]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iclass.c
CHG: fiddled with the headerfiles... and makefile... Tried to make them behave...
[proxmark3-svn] / armsrc / iclass.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
18 //
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
23 //
24 // + 22279: : 0c 03 e8 01
25 //
26 // ...with an incorrect answer...
27 //
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
29 //
30 // We still left the error signalling bytes in the traces like 0xbb
31 //
32 // A correct trace should look like this:
33 //
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
36 //
37 //-----------------------------------------------------------------------------
38
39 #include "apps.h"
40 #include "cmd.h"
41 // Needed for CRC in emulation mode;
42 // same construction as in ISO 14443;
43 // different initial value (CRC_ICLASS)
44 #include "iso14443crc.h"
45 #include "iso15693tools.h"
46 #include "protocols.h"
47 #include "optimized_cipher.h"
48
49 static int timeout = 4096;
50
51 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
52
53 //-----------------------------------------------------------------------------
54 // The software UART that receives commands from the reader, and its state
55 // variables.
56 //-----------------------------------------------------------------------------
57 static struct {
58 enum {
59 STATE_UNSYNCD,
60 STATE_START_OF_COMMUNICATION,
61 STATE_RECEIVING
62 } state;
63 uint16_t shiftReg;
64 int bitCnt;
65 int byteCnt;
66 int byteCntMax;
67 int posCnt;
68 int nOutOfCnt;
69 int OutOfCnt;
70 int syncBit;
71 int samples;
72 int highCnt;
73 int swapper;
74 int counter;
75 int bitBuffer;
76 int dropPosition;
77 uint8_t *output;
78 } Uart;
79
80 static RAMFUNC int OutOfNDecoding(int bit)
81 {
82 //int error = 0;
83 int bitright;
84
85 if(!Uart.bitBuffer) {
86 Uart.bitBuffer = bit ^ 0xFF0;
87 return FALSE;
88 }
89 else {
90 Uart.bitBuffer <<= 4;
91 Uart.bitBuffer ^= bit;
92 }
93
94 /*if(Uart.swapper) {
95 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
96 Uart.byteCnt++;
97 Uart.swapper = 0;
98 if(Uart.byteCnt > 15) { return TRUE; }
99 }
100 else {
101 Uart.swapper = 1;
102 }*/
103
104 if(Uart.state != STATE_UNSYNCD) {
105 Uart.posCnt++;
106
107 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
108 bit = 0x00;
109 }
110 else {
111 bit = 0x01;
112 }
113 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
114 bitright = 0x00;
115 }
116 else {
117 bitright = 0x01;
118 }
119 if(bit != bitright) { bit = bitright; }
120
121
122 // So, now we only have to deal with *bit*, lets see...
123 if(Uart.posCnt == 1) {
124 // measurement first half bitperiod
125 if(!bit) {
126 // Drop in first half means that we are either seeing
127 // an SOF or an EOF.
128
129 if(Uart.nOutOfCnt == 1) {
130 // End of Communication
131 Uart.state = STATE_UNSYNCD;
132 Uart.highCnt = 0;
133 if(Uart.byteCnt == 0) {
134 // Its not straightforward to show single EOFs
135 // So just leave it and do not return TRUE
136 Uart.output[0] = 0xf0;
137 Uart.byteCnt++;
138 }
139 else {
140 return TRUE;
141 }
142 }
143 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
144 // When not part of SOF or EOF, it is an error
145 Uart.state = STATE_UNSYNCD;
146 Uart.highCnt = 0;
147 //error = 4;
148 }
149 }
150 }
151 else {
152 // measurement second half bitperiod
153 // Count the bitslot we are in... (ISO 15693)
154 Uart.nOutOfCnt++;
155
156 if(!bit) {
157 if(Uart.dropPosition) {
158 if(Uart.state == STATE_START_OF_COMMUNICATION) {
159 //error = 1;
160 }
161 else {
162 //error = 7;
163 }
164 // It is an error if we already have seen a drop in current frame
165 Uart.state = STATE_UNSYNCD;
166 Uart.highCnt = 0;
167 }
168 else {
169 Uart.dropPosition = Uart.nOutOfCnt;
170 }
171 }
172
173 Uart.posCnt = 0;
174
175
176 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
177 Uart.nOutOfCnt = 0;
178
179 if(Uart.state == STATE_START_OF_COMMUNICATION) {
180 if(Uart.dropPosition == 4) {
181 Uart.state = STATE_RECEIVING;
182 Uart.OutOfCnt = 256;
183 }
184 else if(Uart.dropPosition == 3) {
185 Uart.state = STATE_RECEIVING;
186 Uart.OutOfCnt = 4;
187 //Uart.output[Uart.byteCnt] = 0xdd;
188 //Uart.byteCnt++;
189 }
190 else {
191 Uart.state = STATE_UNSYNCD;
192 Uart.highCnt = 0;
193 }
194 Uart.dropPosition = 0;
195 }
196 else {
197 // RECEIVING DATA
198 // 1 out of 4
199 if(!Uart.dropPosition) {
200 Uart.state = STATE_UNSYNCD;
201 Uart.highCnt = 0;
202 //error = 9;
203 }
204 else {
205 Uart.shiftReg >>= 2;
206
207 // Swap bit order
208 Uart.dropPosition--;
209 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
210 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
211
212 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
213 Uart.bitCnt += 2;
214 Uart.dropPosition = 0;
215
216 if(Uart.bitCnt == 8) {
217 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
218 Uart.byteCnt++;
219 Uart.bitCnt = 0;
220 Uart.shiftReg = 0;
221 }
222 }
223 }
224 }
225 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
226 // RECEIVING DATA
227 // 1 out of 256
228 if(!Uart.dropPosition) {
229 Uart.state = STATE_UNSYNCD;
230 Uart.highCnt = 0;
231 //error = 3;
232 }
233 else {
234 Uart.dropPosition--;
235 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
236 Uart.byteCnt++;
237 Uart.bitCnt = 0;
238 Uart.shiftReg = 0;
239 Uart.nOutOfCnt = 0;
240 Uart.dropPosition = 0;
241 }
242 }
243
244 /*if(error) {
245 Uart.output[Uart.byteCnt] = 0xAA;
246 Uart.byteCnt++;
247 Uart.output[Uart.byteCnt] = error & 0xFF;
248 Uart.byteCnt++;
249 Uart.output[Uart.byteCnt] = 0xAA;
250 Uart.byteCnt++;
251 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
252 Uart.byteCnt++;
253 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
254 Uart.byteCnt++;
255 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
256 Uart.byteCnt++;
257 Uart.output[Uart.byteCnt] = 0xAA;
258 Uart.byteCnt++;
259 return TRUE;
260 }*/
261 }
262
263 }
264 else {
265 bit = Uart.bitBuffer & 0xf0;
266 bit >>= 4;
267 bit ^= 0x0F; // drops become 1s ;-)
268 if(bit) {
269 // should have been high or at least (4 * 128) / fc
270 // according to ISO this should be at least (9 * 128 + 20) / fc
271 if(Uart.highCnt == 8) {
272 // we went low, so this could be start of communication
273 // it turns out to be safer to choose a less significant
274 // syncbit... so we check whether the neighbour also represents the drop
275 Uart.posCnt = 1; // apparently we are busy with our first half bit period
276 Uart.syncBit = bit & 8;
277 Uart.samples = 3;
278 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
279 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
280 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
281 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
282 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
283 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
284 Uart.syncBit = 8;
285
286 // the first half bit period is expected in next sample
287 Uart.posCnt = 0;
288 Uart.samples = 3;
289 }
290 }
291 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
292
293 Uart.syncBit <<= 4;
294 Uart.state = STATE_START_OF_COMMUNICATION;
295 Uart.bitCnt = 0;
296 Uart.byteCnt = 0;
297 Uart.nOutOfCnt = 0;
298 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
299 Uart.dropPosition = 0;
300 Uart.shiftReg = 0;
301 //error = 0;
302 }
303 else {
304 Uart.highCnt = 0;
305 }
306 }
307 else {
308 if(Uart.highCnt < 8) {
309 Uart.highCnt++;
310 }
311 }
312 }
313
314 return FALSE;
315 }
316
317 //=============================================================================
318 // Manchester
319 //=============================================================================
320
321 static struct {
322 enum {
323 DEMOD_UNSYNCD,
324 DEMOD_START_OF_COMMUNICATION,
325 DEMOD_START_OF_COMMUNICATION2,
326 DEMOD_START_OF_COMMUNICATION3,
327 DEMOD_SOF_COMPLETE,
328 DEMOD_MANCHESTER_D,
329 DEMOD_MANCHESTER_E,
330 DEMOD_END_OF_COMMUNICATION,
331 DEMOD_END_OF_COMMUNICATION2,
332 DEMOD_MANCHESTER_F,
333 DEMOD_ERROR_WAIT
334 } state;
335 int bitCount;
336 int posCount;
337 int syncBit;
338 uint16_t shiftReg;
339 int buffer;
340 int buffer2;
341 int buffer3;
342 int buff;
343 int samples;
344 int len;
345 enum {
346 SUB_NONE,
347 SUB_FIRST_HALF,
348 SUB_SECOND_HALF,
349 SUB_BOTH
350 } sub;
351 uint8_t *output;
352 } Demod;
353
354 static RAMFUNC int ManchesterDecoding(int v)
355 {
356 int bit;
357 int modulation;
358 int error = 0;
359
360 bit = Demod.buffer;
361 Demod.buffer = Demod.buffer2;
362 Demod.buffer2 = Demod.buffer3;
363 Demod.buffer3 = v;
364
365 if(Demod.buff < 3) {
366 Demod.buff++;
367 return FALSE;
368 }
369
370 if(Demod.state==DEMOD_UNSYNCD) {
371 Demod.output[Demod.len] = 0xfa;
372 Demod.syncBit = 0;
373 //Demod.samples = 0;
374 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
375
376 if(bit & 0x08) {
377 Demod.syncBit = 0x08;
378 }
379
380 if(bit & 0x04) {
381 if(Demod.syncBit) {
382 bit <<= 4;
383 }
384 Demod.syncBit = 0x04;
385 }
386
387 if(bit & 0x02) {
388 if(Demod.syncBit) {
389 bit <<= 2;
390 }
391 Demod.syncBit = 0x02;
392 }
393
394 if(bit & 0x01 && Demod.syncBit) {
395 Demod.syncBit = 0x01;
396 }
397
398 if(Demod.syncBit) {
399 Demod.len = 0;
400 Demod.state = DEMOD_START_OF_COMMUNICATION;
401 Demod.sub = SUB_FIRST_HALF;
402 Demod.bitCount = 0;
403 Demod.shiftReg = 0;
404 Demod.samples = 0;
405 if(Demod.posCount) {
406 //if(trigger) LED_A_OFF(); // Not useful in this case...
407 switch(Demod.syncBit) {
408 case 0x08: Demod.samples = 3; break;
409 case 0x04: Demod.samples = 2; break;
410 case 0x02: Demod.samples = 1; break;
411 case 0x01: Demod.samples = 0; break;
412 }
413 // SOF must be long burst... otherwise stay unsynced!!!
414 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
415 Demod.state = DEMOD_UNSYNCD;
416 }
417 }
418 else {
419 // SOF must be long burst... otherwise stay unsynced!!!
420 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
421 Demod.state = DEMOD_UNSYNCD;
422 error = 0x88;
423 return FALSE;
424 }
425
426 // TODO: use this error value to print? Ask Holiman.
427 // 2016-01-08 iceman
428 }
429 error = 0;
430 }
431 }
432 else {
433 modulation = bit & Demod.syncBit;
434 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
435
436 Demod.samples += 4;
437
438 if(Demod.posCount==0) {
439 Demod.posCount = 1;
440 if(modulation) {
441 Demod.sub = SUB_FIRST_HALF;
442 }
443 else {
444 Demod.sub = SUB_NONE;
445 }
446 }
447 else {
448 Demod.posCount = 0;
449 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
450 if(Demod.state!=DEMOD_ERROR_WAIT) {
451 Demod.state = DEMOD_ERROR_WAIT;
452 Demod.output[Demod.len] = 0xaa;
453 error = 0x01;
454 }
455 }*/
456 //else if(modulation) {
457 if(modulation) {
458 if(Demod.sub == SUB_FIRST_HALF) {
459 Demod.sub = SUB_BOTH;
460 }
461 else {
462 Demod.sub = SUB_SECOND_HALF;
463 }
464 }
465 else if(Demod.sub == SUB_NONE) {
466 if(Demod.state == DEMOD_SOF_COMPLETE) {
467 Demod.output[Demod.len] = 0x0f;
468 Demod.len++;
469 Demod.state = DEMOD_UNSYNCD;
470 // error = 0x0f;
471 return TRUE;
472 }
473 else {
474 Demod.state = DEMOD_ERROR_WAIT;
475 error = 0x33;
476 }
477 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
478 Demod.state = DEMOD_ERROR_WAIT;
479 Demod.output[Demod.len] = 0xaa;
480 error = 0x01;
481 }*/
482 }
483
484 switch(Demod.state) {
485 case DEMOD_START_OF_COMMUNICATION:
486 if(Demod.sub == SUB_BOTH) {
487 //Demod.state = DEMOD_MANCHESTER_D;
488 Demod.state = DEMOD_START_OF_COMMUNICATION2;
489 Demod.posCount = 1;
490 Demod.sub = SUB_NONE;
491 }
492 else {
493 Demod.output[Demod.len] = 0xab;
494 Demod.state = DEMOD_ERROR_WAIT;
495 error = 0xd2;
496 }
497 break;
498 case DEMOD_START_OF_COMMUNICATION2:
499 if(Demod.sub == SUB_SECOND_HALF) {
500 Demod.state = DEMOD_START_OF_COMMUNICATION3;
501 }
502 else {
503 Demod.output[Demod.len] = 0xab;
504 Demod.state = DEMOD_ERROR_WAIT;
505 error = 0xd3;
506 }
507 break;
508 case DEMOD_START_OF_COMMUNICATION3:
509 if(Demod.sub == SUB_SECOND_HALF) {
510 // Demod.state = DEMOD_MANCHESTER_D;
511 Demod.state = DEMOD_SOF_COMPLETE;
512 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
513 //Demod.len++;
514 }
515 else {
516 Demod.output[Demod.len] = 0xab;
517 Demod.state = DEMOD_ERROR_WAIT;
518 error = 0xd4;
519 }
520 break;
521 case DEMOD_SOF_COMPLETE:
522 case DEMOD_MANCHESTER_D:
523 case DEMOD_MANCHESTER_E:
524 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
525 // 00001111 = 1 (0 in 14443)
526 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
527 Demod.bitCount++;
528 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
529 Demod.state = DEMOD_MANCHESTER_D;
530 }
531 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
532 Demod.bitCount++;
533 Demod.shiftReg >>= 1;
534 Demod.state = DEMOD_MANCHESTER_E;
535 }
536 else if(Demod.sub == SUB_BOTH) {
537 Demod.state = DEMOD_MANCHESTER_F;
538 }
539 else {
540 Demod.state = DEMOD_ERROR_WAIT;
541 error = 0x55;
542 }
543 break;
544
545 case DEMOD_MANCHESTER_F:
546 // Tag response does not need to be a complete byte!
547 if(Demod.len > 0 || Demod.bitCount > 0) {
548 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
549 Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
550 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
551 Demod.len++;
552 }
553
554 Demod.state = DEMOD_UNSYNCD;
555 return TRUE;
556 }
557 else {
558 Demod.output[Demod.len] = 0xad;
559 Demod.state = DEMOD_ERROR_WAIT;
560 error = 0x03;
561 }
562 break;
563
564 case DEMOD_ERROR_WAIT:
565 Demod.state = DEMOD_UNSYNCD;
566 break;
567
568 default:
569 Demod.output[Demod.len] = 0xdd;
570 Demod.state = DEMOD_UNSYNCD;
571 break;
572 }
573
574 /*if(Demod.bitCount>=9) {
575 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
576 Demod.len++;
577
578 Demod.parityBits <<= 1;
579 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
580
581 Demod.bitCount = 0;
582 Demod.shiftReg = 0;
583 }*/
584 if(Demod.bitCount>=8) {
585 Demod.shiftReg >>= 1;
586 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
587 Demod.len++;
588 Demod.bitCount = 0;
589 Demod.shiftReg = 0;
590 }
591
592 if(error) {
593 Demod.output[Demod.len] = 0xBB;
594 Demod.len++;
595 Demod.output[Demod.len] = error & 0xFF;
596 Demod.len++;
597 Demod.output[Demod.len] = 0xBB;
598 Demod.len++;
599 Demod.output[Demod.len] = bit & 0xFF;
600 Demod.len++;
601 Demod.output[Demod.len] = Demod.buffer & 0xFF;
602 Demod.len++;
603 // Look harder ;-)
604 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
605 Demod.len++;
606 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
607 Demod.len++;
608 Demod.output[Demod.len] = 0xBB;
609 Demod.len++;
610 return TRUE;
611 }
612
613 }
614
615 } // end (state != UNSYNCED)
616
617 return FALSE;
618 }
619
620 //=============================================================================
621 // Finally, a `sniffer' for iClass communication
622 // Both sides of communication!
623 //=============================================================================
624
625 //-----------------------------------------------------------------------------
626 // Record the sequence of commands sent by the reader to the tag, with
627 // triggering so that we start recording at the point that the tag is moved
628 // near the reader.
629 //-----------------------------------------------------------------------------
630 void RAMFUNC SnoopIClass(void)
631 {
632 // We won't start recording the frames that we acquire until we trigger;
633 // a good trigger condition to get started is probably when we see a
634 // response from the tag.
635 //int triggered = FALSE; // FALSE to wait first for card
636
637 // The command (reader -> tag) that we're receiving.
638 // The length of a received command will in most cases be no more than 18 bytes.
639 // So 32 should be enough!
640 #define ICLASS_BUFFER_SIZE 32
641 uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
642 // The response (tag -> reader) that we're receiving.
643 uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
644
645 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
646
647 // free all BigBuf memory
648 BigBuf_free();
649 // The DMA buffer, used to stream samples from the FPGA
650 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
651
652 clear_trace();
653 set_tracing(TRUE);
654
655 iso14a_set_trigger(FALSE);
656
657 int lastRxCounter;
658 uint8_t *upTo;
659 int smpl;
660 int maxBehindBy = 0;
661
662 // Count of samples received so far, so that we can include timing
663 // information in the trace buffer.
664 int samples = 0;
665 rsamples = 0;
666
667 // Set up the demodulator for tag -> reader responses.
668 Demod.output = tagToReaderResponse;
669 Demod.len = 0;
670 Demod.state = DEMOD_UNSYNCD;
671
672 // Setup for the DMA.
673 FpgaSetupSsc();
674 upTo = dmaBuf;
675 lastRxCounter = DMA_BUFFER_SIZE;
676 // Setup and start DMA.
677 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
678 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
679 return;
680 }
681
682 // And the reader -> tag commands
683 memset(&Uart, 0, sizeof(Uart));
684 Uart.output = readerToTagCmd;
685 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
686 Uart.state = STATE_UNSYNCD;
687
688 // And put the FPGA in the appropriate mode
689 // Signal field is off with the appropriate LED
690 LED_D_OFF();
691 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
692 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
693
694 uint32_t time_0 = GetCountSspClk();
695 uint32_t time_start = 0;
696 uint32_t time_stop = 0;
697
698 int div = 0;
699 //int div2 = 0;
700 int decbyte = 0;
701 int decbyter = 0;
702
703 // And now we loop, receiving samples.
704 for(;;) {
705 LED_A_ON();
706 WDT_HIT();
707 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1);
708
709 if ( behindBy > maxBehindBy) {
710 maxBehindBy = behindBy;
711 if ( behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
712 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
713 goto done;
714 }
715 }
716 if( behindBy < 1) continue;
717
718 LED_A_OFF();
719 smpl = upTo[0];
720 upTo++;
721 lastRxCounter -= 1;
722 if (upTo - dmaBuf > DMA_BUFFER_SIZE) {
723 upTo -= DMA_BUFFER_SIZE;
724 lastRxCounter += DMA_BUFFER_SIZE;
725 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
726 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
727 }
728
729 //samples += 4;
730 samples += 1;
731
732 if(smpl & 0xF)
733 decbyte ^= (1 << (3 - div));
734
735
736 // FOR READER SIDE COMMUMICATION...
737
738 decbyter <<= 2;
739 decbyter ^= (smpl & 0x30);
740
741 ++div;
742
743 if (( div + 1) % 2 == 0) {
744 smpl = decbyter;
745 if ( OutOfNDecoding((smpl & 0xF0) >> 4)) {
746 rsamples = samples - Uart.samples;
747 time_stop = (GetCountSspClk()-time_0) << 4;
748 LED_C_ON();
749
750 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
751 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
752 if(tracing) {
753 uint8_t parity[MAX_PARITY_SIZE];
754 GetParity(Uart.output, Uart.byteCnt, parity);
755 LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE);
756 }
757
758 /* And ready to receive another command. */
759 Uart.state = STATE_UNSYNCD;
760 /* And also reset the demod code, which might have been */
761 /* false-triggered by the commands from the reader. */
762 Demod.state = DEMOD_UNSYNCD;
763 LED_B_OFF();
764 Uart.byteCnt = 0;
765 } else {
766 time_start = (GetCountSspClk()-time_0) << 4;
767 }
768 decbyter = 0;
769 }
770
771 if(div > 3) {
772 smpl = decbyte;
773 if(ManchesterDecoding(smpl & 0x0F)) {
774 time_stop = (GetCountSspClk()-time_0) << 4;
775
776 rsamples = samples - Demod.samples;
777 LED_B_ON();
778
779 if(tracing) {
780 uint8_t parity[MAX_PARITY_SIZE];
781 GetParity(Demod.output, Demod.len, parity);
782 LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE);
783 }
784
785 // And ready to receive another response.
786 memset(&Demod, 0, sizeof(Demod));
787 Demod.output = tagToReaderResponse;
788 Demod.state = DEMOD_UNSYNCD;
789 LED_C_OFF();
790 } else {
791 time_start = (GetCountSspClk()-time_0) << 4;
792 }
793
794 div = 0;
795 decbyte = 0x00;
796 }
797
798 if (BUTTON_PRESS()) {
799 DbpString("cancelled_a");
800 goto done;
801 }
802 }
803
804 DbpString("COMMAND FINISHED");
805
806 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
807 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
808
809 done:
810 FpgaDisableSscDma();
811 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
812 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
813 LEDsoff();
814 set_tracing(FALSE);
815 }
816
817 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
818 int i;
819 for(i = 0; i < 8; i++)
820 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
821 }
822
823 //-----------------------------------------------------------------------------
824 // Wait for commands from reader
825 // Stop when button is pressed
826 // Or return TRUE when command is captured
827 //-----------------------------------------------------------------------------
828 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
829 {
830 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
831 // only, since we are receiving, not transmitting).
832 // Signal field is off with the appropriate LED
833 LED_D_OFF();
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
835
836 // Now run a `software UART' on the stream of incoming samples.
837 Uart.output = received;
838 Uart.byteCntMax = maxLen;
839 Uart.state = STATE_UNSYNCD;
840
841 for(;;) {
842 WDT_HIT();
843
844 if(BUTTON_PRESS()) return FALSE;
845
846 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
847 AT91C_BASE_SSC->SSC_THR = 0x00;
848 }
849 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
850 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
851
852 if(OutOfNDecoding(b & 0x0f)) {
853 *len = Uart.byteCnt;
854 return TRUE;
855 }
856 }
857 }
858 }
859
860 static uint8_t encode4Bits(const uint8_t b)
861 {
862 uint8_t c = b & 0xF;
863 // OTA, the least significant bits first
864 // The columns are
865 // 1 - Bit value to send
866 // 2 - Reversed (big-endian)
867 // 3 - Encoded
868 // 4 - Hex values
869
870 switch(c){
871 // 1 2 3 4
872 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
873 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
874 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
875 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
876 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
877 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
878 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
879 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
880 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
881 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
882 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
883 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
884 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
885 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
886 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
887 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
888
889 }
890 }
891
892 //-----------------------------------------------------------------------------
893 // Prepare tag messages
894 //-----------------------------------------------------------------------------
895 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
896 {
897
898 /*
899 * SOF comprises 3 parts;
900 * * An unmodulated time of 56.64 us
901 * * 24 pulses of 423.75 KHz (fc/32)
902 * * A logic 1, which starts with an unmodulated time of 18.88us
903 * followed by 8 pulses of 423.75kHz (fc/32)
904 *
905 *
906 * EOF comprises 3 parts:
907 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
908 * time of 18.88us.
909 * - 24 pulses of fc/32
910 * - An unmodulated time of 56.64 us
911 *
912 *
913 * A logic 0 starts with 8 pulses of fc/32
914 * followed by an unmodulated time of 256/fc (~18,88us).
915 *
916 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
917 * 8 pulses of fc/32 (also 18.88us)
918 *
919 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
920 * works like this.
921 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
922 * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us
923 *
924 * In this mode the SOF can be written as 00011101 = 0x1D
925 * The EOF can be written as 10111000 = 0xb8
926 * A logic 1 is 01
927 * A logic 0 is 10
928 *
929 * */
930
931 int i;
932
933 ToSendReset();
934
935 // Send SOF
936 ToSend[++ToSendMax] = 0x1D;
937
938 for(i = 0; i < len; i++) {
939 uint8_t b = cmd[i];
940 ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
941 ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
942 }
943
944 // Send EOF
945 ToSend[++ToSendMax] = 0xB8;
946 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
947 // Convert from last byte pos to length
948 ToSendMax++;
949 }
950
951 // Only SOF
952 static void CodeIClassTagSOF()
953 {
954 //So far a dummy implementation, not used
955 //int lastProxToAirDuration =0;
956
957 ToSendReset();
958 // Send SOF
959 ToSend[++ToSendMax] = 0x1D;
960 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
961
962 // Convert from last byte pos to length
963 ToSendMax++;
964 }
965 #define MODE_SIM_CSN 0
966 #define MODE_EXIT_AFTER_MAC 1
967 #define MODE_FULLSIM 2
968
969 int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
970 /**
971 * @brief SimulateIClass simulates an iClass card.
972 * @param arg0 type of simulation
973 * - 0 uses the first 8 bytes in usb data as CSN
974 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
975 * in the usb data. This mode collects MAC from the reader, in order to do an offline
976 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
977 * - Other : Uses the default CSN (031fec8af7ff12e0)
978 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
979 * @param arg2
980 * @param datain
981 */
982 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
983 {
984 uint32_t simType = arg0;
985 uint32_t numberOfCSNS = arg1;
986 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
987
988 // Enable and clear the trace
989 clear_trace();
990 set_tracing(TRUE);
991
992 //Use the emulator memory for SIM
993 uint8_t *emulator = BigBuf_get_EM_addr();
994
995 if(simType == 0) {
996 // Use the CSN from commandline
997 memcpy(emulator, datain, 8);
998 doIClassSimulation(MODE_SIM_CSN,NULL);
999 }else if(simType == 1)
1000 {
1001 //Default CSN
1002 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1003 // Use the CSN from commandline
1004 memcpy(emulator, csn_crc, 8);
1005 doIClassSimulation(MODE_SIM_CSN,NULL);
1006 }
1007 else if(simType == 2)
1008 {
1009
1010 uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
1011 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
1012 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1013 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1014 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1015 int i = 0;
1016 for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
1017 {
1018 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1019
1020 memcpy(emulator, datain+(i*8), 8);
1021 if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
1022 {
1023 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1024 return; // Button pressed
1025 }
1026 }
1027 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1028
1029 }else if(simType == 3){
1030 //This is 'full sim' mode, where we use the emulator storage for data.
1031 doIClassSimulation(MODE_FULLSIM, NULL);
1032 }
1033 else{
1034 // We may want a mode here where we hardcode the csns to use (from proxclone).
1035 // That will speed things up a little, but not required just yet.
1036 Dbprintf("The mode is not implemented, reserved for future use");
1037 }
1038 Dbprintf("Done...");
1039 set_tracing(FALSE);
1040 }
1041 void AppendCrc(uint8_t* data, int len)
1042 {
1043 ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
1044 }
1045
1046 /**
1047 * @brief Does the actual simulation
1048 * @param csn - csn to use
1049 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1050 */
1051 int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
1052 {
1053 // free eventually allocated BigBuf memory
1054 BigBuf_free_keep_EM();
1055
1056 State cipher_state;
1057 // State cipher_state_reserve;
1058 uint8_t *csn = BigBuf_get_EM_addr();
1059 uint8_t *emulator = csn;
1060 uint8_t sof_data[] = { 0x0F} ;
1061 // CSN followed by two CRC bytes
1062 uint8_t anticoll_data[10] = { 0 };
1063 uint8_t csn_data[10] = { 0 };
1064 memcpy(csn_data,csn,sizeof(csn_data));
1065 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1066
1067 // Construct anticollision-CSN
1068 rotateCSN(csn_data,anticoll_data);
1069
1070 // Compute CRC on both CSNs
1071 ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
1072 ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
1073
1074 uint8_t diversified_key[8] = { 0 };
1075 // e-Purse
1076 uint8_t card_challenge_data[8] = { 0x00 };
1077 if(simulationMode == MODE_FULLSIM)
1078 {
1079 //The diversified key should be stored on block 3
1080 //Get the diversified key from emulator memory
1081 memcpy(diversified_key, emulator+(8*3),8);
1082
1083 //Card challenge, a.k.a e-purse is on block 2
1084 memcpy(card_challenge_data,emulator + (8 * 2) , 8);
1085 //Precalculate the cipher state, feeding it the CC
1086 cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
1087
1088 }
1089
1090 int exitLoop = 0;
1091 // Reader 0a
1092 // Tag 0f
1093 // Reader 0c
1094 // Tag anticoll. CSN
1095 // Reader 81 anticoll. CSN
1096 // Tag CSN
1097
1098 uint8_t *modulated_response;
1099 int modulated_response_size = 0;
1100 uint8_t* trace_data = NULL;
1101 int trace_data_size = 0;
1102
1103
1104 // Respond SOF -- takes 1 bytes
1105 uint8_t *resp_sof = BigBuf_malloc(2);
1106 int resp_sof_Len;
1107
1108 // Anticollision CSN (rotated CSN)
1109 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1110 uint8_t *resp_anticoll = BigBuf_malloc(28);
1111 int resp_anticoll_len;
1112
1113 // CSN
1114 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1115 uint8_t *resp_csn = BigBuf_malloc(30);
1116 int resp_csn_len;
1117
1118 // e-Purse
1119 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1120 uint8_t *resp_cc = BigBuf_malloc(20);
1121 int resp_cc_len;
1122
1123 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1124 int len;
1125
1126 // Prepare card messages
1127 ToSendMax = 0;
1128
1129 // First card answer: SOF
1130 CodeIClassTagSOF();
1131 memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
1132
1133 // Anticollision CSN
1134 CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
1135 memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
1136
1137 // CSN
1138 CodeIClassTagAnswer(csn_data, sizeof(csn_data));
1139 memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
1140
1141 // e-Purse
1142 CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
1143 memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
1144
1145 //This is used for responding to READ-block commands or other data which is dynamically generated
1146 //First the 'trace'-data, not encoded for FPGA
1147 uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1148 //Then storage for the modulated data
1149 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1150 uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2);
1151
1152 // Start from off (no field generated)
1153 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1154 //SpinDelay(200);
1155 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1156 SpinDelay(100);
1157 StartCountSspClk();
1158 // We need to listen to the high-frequency, peak-detected path.
1159 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1160 FpgaSetupSsc();
1161
1162 // To control where we are in the protocol
1163 int cmdsRecvd = 0;
1164 uint32_t time_0 = GetCountSspClk();
1165 uint32_t t2r_time =0;
1166 uint32_t r2t_time =0;
1167
1168 LED_A_ON();
1169 bool buttonPressed = false;
1170 uint8_t response_delay = 1;
1171 while(!exitLoop) {
1172 response_delay = 1;
1173 LED_B_OFF();
1174 //Signal tracer
1175 // Can be used to get a trigger for an oscilloscope..
1176 LED_C_OFF();
1177
1178 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1179 buttonPressed = true;
1180 break;
1181 }
1182 r2t_time = GetCountSspClk();
1183 //Signal tracer
1184 LED_C_ON();
1185
1186 // Okay, look at the command now.
1187 if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
1188 // Reader in anticollission phase
1189 modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
1190 trace_data = sof_data;
1191 trace_data_size = sizeof(sof_data);
1192 } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
1193 // Reader asks for anticollission CSN
1194 modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
1195 trace_data = anticoll_data;
1196 trace_data_size = sizeof(anticoll_data);
1197 //DbpString("Reader requests anticollission CSN:");
1198 } else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
1199 // Reader selects anticollission CSN.
1200 // Tag sends the corresponding real CSN
1201 modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
1202 trace_data = csn_data;
1203 trace_data_size = sizeof(csn_data);
1204 //DbpString("Reader selects anticollission CSN:");
1205 } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
1206 // Read e-purse (88 02)
1207 modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
1208 trace_data = card_challenge_data;
1209 trace_data_size = sizeof(card_challenge_data);
1210 LED_B_ON();
1211 } else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
1212 // Reader random and reader MAC!!!
1213 if(simulationMode == MODE_FULLSIM)
1214 {
1215 //NR, from reader, is in receivedCmd +1
1216 opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
1217
1218 trace_data = data_generic_trace;
1219 trace_data_size = 4;
1220 CodeIClassTagAnswer(trace_data , trace_data_size);
1221 memcpy(data_response, ToSend, ToSendMax);
1222 modulated_response = data_response;
1223 modulated_response_size = ToSendMax;
1224 response_delay = 0;//We need to hurry here...
1225 //exitLoop = true;
1226 }else
1227 { //Not fullsim, we don't respond
1228 // We do not know what to answer, so lets keep quiet
1229 modulated_response = resp_sof; modulated_response_size = 0;
1230 trace_data = NULL;
1231 trace_data_size = 0;
1232 if (simulationMode == MODE_EXIT_AFTER_MAC){
1233 // dbprintf:ing ...
1234 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1235 ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1236 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1237 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1238 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1239 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1240 if (reader_mac_buf != NULL)
1241 {
1242 memcpy(reader_mac_buf,receivedCmd+1,8);
1243 }
1244 exitLoop = true;
1245 }
1246 }
1247
1248 } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
1249 // Reader ends the session
1250 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1251 trace_data = NULL;
1252 trace_data_size = 0;
1253 } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
1254 //Read block
1255 uint16_t blk = receivedCmd[1];
1256 //Take the data...
1257 memcpy(data_generic_trace, emulator+(blk << 3),8);
1258 //Add crc
1259 AppendCrc(data_generic_trace, 8);
1260 trace_data = data_generic_trace;
1261 trace_data_size = 10;
1262 CodeIClassTagAnswer(trace_data , trace_data_size);
1263 memcpy(data_response, ToSend, ToSendMax);
1264 modulated_response = data_response;
1265 modulated_response_size = ToSendMax;
1266 }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
1267 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1268 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1269 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1270 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1271
1272 //Take the data...
1273 memcpy(data_generic_trace, receivedCmd+2,8);
1274 //Add crc
1275 AppendCrc(data_generic_trace, 8);
1276 trace_data = data_generic_trace;
1277 trace_data_size = 10;
1278 CodeIClassTagAnswer(trace_data , trace_data_size);
1279 memcpy(data_response, ToSend, ToSendMax);
1280 modulated_response = data_response;
1281 modulated_response_size = ToSendMax;
1282 }
1283 else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
1284 {//Pagesel
1285 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1286 //Chips with a single page will not answer to this command
1287 // It appears we're fine ignoring this.
1288 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1289 }
1290 else {
1291 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1292 // Never seen this command before
1293 Dbprintf("Unhandled command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1294 len,
1295 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1296 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1297 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1298 // Do not respond
1299 modulated_response = resp_sof;
1300 modulated_response_size = 0; //order = 0;
1301 trace_data = NULL;
1302 trace_data_size = 0;
1303 }
1304
1305 if(cmdsRecvd > 100) {
1306 //DbpString("100 commands later...");
1307 //break;
1308 }
1309 else {
1310 cmdsRecvd++;
1311 }
1312 /**
1313 A legit tag has about 380us delay between reader EOT and tag SOF.
1314 **/
1315 if(modulated_response_size > 0) {
1316 SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
1317 t2r_time = GetCountSspClk();
1318 }
1319
1320 if (tracing) {
1321 uint8_t parity[MAX_PARITY_SIZE];
1322 GetParity(receivedCmd, len, parity);
1323 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE);
1324
1325 if (trace_data != NULL) {
1326 GetParity(trace_data, trace_data_size, parity);
1327 LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE);
1328 }
1329 if(!tracing)
1330 DbpString("Trace full");
1331
1332 }
1333 }
1334
1335 LEDsoff();
1336
1337 if(buttonPressed)
1338 DbpString("Button pressed");
1339
1340 return buttonPressed;
1341 }
1342
1343 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1344 {
1345 int i = 0, d=0;//, u = 0, d = 0;
1346 uint8_t b = 0;
1347
1348 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1349 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
1350
1351 AT91C_BASE_SSC->SSC_THR = 0x00;
1352 FpgaSetupSsc();
1353 while(!BUTTON_PRESS()) {
1354 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1355 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1356 }
1357 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1358 b = 0x00;
1359 if(d < delay) {
1360 d++;
1361 }
1362 else {
1363 if( i < respLen){
1364 b = resp[i];
1365 //Hack
1366 //b = 0xAC;
1367 }
1368 i++;
1369 }
1370 AT91C_BASE_SSC->SSC_THR = b;
1371 }
1372
1373 // if (i > respLen +4) break;
1374 if (i > respLen +1) break;
1375 }
1376
1377 return 0;
1378 }
1379
1380 /// THE READER CODE
1381
1382 //-----------------------------------------------------------------------------
1383 // Transmit the command (to the tag) that was placed in ToSend[].
1384 //-----------------------------------------------------------------------------
1385 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1386 {
1387 int c;
1388 volatile uint32_t r;
1389 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1390 AT91C_BASE_SSC->SSC_THR = 0x00;
1391 FpgaSetupSsc();
1392
1393 if (wait) {
1394 if(*wait < 10) *wait = 10;
1395
1396 for(c = 0; c < *wait;) {
1397 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1398 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1399 c++;
1400 }
1401 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1402 r = AT91C_BASE_SSC->SSC_RHR;
1403 (void)r;
1404 }
1405 WDT_HIT();
1406 }
1407 }
1408
1409
1410 uint8_t sendbyte;
1411 bool firstpart = TRUE;
1412 c = 0;
1413 for(;;) {
1414 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1415
1416 // DOUBLE THE SAMPLES!
1417 if(firstpart) {
1418 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1419 }
1420 else {
1421 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1422 c++;
1423 }
1424
1425 if(sendbyte == 0xff)
1426 sendbyte = 0xfe;
1427
1428 AT91C_BASE_SSC->SSC_THR = sendbyte;
1429 firstpart = !firstpart;
1430
1431 if(c >= len) break;
1432
1433 }
1434 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1435 r = AT91C_BASE_SSC->SSC_RHR;
1436 (void)r;
1437 }
1438
1439 WDT_HIT();
1440 }
1441 if (samples && wait) *samples = (c + *wait) << 3;
1442 }
1443
1444 //-----------------------------------------------------------------------------
1445 // Prepare iClass reader command to send to FPGA
1446 //-----------------------------------------------------------------------------
1447 void CodeIClassCommand(const uint8_t * cmd, int len)
1448 {
1449 int i, j, k;
1450 uint8_t b;
1451
1452 ToSendReset();
1453
1454 // Start of Communication: 1 out of 4
1455 ToSend[++ToSendMax] = 0xf0;
1456 ToSend[++ToSendMax] = 0x00;
1457 ToSend[++ToSendMax] = 0x0f;
1458 ToSend[++ToSendMax] = 0x00;
1459
1460 // Modulate the bytes
1461 for (i = 0; i < len; i++) {
1462 b = cmd[i];
1463 for(j = 0; j < 4; j++) {
1464 for(k = 0; k < 4; k++) {
1465 if(k == (b & 3)) {
1466 ToSend[++ToSendMax] = 0xf0;
1467 }
1468 else {
1469 ToSend[++ToSendMax] = 0x00;
1470 }
1471 }
1472 b >>= 2;
1473 }
1474 }
1475
1476 // End of Communication
1477 ToSend[++ToSendMax] = 0x00;
1478 ToSend[++ToSendMax] = 0x00;
1479 ToSend[++ToSendMax] = 0xf0;
1480 ToSend[++ToSendMax] = 0x00;
1481
1482 // Convert from last character reference to length
1483 ToSendMax++;
1484 }
1485
1486 void ReaderTransmitIClass(uint8_t* frame, int len)
1487 {
1488 int wait = 0;
1489 int samples = 0;
1490
1491 // This is tied to other size changes
1492 CodeIClassCommand(frame,len);
1493
1494 // Select the card
1495 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1496 if(trigger)
1497 LED_A_ON();
1498
1499 // Store reader command in buffer
1500 if (tracing) {
1501 uint8_t par[MAX_PARITY_SIZE];
1502 GetParity(frame, len, par);
1503 LogTrace(frame, len, rsamples, rsamples, par, TRUE);
1504 }
1505 }
1506
1507 //-----------------------------------------------------------------------------
1508 // Wait a certain time for tag response
1509 // If a response is captured return TRUE
1510 // If it takes too long return FALSE
1511 //-----------------------------------------------------------------------------
1512 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1513 {
1514 // buffer needs to be 512 bytes
1515 int c;
1516
1517 // Set FPGA mode to "reader listen mode", no modulation (listen
1518 // only, since we are receiving, not transmitting).
1519 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1520
1521 // Now get the answer from the card
1522 Demod.output = receivedResponse;
1523 Demod.len = 0;
1524 Demod.state = DEMOD_UNSYNCD;
1525
1526 uint8_t b;
1527 if (elapsed) *elapsed = 0;
1528
1529 bool skip = FALSE;
1530
1531 c = 0;
1532 for(;;) {
1533 WDT_HIT();
1534
1535 if(BUTTON_PRESS()) return FALSE;
1536
1537 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1538 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1539 if (elapsed) (*elapsed)++;
1540 }
1541 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1542 if(c < timeout)
1543 c++;
1544 else
1545 return FALSE;
1546
1547 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1548
1549 skip = !skip;
1550
1551 if(skip) continue;
1552
1553 if(ManchesterDecoding(b & 0x0f)) {
1554 *samples = c << 3;
1555 return TRUE;
1556 }
1557 }
1558 }
1559 }
1560
1561 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1562 {
1563 int samples = 0;
1564 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
1565 rsamples += samples;
1566 if (tracing) {
1567 uint8_t parity[MAX_PARITY_SIZE];
1568 GetParity(receivedAnswer, Demod.len, parity);
1569 LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE);
1570 }
1571 if(samples == 0) return FALSE;
1572 return Demod.len;
1573 }
1574
1575 void setupIclassReader()
1576 {
1577 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1578 // Reset trace buffer
1579 clear_trace();
1580 set_tracing(TRUE);
1581
1582 // Setup SSC
1583 FpgaSetupSsc();
1584 // Start from off (no field generated)
1585 // Signal field is off with the appropriate LED
1586 LED_D_OFF();
1587 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1588 SpinDelay(200);
1589
1590 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1591
1592 // Now give it time to spin up.
1593 // Signal field is on with the appropriate LED
1594 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1595 SpinDelay(200);
1596 LED_A_ON();
1597
1598 }
1599
1600 bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
1601 {
1602 while(retries-- > 0)
1603 {
1604 ReaderTransmitIClass(command, cmdsize);
1605 if(expected_size == ReaderReceiveIClass(resp)){
1606 return true;
1607 }
1608 }
1609 return false;//Error
1610 }
1611
1612 /**
1613 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1614 * @param card_data where the CSN and CC are stored for return
1615 * @return 0 = fail
1616 * 1 = Got CSN
1617 * 2 = Got CSN and CC
1618 */
1619 uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key)
1620 {
1621 static uint8_t act_all[] = { 0x0a };
1622 //static uint8_t identify[] = { 0x0c };
1623 static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
1624 static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1625 static uint8_t readcheck_cc[]= { 0x88, 0x02 };
1626 if (use_credit_key)
1627 readcheck_cc[0] = 0x18;
1628 else
1629 readcheck_cc[0] = 0x88;
1630
1631 uint8_t resp[ICLASS_BUFFER_SIZE];
1632
1633 uint8_t read_status = 0;
1634
1635 // Send act_all
1636 ReaderTransmitIClass(act_all, 1);
1637 // Card present?
1638 if(!ReaderReceiveIClass(resp)) return read_status;//Fail
1639 //Send Identify
1640 ReaderTransmitIClass(identify, 1);
1641 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1642 uint8_t len = ReaderReceiveIClass(resp);
1643 if(len != 10) return read_status;//Fail
1644
1645 //Copy the Anti-collision CSN to our select-packet
1646 memcpy(&select[1],resp,8);
1647 //Select the card
1648 ReaderTransmitIClass(select, sizeof(select));
1649 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1650 len = ReaderReceiveIClass(resp);
1651 if(len != 10) return read_status;//Fail
1652
1653 //Success - level 1, we got CSN
1654 //Save CSN in response data
1655 memcpy(card_data,resp,8);
1656
1657 //Flag that we got to at least stage 1, read CSN
1658 read_status = 1;
1659
1660 // Card selected, now read e-purse (cc)
1661 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1662 if(ReaderReceiveIClass(resp) == 8) {
1663 //Save CC (e-purse) in response data
1664 memcpy(card_data+8,resp,8);
1665 read_status++;
1666 }
1667
1668 return read_status;
1669 }
1670 uint8_t handshakeIclassTag(uint8_t *card_data){
1671 return handshakeIclassTag_ext(card_data, false);
1672 }
1673
1674
1675 // Reader iClass Anticollission
1676 void ReaderIClass(uint8_t arg0) {
1677
1678 uint8_t card_data[6 * 8]={0};
1679 memset(card_data, 0xFF, sizeof(card_data));
1680 uint8_t last_csn[8]={0};
1681
1682 //Read conf block CRC(0x01) => 0xfa 0x22
1683 uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22};
1684 //Read conf block CRC(0x05) => 0xde 0x64
1685 uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64};
1686
1687
1688 int read_status= 0;
1689 uint8_t result_status = 0;
1690 bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
1691 bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
1692 bool use_credit_key = false;
1693 if (arg0 & FLAG_ICLASS_READER_CEDITKEY)
1694 use_credit_key = true;
1695 set_tracing(TRUE);
1696 setupIclassReader();
1697
1698 uint16_t tryCnt=0;
1699 while(!BUTTON_PRESS())
1700 {
1701 if (try_once && tryCnt > 5) break;
1702
1703 tryCnt++;
1704
1705 if(!tracing) {
1706 DbpString("Trace full");
1707 break;
1708 }
1709 WDT_HIT();
1710
1711 read_status = handshakeIclassTag_ext(card_data, use_credit_key);
1712
1713 if(read_status == 0) continue;
1714 if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
1715 if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC;
1716
1717 // handshakeIclass returns CSN|CC, but the actual block
1718 // layout is CSN|CONFIG|CC, so here we reorder the data,
1719 // moving CC forward 8 bytes
1720 memcpy(card_data+16,card_data+8, 8);
1721 //Read block 1, config
1722 if(arg0 & FLAG_ICLASS_READER_CONF)
1723 {
1724 if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf),card_data+8, 10, 10))
1725 {
1726 result_status |= FLAG_ICLASS_READER_CONF;
1727 } else {
1728 Dbprintf("Failed to dump config block");
1729 }
1730 }
1731
1732 //Read block 5, AA
1733 if(arg0 & FLAG_ICLASS_READER_AA){
1734 if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA),card_data+(8*4), 10, 10))
1735 {
1736 result_status |= FLAG_ICLASS_READER_AA;
1737 } else {
1738 //Dbprintf("Failed to dump AA block");
1739 }
1740 }
1741
1742 // 0 : CSN
1743 // 1 : Configuration
1744 // 2 : e-purse
1745 // (3,4 write-only, kc and kd)
1746 // 5 Application issuer area
1747 //
1748 //Then we can 'ship' back the 8 * 5 bytes of data,
1749 // with 0xFF:s in block 3 and 4.
1750
1751 LED_B_ON();
1752 //Send back to client, but don't bother if we already sent this
1753 if(memcmp(last_csn, card_data, 8) != 0)
1754 {
1755 // If caller requires that we get CC, continue until we got it
1756 if( (arg0 & read_status & FLAG_ICLASS_READER_CC) || !(arg0 & FLAG_ICLASS_READER_CC))
1757 {
1758 cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data));
1759 if(abort_after_read) {
1760 LED_A_OFF();
1761 set_tracing(FALSE);
1762 return;
1763 }
1764 //Save that we already sent this....
1765 memcpy(last_csn, card_data, 8);
1766 }
1767 }
1768 LED_B_OFF();
1769 }
1770 cmd_send(CMD_ACK,0,0,0,card_data, 0);
1771 LED_A_OFF();
1772 set_tracing(FALSE);
1773 }
1774
1775 void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
1776
1777 uint8_t card_data[USB_CMD_DATA_SIZE]={0};
1778 uint16_t block_crc_LUT[255] = {0};
1779
1780 {//Generate a lookup table for block crc
1781 for(int block = 0; block < 255; block++){
1782 char bl = block;
1783 block_crc_LUT[block] = iclass_crc16(&bl ,1);
1784 }
1785 }
1786 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1787
1788 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1789 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1790
1791 uint16_t crc = 0;
1792 uint8_t cardsize=0;
1793 uint8_t mem=0;
1794
1795 static struct memory_t{
1796 int k16;
1797 int book;
1798 int k2;
1799 int lockauth;
1800 int keyaccess;
1801 } memory;
1802
1803 uint8_t resp[ICLASS_BUFFER_SIZE];
1804
1805 setupIclassReader();
1806 set_tracing(TRUE);
1807
1808 while(!BUTTON_PRESS()) {
1809
1810 WDT_HIT();
1811
1812 if(!tracing) {
1813 DbpString("Trace full");
1814 break;
1815 }
1816
1817 uint8_t read_status = handshakeIclassTag(card_data);
1818 if(read_status < 2) continue;
1819
1820 //for now replay captured auth (as cc not updated)
1821 memcpy(check+5,MAC,4);
1822
1823 if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
1824 {
1825 Dbprintf("Error: Authentication Fail!");
1826 continue;
1827 }
1828
1829 //first get configuration block (block 1)
1830 crc = block_crc_LUT[1];
1831 read[1]=1;
1832 read[2] = crc >> 8;
1833 read[3] = crc & 0xff;
1834
1835 if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
1836 {
1837 Dbprintf("Dump config (block 1) failed");
1838 continue;
1839 }
1840
1841 mem=resp[5];
1842 memory.k16= (mem & 0x80);
1843 memory.book= (mem & 0x20);
1844 memory.k2= (mem & 0x8);
1845 memory.lockauth= (mem & 0x2);
1846 memory.keyaccess= (mem & 0x1);
1847
1848 cardsize = memory.k16 ? 255 : 32;
1849 WDT_HIT();
1850 //Set card_data to all zeroes, we'll fill it with data
1851 memset(card_data,0x0,USB_CMD_DATA_SIZE);
1852 uint8_t failedRead =0;
1853 uint32_t stored_data_length =0;
1854 //then loop around remaining blocks
1855 for(int block=0; block < cardsize; block++){
1856
1857 read[1]= block;
1858 crc = block_crc_LUT[block];
1859 read[2] = crc >> 8;
1860 read[3] = crc & 0xff;
1861
1862 if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
1863 {
1864 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1865 block, resp[0], resp[1], resp[2],
1866 resp[3], resp[4], resp[5],
1867 resp[6], resp[7]);
1868
1869 //Fill up the buffer
1870 memcpy(card_data+stored_data_length,resp,8);
1871 stored_data_length += 8;
1872 if(stored_data_length +8 > USB_CMD_DATA_SIZE)
1873 {//Time to send this off and start afresh
1874 cmd_send(CMD_ACK,
1875 stored_data_length,//data length
1876 failedRead,//Failed blocks?
1877 0,//Not used ATM
1878 card_data, stored_data_length);
1879 //reset
1880 stored_data_length = 0;
1881 failedRead = 0;
1882 }
1883 } else {
1884 failedRead = 1;
1885 stored_data_length +=8;//Otherwise, data becomes misaligned
1886 Dbprintf("Failed to dump block %d", block);
1887 }
1888 }
1889
1890 //Send off any remaining data
1891 if(stored_data_length > 0)
1892 {
1893 cmd_send(CMD_ACK,
1894 stored_data_length,//data length
1895 failedRead,//Failed blocks?
1896 0,//Not used ATM
1897 card_data, stored_data_length);
1898 }
1899 //If we got here, let's break
1900 break;
1901 }
1902 //Signal end of transmission
1903 cmd_send(CMD_ACK,
1904 0,//data length
1905 0,//Failed blocks?
1906 0,//Not used ATM
1907 card_data, 0);
1908
1909 LED_A_OFF();
1910 set_tracing(FALSE);
1911 }
1912
1913 void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
1914 uint8_t readcheck[] = { keyType, blockNo };
1915 uint8_t resp[] = {0,0,0,0,0,0,0,0};
1916 size_t isOK = 0;
1917 isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
1918 cmd_send(CMD_ACK,isOK,0,0,0,0);
1919 }
1920
1921 void iClass_Authentication(uint8_t *MAC) {
1922 uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1923 uint8_t resp[ICLASS_BUFFER_SIZE];
1924 memcpy(check+5,MAC,4);
1925 bool isOK;
1926 isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
1927 cmd_send(CMD_ACK,isOK,0,0,0,0);
1928 }
1929 bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
1930 uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1931 char bl = blockNo;
1932 uint16_t rdCrc = iclass_crc16(&bl, 1);
1933 readcmd[2] = rdCrc >> 8;
1934 readcmd[3] = rdCrc & 0xff;
1935 uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
1936 bool isOK = false;
1937
1938 //readcmd[1] = blockNo;
1939 isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10);
1940 memcpy(readdata, resp, sizeof(resp));
1941
1942 return isOK;
1943 }
1944
1945 void iClass_ReadBlk(uint8_t blockno) {
1946 uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
1947 bool isOK = false;
1948 isOK = iClass_ReadBlock(blockno, readblockdata);
1949 cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
1950 }
1951
1952 void iClass_Dump(uint8_t blockno, uint8_t numblks) {
1953 uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
1954 bool isOK = false;
1955 uint8_t blkCnt = 0;
1956
1957 BigBuf_free();
1958 uint8_t *dataout = BigBuf_malloc(255*8);
1959 if (dataout == NULL){
1960 Dbprintf("out of memory");
1961 OnError(1);
1962 return;
1963 }
1964 memset(dataout,0xFF,255*8);
1965
1966 for (;blkCnt < numblks; blkCnt++) {
1967 isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
1968 if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
1969 isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
1970 if (!isOK) {
1971 Dbprintf("Block %02X failed to read", blkCnt+blockno);
1972 break;
1973 }
1974 }
1975 memcpy(dataout+(blkCnt*8),readblockdata,8);
1976 }
1977 //return pointer to dump memory in arg3
1978 cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0);
1979 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1980 LEDsoff();
1981 BigBuf_free();
1982 }
1983
1984 bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
1985 uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1986 //uint8_t readblockdata[10];
1987 //write[1] = blockNo;
1988 memcpy(write+2, data, 12); // data + mac
1989 char *wrCmd = (char *)(write+1);
1990 uint16_t wrCrc = iclass_crc16(wrCmd, 13);
1991 write[14] = wrCrc >> 8;
1992 write[15] = wrCrc & 0xff;
1993 uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
1994 bool isOK = false;
1995
1996 isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
1997 if (isOK) { //if reader responded correctly
1998 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
1999 if (memcmp(write+2,resp,8)) { //if response is not equal to write values
2000 if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
2001 //error try again
2002 isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
2003 }
2004
2005 }
2006 }
2007 return isOK;
2008 }
2009
2010 void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
2011 bool isOK = iClass_WriteBlock_ext(blockNo, data);
2012 if (isOK){
2013 Dbprintf("Write block [%02x] successful",blockNo);
2014 }else {
2015 Dbprintf("Write block [%02x] failed",blockNo);
2016 }
2017 cmd_send(CMD_ACK,isOK,0,0,0,0);
2018 }
2019
2020 void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
2021 int i;
2022 int written = 0;
2023 int total_block = (endblock - startblock) + 1;
2024 for (i = 0; i < total_block;i++){
2025 // block number
2026 if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
2027 Dbprintf("Write block [%02x] successful",i + startblock);
2028 written++;
2029 } else {
2030 if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
2031 Dbprintf("Write block [%02x] successful",i + startblock);
2032 written++;
2033 } else {
2034 Dbprintf("Write block [%02x] failed",i + startblock);
2035 }
2036 }
2037 }
2038 if (written == total_block)
2039 Dbprintf("Clone complete");
2040 else
2041 Dbprintf("Clone incomplete");
2042
2043 cmd_send(CMD_ACK,1,0,0,0,0);
2044 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2045 LEDsoff();
2046 }
Impressum, Datenschutz