1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
14 #include "proxmark3.h"
23 #include "lfsampling.h"
25 #include "mifareutil.h"
32 // Craig Young - 14a stand-alone code
33 #ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
35 #include "protocols.h"
38 //=============================================================================
39 // A buffer where we can queue things up to be sent through the FPGA, for
40 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
41 // is the order in which they go out on the wire.
42 //=============================================================================
44 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
45 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
48 struct common_area common_area
__attribute__((section(".commonarea")));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
) {
59 ToSend
[ToSendMax
] = 0;
64 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
68 if(ToSendMax
>= sizeof(ToSend
)) {
70 DbpString("ToSendStuffBit overflowed!");
74 void PrintToSendBuffer(void){
75 DbpString("Printing ToSendBuffer:");
76 Dbhexdump(ToSendMax
, ToSend
, 0);
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
83 void DbpStringEx(char *str
, uint32_t cmd
){
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
88 void DbpString(char *str
) {
93 void DbpIntegers(int x1
, int x2
, int x3
) {
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
97 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string
[128] = {0x00};
103 kvsprintf(fmt
, output_string
, 10, ap
);
106 DbpStringEx(output_string
, cmd
);
109 void Dbprintf(const char *fmt
, ...) {
110 // should probably limit size here; oh well, let's just use a big buffer
111 char output_string
[128] = {0x00};
115 kvsprintf(fmt
, output_string
, 10, ap
);
118 DbpString(output_string
);
121 // prints HEX & ASCII
122 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
128 l
= (len
>8) ? 8 : len
;
135 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
138 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
140 Dbprintf("%*D",l
,d
," ");
147 //-----------------------------------------------------------------------------
148 // Read an ADC channel and block till it completes, then return the result
149 // in ADC units (0 to 1023). Also a routine to average 32 samples and
151 //-----------------------------------------------------------------------------
152 static int ReadAdc(int ch
)
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
157 AT91C_BASE_ADC
->ADC_MR
=
158 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
162 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
163 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
164 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
167 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
169 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
171 // Note: with the "historic" values in the comments above, the error was 34% !!!
173 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
175 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
177 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
179 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
183 int AvgAdc(int ch
) // was static - merlok
188 for(i
= 0; i
< 32; ++i
)
191 return (a
+ 15) >> 5;
195 void MeasureAntennaTuning(void) {
197 uint8_t LF_Results
[256];
198 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;
199 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
201 memset(LF_Results
, 0, sizeof(LF_Results
));
205 * Sweeps the useful LF range of the proxmark from
206 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
207 * read the voltage in the antenna, the result left
208 * in the buffer is a graph which should clearly show
209 * the resonating frequency of your LF antenna
210 * ( hopefully around 95 if it is tuned to 125kHz!)
213 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
214 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
216 for (i
= 255; i
>= 19; i
--) {
218 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
220 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
221 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
222 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
224 LF_Results
[i
] = adcval
>> 8; // scale int to fit in byte for graphing purposes
225 if(LF_Results
[i
] > peak
) {
227 peak
= LF_Results
[i
];
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
237 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
239 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<< 16), vHf
, peakf
| (peakv
<< 16), LF_Results
, 256);
240 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
242 BigBuf_free(); BigBuf_Clear_ext(false);
246 void MeasureAntennaTuningHf(void) {
247 int vHf
= 0; // in mV
248 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
252 while ( !BUTTON_PRESS() ){
254 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
255 //Dbprintf("%d mV",vHf);
256 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
258 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 DbpString("cancelled");
263 void ReadMem(int addr
) {
264 const uint8_t *data
= ((uint8_t *)addr
);
266 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
267 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
270 /* osimage version information is linked in */
271 extern struct version_information version_information
;
272 /* bootrom version information is pointed to from _bootphase1_version_pointer */
273 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
274 void SendVersion(void)
276 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
277 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
279 /* Try to find the bootrom version information. Expect to find a pointer at
280 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
281 * pointer, then use it.
283 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
285 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
286 strcat(VersionString
, "bootrom version information appears invalid\n");
288 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
289 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
292 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
293 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
295 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
296 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
298 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
299 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
301 // Send Chip ID and used flash memory
302 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
303 uint32_t compressed_data_section_size
= common_area
.arg1
;
304 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
307 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
308 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
309 void printUSBSpeed(void)
311 Dbprintf("USB Speed:");
312 Dbprintf(" Sending USB packets to client...");
314 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
315 uint8_t *test_data
= BigBuf_get_addr();
318 uint32_t start_time
= end_time
= GetTickCount();
319 uint32_t bytes_transferred
= 0;
322 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
323 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
324 end_time
= GetTickCount();
325 bytes_transferred
+= USB_CMD_DATA_SIZE
;
329 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
330 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
331 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
332 1000 * bytes_transferred
/ (end_time
- start_time
));
337 * Prints runtime information about the PM3.
339 void SendStatus(void) {
340 BigBuf_print_status();
342 printConfig(); //LF Sampling config
345 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
346 Dbprintf(" ToSendMax..........%d", ToSendMax
);
347 Dbprintf(" ToSendBit..........%d", ToSendBit
);
348 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
350 cmd_send(CMD_ACK
,1,0,0,0,0);
353 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
356 void StandAloneMode()
358 DbpString("Stand-alone mode! No PC necessary.");
359 // Oooh pretty -- notify user we're in elite samy mode now
361 LED(LED_ORANGE
, 200);
363 LED(LED_ORANGE
, 200);
365 LED(LED_ORANGE
, 200);
367 LED(LED_ORANGE
, 200);
372 #ifdef WITH_ISO14443a_StandAlone
373 void StandAloneMode14a()
376 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
379 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
380 int cardRead
[OPTS
] = {0};
381 uint8_t readUID
[10] = {0};
382 uint32_t uid_1st
[OPTS
]={0};
383 uint32_t uid_2nd
[OPTS
]={0};
384 uint32_t uid_tmp1
= 0;
385 uint32_t uid_tmp2
= 0;
386 iso14a_card_select_t hi14a_card
[OPTS
];
388 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
390 LED(selected
+ 1, 0);
398 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
402 LED(selected
+ 1, 0);
406 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
407 /* need this delay to prevent catching some weird data */
409 /* Code for reading from 14a tag */
410 uint8_t uid
[10] = {0};
412 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
417 if (BUTTON_PRESS()) {
418 if (cardRead
[selected
]) {
419 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
422 else if (cardRead
[(selected
+1)%OPTS
]) {
423 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
424 selected
= (selected
+1)%OPTS
;
425 break; // playing = 1;
428 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
432 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
436 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
437 memcpy(readUID
,uid
,10*sizeof(uint8_t));
438 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
439 // Set UID byte order
440 for (int i
=0; i
<4; i
++)
442 dst
= (uint8_t *)&uid_tmp2
;
443 for (int i
=0; i
<4; i
++)
445 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
446 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
450 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
451 uid_1st
[selected
] = (uid_tmp1
)>>8;
452 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
455 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
456 uid_1st
[selected
] = uid_tmp1
;
457 uid_2nd
[selected
] = uid_tmp2
;
463 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
464 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
467 LED(LED_ORANGE
, 200);
469 LED(LED_ORANGE
, 200);
472 LED(selected
+ 1, 0);
474 // Next state is replay:
477 cardRead
[selected
] = 1;
479 /* MF Classic UID clone */
480 else if (iGotoClone
==1)
484 LED(selected
+ 1, 0);
485 LED(LED_ORANGE
, 250);
488 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
490 // wait for button to be released
491 // Delay cloning until card is in place
492 while(BUTTON_PRESS())
495 Dbprintf("Starting clone. [Bank: %u]", selected
);
496 // need this delay to prevent catching some weird data
498 // Begin clone function here:
499 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
500 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
501 memcpy(c.d.asBytes, data, 16);
504 Block read is similar:
505 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
506 We need to imitate that call with blockNo 0 to set a uid.
508 The get and set commands are handled in this file:
509 // Work with "magic Chinese" card
510 case CMD_MIFARE_CSETBLOCK:
511 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
513 case CMD_MIFARE_CGETBLOCK:
514 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
517 mfCSetUID provides example logic for UID set workflow:
518 -Read block0 from card in field with MifareCGetBlock()
519 -Configure new values without replacing reserved bytes
520 memcpy(block0, uid, 4); // Copy UID bytes from byte array
522 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
523 Bytes 5-7 are reserved SAK and ATQA for mifare classic
524 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
526 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
527 // arg0 = Flags, arg1=blockNo
528 MifareCGetBlock(params
, 0, oldBlock0
);
529 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
530 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
534 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
535 memcpy(newBlock0
,oldBlock0
,16);
536 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
538 newBlock0
[0] = uid_1st
[selected
]>>24;
539 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
540 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
541 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
542 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
544 // arg0 = workFlags, arg1 = blockNo, datain
545 MifareCSetBlock(params
, 0, newBlock0
);
546 MifareCGetBlock(params
, 0, testBlock0
);
548 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
549 DbpString("Cloned successfull!");
550 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
553 selected
= (selected
+ 1) % OPTS
;
555 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
560 LED(selected
+ 1, 0);
562 // Change where to record (or begin playing)
563 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
566 LED(selected
+ 1, 0);
568 // Begin transmitting
572 DbpString("Playing");
575 int button_action
= BUTTON_HELD(1000);
576 if (button_action
== 0) { // No button action, proceed with sim
577 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
578 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
579 num_to_bytes(uid_1st
[selected
], 3, data
);
580 num_to_bytes(uid_2nd
[selected
], 4, data
);
582 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
583 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
584 DbpString("Mifare Classic");
585 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
587 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
588 DbpString("Mifare Ultralight");
589 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
591 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
592 DbpString("Mifare DESFire");
593 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
596 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
597 SimulateIso14443aTag(1, flags
, data
);
600 else if (button_action
== BUTTON_SINGLE_CLICK
) {
601 selected
= (selected
+ 1) % OPTS
;
602 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
606 else if (button_action
== BUTTON_HOLD
) {
607 Dbprintf("Playtime over. Begin cloning...");
614 /* We pressed a button so ignore it here with a delay */
617 LED(selected
+ 1, 0);
620 while(BUTTON_PRESS())
626 // samy's sniff and repeat routine
630 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
632 int high
[OPTS
], low
[OPTS
];
637 // Turn on selected LED
638 LED(selected
+ 1, 0);
644 // Was our button held down or pressed?
645 int button_pressed
= BUTTON_HELD(1000);
648 // Button was held for a second, begin recording
649 if (button_pressed
> 0 && cardRead
== 0)
652 LED(selected
+ 1, 0);
656 DbpString("Starting recording");
658 // wait for button to be released
659 while(BUTTON_PRESS())
662 /* need this delay to prevent catching some weird data */
665 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
666 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
669 LED(selected
+ 1, 0);
670 // Finished recording
671 // If we were previously playing, set playing off
672 // so next button push begins playing what we recorded
676 else if (button_pressed
> 0 && cardRead
== 1) {
678 LED(selected
+ 1, 0);
682 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
684 // wait for button to be released
685 while(BUTTON_PRESS())
688 /* need this delay to prevent catching some weird data */
691 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
692 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
695 LED(selected
+ 1, 0);
696 // Finished recording
698 // If we were previously playing, set playing off
699 // so next button push begins playing what we recorded
704 // Change where to record (or begin playing)
705 else if (button_pressed
) {
706 // Next option if we were previously playing
708 selected
= (selected
+ 1) % OPTS
;
712 LED(selected
+ 1, 0);
714 // Begin transmitting
718 DbpString("Playing");
719 // wait for button to be released
720 while(BUTTON_PRESS())
723 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
724 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
725 DbpString("Done playing");
727 if (BUTTON_HELD(1000) > 0) {
728 DbpString("Exiting");
733 /* We pressed a button so ignore it here with a delay */
736 // when done, we're done playing, move to next option
737 selected
= (selected
+ 1) % OPTS
;
740 LED(selected
+ 1, 0);
743 while(BUTTON_PRESS())
752 Listen and detect an external reader. Determine the best location
756 Inside the ListenReaderField() function, there is two mode.
757 By default, when you call the function, you will enter mode 1.
758 If you press the PM3 button one time, you will enter mode 2.
759 If you press the PM3 button a second time, you will exit the function.
761 DESCRIPTION OF MODE 1:
762 This mode just listens for an external reader field and lights up green
763 for HF and/or red for LF. This is the original mode of the detectreader
766 DESCRIPTION OF MODE 2:
767 This mode will visually represent, using the LEDs, the actual strength of the
768 current compared to the maximum current detected. Basically, once you know
769 what kind of external reader is present, it will help you spot the best location to place
770 your antenna. You will probably not get some good results if there is a LF and a HF reader
771 at the same place! :-)
775 static const char LIGHT_SCHEME
[] = {
776 0x0, /* ---- | No field detected */
777 0x1, /* X--- | 14% of maximum current detected */
778 0x2, /* -X-- | 29% of maximum current detected */
779 0x4, /* --X- | 43% of maximum current detected */
780 0x8, /* ---X | 57% of maximum current detected */
781 0xC, /* --XX | 71% of maximum current detected */
782 0xE, /* -XXX | 86% of maximum current detected */
783 0xF, /* XXXX | 100% of maximum current detected */
785 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
787 void ListenReaderField(int limit
) {
790 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
792 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
793 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
794 int mode
=1, display_val
, display_max
, i
;
796 // switch off FPGA - we don't want to measure our own signal
797 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
798 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
802 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
804 if(limit
!= HF_ONLY
) {
805 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
809 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
811 if (limit
!= LF_ONLY
) {
812 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
817 if (BUTTON_PRESS()) {
822 DbpString("Signal Strength Mode");
826 DbpString("Stopped");
834 if (limit
!= HF_ONLY
) {
836 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
842 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
843 // see if there's a significant change
844 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
845 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
852 if (limit
!= LF_ONLY
) {
854 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
860 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
861 // see if there's a significant change
862 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
863 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
871 if (limit
== LF_ONLY
) {
873 display_max
= lf_max
;
874 } else if (limit
== HF_ONLY
) {
876 display_max
= hf_max
;
877 } else { /* Pick one at random */
878 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
880 display_max
= hf_max
;
883 display_max
= lf_max
;
886 for (i
=0; i
<LIGHT_LEN
; i
++) {
887 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
888 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
889 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
890 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
891 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
899 void UsbPacketReceived(uint8_t *packet
, int len
)
901 UsbCommand
*c
= (UsbCommand
*)packet
;
903 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
907 case CMD_SET_LF_SAMPLING_CONFIG
:
908 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
910 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
911 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
913 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
914 ModThenAcquireRawAdcSamples125k(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
916 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
917 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
919 case CMD_HID_DEMOD_FSK
:
920 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
922 case CMD_HID_SIM_TAG
:
923 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
925 case CMD_FSK_SIM_TAG
:
926 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
928 case CMD_ASK_SIM_TAG
:
929 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
931 case CMD_PSK_SIM_TAG
:
932 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
934 case CMD_HID_CLONE_TAG
:
935 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
937 case CMD_IO_DEMOD_FSK
:
938 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
940 case CMD_IO_CLONE_TAG
:
941 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
943 case CMD_EM410X_DEMOD
:
944 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
946 case CMD_EM410X_WRITE_TAG
:
947 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
949 case CMD_READ_TI_TYPE
:
952 case CMD_WRITE_TI_TYPE
:
953 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
955 case CMD_SIMULATE_TAG_125K
:
957 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
960 case CMD_LF_SIMULATE_BIDIR
:
961 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
963 case CMD_INDALA_CLONE_TAG
:
964 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
966 case CMD_INDALA_CLONE_TAG_L
:
967 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
969 case CMD_T55XX_READ_BLOCK
:
970 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
972 case CMD_T55XX_WRITE_BLOCK
:
973 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
975 case CMD_T55XX_WAKEUP
:
976 T55xxWakeUp(c
->arg
[0]);
978 case CMD_T55XX_RESET_READ
:
981 case CMD_PCF7931_READ
:
984 case CMD_PCF7931_WRITE
:
985 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
987 case CMD_EM4X_READ_WORD
:
988 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
990 case CMD_EM4X_WRITE_WORD
:
991 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
993 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
994 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
996 case CMD_VIKING_CLONE_TAG
:
997 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1002 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1003 SnoopHitag(c
->arg
[0]);
1005 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1006 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1008 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1009 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1011 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1012 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1014 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1015 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1017 case CMD_READ_HITAG_S
: //Reader for only Hitag S tags, args = key or challenge
1018 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1020 case CMD_WR_HITAG_S
: //writer for Hitag tags args=data to write,page and key or challenge
1021 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1025 #ifdef WITH_ISO15693
1026 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1027 AcquireRawAdcSamplesIso15693();
1029 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1030 RecordRawAdcSamplesIso15693();
1033 case CMD_ISO_15693_COMMAND
:
1034 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1037 case CMD_ISO_15693_FIND_AFI
:
1038 BruteforceIso15693Afi(c
->arg
[0]);
1041 case CMD_ISO_15693_DEBUG
:
1042 SetDebugIso15693(c
->arg
[0]);
1045 case CMD_READER_ISO_15693
:
1046 ReaderIso15693(c
->arg
[0]);
1048 case CMD_SIMTAG_ISO_15693
:
1049 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1054 case CMD_SIMULATE_TAG_LEGIC_RF
:
1055 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1058 case CMD_WRITER_LEGIC_RF
:
1059 LegicRfWriter( c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1062 case CMD_RAW_WRITER_LEGIC_RF
:
1063 LegicRfRawWriter(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1066 case CMD_READER_LEGIC_RF
:
1067 LegicRfReader(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1071 #ifdef WITH_ISO14443b
1072 case CMD_READ_SRI_TAG
:
1073 ReadSTMemoryIso14443b(c
->arg
[0]);
1075 case CMD_SNOOP_ISO_14443B
:
1078 case CMD_SIMULATE_TAG_ISO_14443B
:
1079 SimulateIso14443bTag(c
->arg
[0]);
1081 case CMD_ISO_14443B_COMMAND
:
1082 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1083 SendRawCommand14443B_Ex(c
);
1087 #ifdef WITH_ISO14443a
1088 case CMD_SNOOP_ISO_14443a
:
1089 SniffIso14443a(c
->arg
[0]);
1091 case CMD_READER_ISO_14443a
:
1094 case CMD_SIMULATE_TAG_ISO_14443a
:
1095 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1097 case CMD_EPA_PACE_COLLECT_NONCE
:
1098 EPA_PACE_Collect_Nonce(c
);
1100 case CMD_EPA_PACE_REPLAY
:
1103 case CMD_READER_MIFARE
:
1104 ReaderMifare(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1106 case CMD_MIFARE_READBL
:
1107 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1109 case CMD_MIFAREU_READBL
:
1110 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1112 case CMD_MIFAREUC_AUTH
:
1113 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1115 case CMD_MIFAREU_READCARD
:
1116 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1118 case CMD_MIFAREUC_SETPWD
:
1119 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1121 case CMD_MIFARE_READSC
:
1122 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1124 case CMD_MIFARE_WRITEBL
:
1125 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1127 //case CMD_MIFAREU_WRITEBL_COMPAT:
1128 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1130 case CMD_MIFAREU_WRITEBL
:
1131 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1133 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1134 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1136 case CMD_MIFARE_NESTED
:
1137 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1139 case CMD_MIFARE_CHKKEYS
:
1140 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1142 case CMD_SIMULATE_MIFARE_CARD
:
1143 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1147 case CMD_MIFARE_SET_DBGMODE
:
1148 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1150 case CMD_MIFARE_EML_MEMCLR
:
1151 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1153 case CMD_MIFARE_EML_MEMSET
:
1154 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1156 case CMD_MIFARE_EML_MEMGET
:
1157 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1159 case CMD_MIFARE_EML_CARDLOAD
:
1160 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1163 // Work with "magic Chinese" card
1164 case CMD_MIFARE_CSETBLOCK
:
1165 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1167 case CMD_MIFARE_CGETBLOCK
:
1168 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1170 case CMD_MIFARE_CIDENT
:
1175 case CMD_MIFARE_SNIFFER
:
1176 SniffMifare(c
->arg
[0]);
1180 case CMD_MIFARE_DESFIRE_READBL
: break;
1181 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1182 case CMD_MIFARE_DESFIRE_AUTH1
:
1183 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1185 case CMD_MIFARE_DESFIRE_AUTH2
:
1186 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1188 case CMD_MIFARE_DES_READER
:
1189 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1191 case CMD_MIFARE_DESFIRE_INFO
:
1192 MifareDesfireGetInformation();
1194 case CMD_MIFARE_DESFIRE
:
1195 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1198 case CMD_MIFARE_COLLECT_NONCES
:
1202 case CMD_EMV_TRANSACTION
:
1205 case CMD_EMV_GET_RANDOM_NUM
:
1208 case CMD_EMV_LOAD_VALUE
:
1209 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1211 case CMD_EMV_DUMP_CARD
:
1215 // Makes use of ISO14443a FPGA Firmware
1216 case CMD_SNOOP_ICLASS
:
1219 case CMD_SIMULATE_TAG_ICLASS
:
1220 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1222 case CMD_READER_ICLASS
:
1223 ReaderIClass(c
->arg
[0]);
1225 case CMD_READER_ICLASS_REPLAY
:
1226 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1228 case CMD_ICLASS_EML_MEMSET
:
1229 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1231 case CMD_ICLASS_WRITEBLOCK
:
1232 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1234 case CMD_ICLASS_READCHECK
: // auth step 1
1235 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1237 case CMD_ICLASS_READBLOCK
:
1238 iClass_ReadBlk(c
->arg
[0]);
1240 case CMD_ICLASS_AUTHENTICATION
: //check
1241 iClass_Authentication(c
->d
.asBytes
);
1243 case CMD_ICLASS_DUMP
:
1244 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1246 case CMD_ICLASS_CLONE
:
1247 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1251 case CMD_HF_SNIFFER
:
1252 HfSnoop(c
->arg
[0], c
->arg
[1]);
1256 case CMD_BUFF_CLEAR
:
1260 case CMD_MEASURE_ANTENNA_TUNING
:
1261 MeasureAntennaTuning();
1264 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1265 MeasureAntennaTuningHf();
1268 case CMD_LISTEN_READER_FIELD
:
1269 ListenReaderField(c
->arg
[0]);
1272 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1273 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1275 LED_D_OFF(); // LED D indicates field ON or OFF
1278 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
1280 uint8_t *BigBuf
= BigBuf_get_addr();
1282 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1283 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1284 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1286 // Trigger a finish downloading signal with an ACK frame
1287 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1291 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1292 uint8_t *b
= BigBuf_get_addr();
1293 memcpy( b
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1294 cmd_send(CMD_ACK
,0,0,0,0,0);
1297 case CMD_DOWNLOAD_EML_BIGBUF
: {
1299 uint8_t *cardmem
= BigBuf_get_EM_addr();
1301 for(size_t i
=0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1302 len
= MIN((c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1303 cmd_send(CMD_DOWNLOADED_EML_BIGBUF
, i
, len
, CARD_MEMORY_SIZE
, cardmem
+ c
->arg
[0] + i
, len
);
1305 // Trigger a finish downloading signal with an ACK frame
1306 cmd_send(CMD_ACK
, 1, 0, CARD_MEMORY_SIZE
, 0, 0);
1314 case CMD_SET_LF_DIVISOR
:
1315 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1316 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1319 case CMD_SET_ADC_MUX
:
1321 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1322 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1323 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1324 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1335 cmd_send(CMD_ACK
,0,0,0,0,0);
1345 case CMD_SETUP_WRITE
:
1346 case CMD_FINISH_WRITE
:
1347 case CMD_HARDWARE_RESET
:
1350 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1352 // We're going to reset, and the bootrom will take control.
1356 case CMD_START_FLASH
:
1357 if(common_area
.flags
.bootrom_present
) {
1358 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1361 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1365 case CMD_DEVICE_INFO
: {
1366 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1367 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1368 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1372 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1377 void __attribute__((noreturn
)) AppMain(void)
1381 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1382 /* Initialize common area */
1383 memset(&common_area
, 0, sizeof(common_area
));
1384 common_area
.magic
= COMMON_AREA_MAGIC
;
1385 common_area
.version
= 1;
1387 common_area
.flags
.osimage_present
= 1;
1394 // The FPGA gets its clock from us from PCK0 output, so set that up.
1395 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1396 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1397 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1398 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1399 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
| AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1400 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1403 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1405 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1407 // Load the FPGA image, which we have stored in our flash.
1408 // (the HF version by default)
1409 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1417 byte_t rx
[sizeof(UsbCommand
)];
1421 if ( usb_poll_validate_length() ) {
1422 rx_len
= usb_read(rx
, sizeof(UsbCommand
));
1425 UsbPacketReceived(rx
, rx_len
);
1430 #ifndef WITH_ISO14443a_StandAlone
1431 if (BUTTON_HELD(1000) > 0)
1435 #ifdef WITH_ISO14443a
1436 #ifdef WITH_ISO14443a_StandAlone
1437 if (BUTTON_HELD(1000) > 0)
1438 StandAloneMode14a();