PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1011 }
1012 }
1013 }
1014
1015 //quick test for EM4x05/EM4x69 tag
1016 bool EM4x05Block0Test(uint32_t *wordData) {
1017 // return (EM4x05ReadWord_ext(0,0,false,wordData) == 1);
1018 return false;
1019 }
1020
1021 int CmdEM4x05Info(const char *Cmd) {
1022 /*
1023 uint32_t pwd;
1024 uint32_t wordData = 0;
1025 bool usePwd = false;
1026 uint8_t ctmp = param_getchar(Cmd, 0);
1027 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_info();
1028
1029 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
1030 pwd = param_get32ex(Cmd, 0, 1, 16);
1031
1032 if ( pwd != 1 )
1033 usePwd = true;
1034
1035 // read word 0 (chip info)
1036 // block 0 can be read even without a password.
1037 if ( !EM4x05Block0Test(&wordData) )
1038 return -1;
1039
1040 uint8_t chipType = (wordData >> 1) & 0xF;
1041 uint8_t cap = (wordData >> 5) & 3;
1042 uint16_t custCode = (wordData >> 9) & 0x3FF;
1043
1044 // read word 1 (serial #) doesn't need pwd
1045 wordData = 0;
1046 if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
1047 //failed, but continue anyway...
1048 }
1049 printEM4x05info(chipType, cap, custCode, wordData);
1050
1051 // read word 4 (config block)
1052 // needs password if one is set
1053 wordData = 0;
1054 if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 )
1055 return 0;
1056
1057 printEM4x05config(wordData);
1058
1059 // read word 14 and 15 to see which is being used for the protection bits
1060 wordData = 0;
1061 if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
1062 return 0;
1063 }
1064 // if status bit says this is not the used protection word
1065 if (!(wordData & 0x8000)) {
1066 if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
1067 return 0;
1068 }
1069 }
1070 if (!(wordData & 0x8000)) {
1071 //something went wrong
1072 return 0;
1073 }
1074 printEM4x05ProtectionBits(wordData);
1075
1076 */
1077 return 1;
1078 }
1079
1080 static command_t CommandTable[] = {
1081 {"help", CmdHelp, 1, "This help"},
1082 {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
1083 {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
1084 {"410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
1085 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
1086 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
1087 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
1088 {"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"},
1089 {"4x05info", CmdEM4x05Info, 0, "Tag information EM4x05/EM4x69"},
1090 {"4x05read", CmdEM4x05Read, 0, "read word data from EM4205/4305"},
1091 {"4x05write", CmdEM4x05Write, 0, "write word data to EM4205/4305"},
1092 {"4x50read", CmdEM4x50Read, 0, "read word data from EM4x50"},
1093 {"4x50write", CmdEM4x50Write, 0, "write word data to EM4x50"},
1094 {"4x50dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"},
1095 {NULL, NULL, 0, NULL}
1096 };
1097
1098 int CmdLFEM4X(const char *Cmd) {
1099 clearCommandBuffer();
1100 CmdsParse(CommandTable, Cmd);
1101 return 0;
1102 }
1103
1104 int CmdHelp(const char *Cmd) {
1105 CmdsHelp(CommandTable);
1106 return 0;
1107 }
Impressum, Datenschutz