1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
37 #include "protocols.h"
40 #define abs(x) ( ((x)<0) ? -(x) : (x) )
42 //=============================================================================
43 // A buffer where we can queue things up to be sent through the FPGA, for
44 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
45 // is the order in which they go out on the wire.
46 //=============================================================================
48 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
49 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
52 struct common_area common_area
__attribute__((section(".commonarea")));
54 void ToSendReset(void)
60 void ToSendStuffBit(int b
)
64 ToSend
[ToSendMax
] = 0;
69 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
74 if(ToSendMax
>= sizeof(ToSend
)) {
76 DbpString("ToSendStuffBit overflowed!");
80 //=============================================================================
81 // Debug print functions, to go out over USB, to the usual PC-side client.
82 //=============================================================================
84 void DbpString(char *str
)
86 byte_t len
= strlen(str
);
87 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
91 void DbpIntegers(int x1
, int x2
, int x3
)
93 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
97 void Dbprintf(const char *fmt
, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string
[128];
103 kvsprintf(fmt
, output_string
, 10, ap
);
106 DbpString(output_string
);
109 // prints HEX & ASCII
110 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
123 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
126 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
128 Dbprintf("%*D",l
,d
," ");
136 //-----------------------------------------------------------------------------
137 // Read an ADC channel and block till it completes, then return the result
138 // in ADC units (0 to 1023). Also a routine to average 32 samples and
140 //-----------------------------------------------------------------------------
141 static int ReadAdc(int ch
)
145 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
146 AT91C_BASE_ADC
->ADC_MR
=
147 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
148 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
149 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
151 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
152 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
153 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
156 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
158 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
160 // Note: with the "historic" values in the comments above, the error was 34% !!!
162 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
164 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
166 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
168 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
173 int AvgAdc(int ch
) // was static - merlok
178 for(i
= 0; i
< 32; i
++) {
182 return (a
+ 15) >> 5;
185 void MeasureAntennaTuning(void)
187 uint8_t LF_Results
[256];
188 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
189 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
194 * Sweeps the useful LF range of the proxmark from
195 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
196 * read the voltage in the antenna, the result left
197 * in the buffer is a graph which should clearly show
198 * the resonating frequency of your LF antenna
199 * ( hopefully around 95 if it is tuned to 125kHz!)
202 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
203 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
204 for (i
=255; i
>=19; i
--) {
206 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
208 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
209 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
210 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
212 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
213 if(LF_Results
[i
] > peak
) {
215 peak
= LF_Results
[i
];
221 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
225 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
226 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
228 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
230 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
237 void MeasureAntennaTuningHf(void)
239 int vHf
= 0; // in mV
241 DbpString("Measuring HF antenna, press button to exit");
243 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
244 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
245 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
249 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
251 Dbprintf("%d mV",vHf
);
252 if (BUTTON_PRESS()) break;
254 DbpString("cancelled");
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
261 void ReadMem(int addr
)
263 const uint8_t *data
= ((uint8_t *)addr
);
265 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
266 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
269 /* osimage version information is linked in */
270 extern struct version_information version_information
;
271 /* bootrom version information is pointed to from _bootphase1_version_pointer */
272 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
273 void SendVersion(void)
275 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
276 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
278 /* Try to find the bootrom version information. Expect to find a pointer at
279 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
280 * pointer, then use it.
282 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
283 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
284 strcat(VersionString
, "bootrom version information appears invalid\n");
286 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
287 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
290 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
291 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
295 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
296 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
298 // Send Chip ID and used flash memory
299 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
300 uint32_t compressed_data_section_size
= common_area
.arg1
;
301 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
304 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
305 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
306 void printUSBSpeed(void)
308 Dbprintf("USB Speed:");
309 Dbprintf(" Sending USB packets to client...");
311 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
312 uint8_t *test_data
= BigBuf_get_addr();
315 uint32_t start_time
= end_time
= GetTickCount();
316 uint32_t bytes_transferred
= 0;
319 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
320 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
321 end_time
= GetTickCount();
322 bytes_transferred
+= USB_CMD_DATA_SIZE
;
326 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
327 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
328 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
329 1000 * bytes_transferred
/ (end_time
- start_time
));
334 * Prints runtime information about the PM3.
336 void SendStatus(void)
338 BigBuf_print_status();
340 printConfig(); //LF Sampling config
343 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
344 Dbprintf(" ToSendMax..........%d", ToSendMax
);
345 Dbprintf(" ToSendBit..........%d", ToSendBit
);
346 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
348 cmd_send(CMD_ACK
,1,0,0,0,0);
351 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
355 void StandAloneMode()
357 DbpString("Stand-alone mode! No PC necessary.");
358 // Oooh pretty -- notify user we're in elite samy mode now
360 LED(LED_ORANGE
, 200);
362 LED(LED_ORANGE
, 200);
364 LED(LED_ORANGE
, 200);
366 LED(LED_ORANGE
, 200);
375 #ifdef WITH_ISO14443a_StandAlone
376 void StandAloneMode14a()
379 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
382 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
383 int cardRead
[OPTS
] = {0};
384 uint8_t readUID
[10] = {0};
385 uint32_t uid_1st
[OPTS
]={0};
386 uint32_t uid_2nd
[OPTS
]={0};
387 uint32_t uid_tmp1
= 0;
388 uint32_t uid_tmp2
= 0;
389 iso14a_card_select_t hi14a_card
[OPTS
];
391 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
393 LED(selected
+ 1, 0);
401 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
405 LED(selected
+ 1, 0);
409 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
410 /* need this delay to prevent catching some weird data */
412 /* Code for reading from 14a tag */
413 uint8_t uid
[10] ={0};
415 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
420 if (BUTTON_PRESS()) {
421 if (cardRead
[selected
]) {
422 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
425 else if (cardRead
[(selected
+1)%OPTS
]) {
426 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
427 selected
= (selected
+1)%OPTS
;
428 break; // playing = 1;
431 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
435 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
439 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
440 memcpy(readUID
,uid
,10*sizeof(uint8_t));
441 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
442 // Set UID byte order
443 for (int i
=0; i
<4; i
++)
445 dst
= (uint8_t *)&uid_tmp2
;
446 for (int i
=0; i
<4; i
++)
448 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
449 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
453 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
454 uid_1st
[selected
] = (uid_tmp1
)>>8;
455 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
458 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
459 uid_1st
[selected
] = uid_tmp1
;
460 uid_2nd
[selected
] = uid_tmp2
;
466 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
467 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
470 LED(LED_ORANGE
, 200);
472 LED(LED_ORANGE
, 200);
475 LED(selected
+ 1, 0);
477 // Next state is replay:
480 cardRead
[selected
] = 1;
482 /* MF Classic UID clone */
483 else if (iGotoClone
==1)
487 LED(selected
+ 1, 0);
488 LED(LED_ORANGE
, 250);
491 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
493 // wait for button to be released
494 // Delay cloning until card is in place
495 while(BUTTON_PRESS())
498 Dbprintf("Starting clone. [Bank: %u]", selected
);
499 // need this delay to prevent catching some weird data
501 // Begin clone function here:
502 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
503 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
504 memcpy(c.d.asBytes, data, 16);
507 Block read is similar:
508 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
509 We need to imitate that call with blockNo 0 to set a uid.
511 The get and set commands are handled in this file:
512 // Work with "magic Chinese" card
513 case CMD_MIFARE_CSETBLOCK:
514 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
516 case CMD_MIFARE_CGETBLOCK:
517 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
520 mfCSetUID provides example logic for UID set workflow:
521 -Read block0 from card in field with MifareCGetBlock()
522 -Configure new values without replacing reserved bytes
523 memcpy(block0, uid, 4); // Copy UID bytes from byte array
525 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
526 Bytes 5-7 are reserved SAK and ATQA for mifare classic
527 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
529 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
530 // arg0 = Flags, arg1=blockNo
531 MifareCGetBlock(params
, 0, oldBlock0
);
532 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
533 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
537 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
538 memcpy(newBlock0
,oldBlock0
,16);
539 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
541 newBlock0
[0] = uid_1st
[selected
]>>24;
542 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
543 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
544 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
545 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
547 // arg0 = workFlags, arg1 = blockNo, datain
548 MifareCSetBlock(params
, 0, newBlock0
);
549 MifareCGetBlock(params
, 0, testBlock0
);
551 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
552 DbpString("Cloned successfull!");
553 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
556 selected
= (selected
+ 1) % OPTS
;
558 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
563 LED(selected
+ 1, 0);
565 // Change where to record (or begin playing)
566 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
569 LED(selected
+ 1, 0);
571 // Begin transmitting
575 DbpString("Playing");
578 int button_action
= BUTTON_HELD(1000);
579 if (button_action
== 0) { // No button action, proceed with sim
580 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
581 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
582 num_to_bytes(uid_1st
[selected
], 3, data
);
583 num_to_bytes(uid_2nd
[selected
], 4, data
);
585 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
586 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
587 DbpString("Mifare Classic");
588 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
590 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
591 DbpString("Mifare Ultralight");
592 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
594 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
595 DbpString("Mifare DESFire");
596 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
599 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
600 SimulateIso14443aTag(1, flags
, data
);
603 else if (button_action
== BUTTON_SINGLE_CLICK
) {
604 selected
= (selected
+ 1) % OPTS
;
605 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
609 else if (button_action
== BUTTON_HOLD
) {
610 Dbprintf("Playtime over. Begin cloning...");
617 /* We pressed a button so ignore it here with a delay */
620 LED(selected
+ 1, 0);
623 while(BUTTON_PRESS())
629 // samy's sniff and repeat routine
633 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
635 int high
[OPTS
], low
[OPTS
];
640 // Turn on selected LED
641 LED(selected
+ 1, 0);
648 // Was our button held down or pressed?
649 int button_pressed
= BUTTON_HELD(1000);
652 // Button was held for a second, begin recording
653 if (button_pressed
> 0 && cardRead
== 0)
656 LED(selected
+ 1, 0);
660 DbpString("Starting recording");
662 // wait for button to be released
663 while(BUTTON_PRESS())
666 /* need this delay to prevent catching some weird data */
669 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
670 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
673 LED(selected
+ 1, 0);
674 // Finished recording
676 // If we were previously playing, set playing off
677 // so next button push begins playing what we recorded
684 else if (button_pressed
> 0 && cardRead
== 1)
687 LED(selected
+ 1, 0);
691 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
693 // wait for button to be released
694 while(BUTTON_PRESS())
697 /* need this delay to prevent catching some weird data */
700 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
701 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
704 LED(selected
+ 1, 0);
705 // Finished recording
707 // If we were previously playing, set playing off
708 // so next button push begins playing what we recorded
715 // Change where to record (or begin playing)
716 else if (button_pressed
)
718 // Next option if we were previously playing
720 selected
= (selected
+ 1) % OPTS
;
724 LED(selected
+ 1, 0);
726 // Begin transmitting
730 DbpString("Playing");
731 // wait for button to be released
732 while(BUTTON_PRESS())
734 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
735 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
736 DbpString("Done playing");
737 if (BUTTON_HELD(1000) > 0)
739 DbpString("Exiting");
744 /* We pressed a button so ignore it here with a delay */
747 // when done, we're done playing, move to next option
748 selected
= (selected
+ 1) % OPTS
;
751 LED(selected
+ 1, 0);
754 while(BUTTON_PRESS())
763 Listen and detect an external reader. Determine the best location
767 Inside the ListenReaderField() function, there is two mode.
768 By default, when you call the function, you will enter mode 1.
769 If you press the PM3 button one time, you will enter mode 2.
770 If you press the PM3 button a second time, you will exit the function.
772 DESCRIPTION OF MODE 1:
773 This mode just listens for an external reader field and lights up green
774 for HF and/or red for LF. This is the original mode of the detectreader
777 DESCRIPTION OF MODE 2:
778 This mode will visually represent, using the LEDs, the actual strength of the
779 current compared to the maximum current detected. Basically, once you know
780 what kind of external reader is present, it will help you spot the best location to place
781 your antenna. You will probably not get some good results if there is a LF and a HF reader
782 at the same place! :-)
786 static const char LIGHT_SCHEME
[] = {
787 0x0, /* ---- | No field detected */
788 0x1, /* X--- | 14% of maximum current detected */
789 0x2, /* -X-- | 29% of maximum current detected */
790 0x4, /* --X- | 43% of maximum current detected */
791 0x8, /* ---X | 57% of maximum current detected */
792 0xC, /* --XX | 71% of maximum current detected */
793 0xE, /* -XXX | 86% of maximum current detected */
794 0xF, /* XXXX | 100% of maximum current detected */
796 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
798 void ListenReaderField(int limit
)
800 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
801 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
802 int mode
=1, display_val
, display_max
, i
;
806 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
809 // switch off FPGA - we don't want to measure our own signal
810 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
811 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
815 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
817 if(limit
!= HF_ONLY
) {
818 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
822 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
824 if (limit
!= LF_ONLY
) {
825 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
830 if (BUTTON_PRESS()) {
835 DbpString("Signal Strength Mode");
839 DbpString("Stopped");
847 if (limit
!= HF_ONLY
) {
849 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
855 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
856 // see if there's a significant change
857 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
858 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
865 if (limit
!= LF_ONLY
) {
867 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
873 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
874 // see if there's a significant change
875 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
876 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
884 if (limit
== LF_ONLY
) {
886 display_max
= lf_max
;
887 } else if (limit
== HF_ONLY
) {
889 display_max
= hf_max
;
890 } else { /* Pick one at random */
891 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
893 display_max
= hf_max
;
896 display_max
= lf_max
;
899 for (i
=0; i
<LIGHT_LEN
; i
++) {
900 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
901 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
902 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
903 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
904 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
912 void UsbPacketReceived(uint8_t *packet
, int len
)
914 UsbCommand
*c
= (UsbCommand
*)packet
;
916 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
920 case CMD_SET_LF_SAMPLING_CONFIG
:
921 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
923 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
924 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
926 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
927 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
929 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
930 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
932 case CMD_HID_DEMOD_FSK
:
933 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
935 case CMD_HID_SIM_TAG
:
936 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
938 case CMD_FSK_SIM_TAG
:
939 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
941 case CMD_ASK_SIM_TAG
:
942 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
944 case CMD_PSK_SIM_TAG
:
945 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
947 case CMD_HID_CLONE_TAG
:
948 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
950 case CMD_IO_DEMOD_FSK
:
951 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
953 case CMD_IO_CLONE_TAG
:
954 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
956 case CMD_EM410X_DEMOD
:
957 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
959 case CMD_EM410X_WRITE_TAG
:
960 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
962 case CMD_READ_TI_TYPE
:
965 case CMD_WRITE_TI_TYPE
:
966 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
968 case CMD_SIMULATE_TAG_125K
:
970 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
973 case CMD_LF_SIMULATE_BIDIR
:
974 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
976 case CMD_INDALA_CLONE_TAG
:
977 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
979 case CMD_INDALA_CLONE_TAG_L
:
980 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
982 case CMD_T55XX_READ_BLOCK
:
983 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
985 case CMD_T55XX_WRITE_BLOCK
:
986 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
988 case CMD_T55XX_WAKEUP
:
989 T55xxWakeUp(c
->arg
[0]);
991 case CMD_T55XX_RESET_READ
:
994 case CMD_PCF7931_READ
:
997 case CMD_PCF7931_WRITE
:
998 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1000 case CMD_EM4X_READ_WORD
:
1001 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
1003 case CMD_EM4X_WRITE_WORD
:
1004 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1006 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1007 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1009 case CMD_VIKING_CLONE_TAG
:
1010 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1015 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1016 SnoopHitag(c
->arg
[0]);
1018 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1019 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1021 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1022 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1026 #ifdef WITH_ISO15693
1027 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1028 AcquireRawAdcSamplesIso15693();
1030 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1031 RecordRawAdcSamplesIso15693();
1034 case CMD_ISO_15693_COMMAND
:
1035 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1038 case CMD_ISO_15693_FIND_AFI
:
1039 BruteforceIso15693Afi(c
->arg
[0]);
1042 case CMD_ISO_15693_DEBUG
:
1043 SetDebugIso15693(c
->arg
[0]);
1046 case CMD_READER_ISO_15693
:
1047 ReaderIso15693(c
->arg
[0]);
1049 case CMD_SIMTAG_ISO_15693
:
1050 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1055 case CMD_SIMULATE_TAG_LEGIC_RF
:
1056 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1059 case CMD_WRITER_LEGIC_RF
:
1060 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1063 case CMD_READER_LEGIC_RF
:
1064 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1068 #ifdef WITH_ISO14443b
1069 case CMD_READ_SRI512_TAG
:
1070 ReadSTMemoryIso14443b(0x0F);
1072 case CMD_READ_SRIX4K_TAG
:
1073 ReadSTMemoryIso14443b(0x7F);
1075 case CMD_SNOOP_ISO_14443B
:
1078 case CMD_SIMULATE_TAG_ISO_14443B
:
1079 SimulateIso14443bTag();
1081 case CMD_ISO_14443B_COMMAND
:
1082 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1086 #ifdef WITH_ISO14443a
1087 case CMD_SNOOP_ISO_14443a
:
1088 SniffIso14443a(c
->arg
[0]);
1090 case CMD_READER_ISO_14443a
:
1093 case CMD_SIMULATE_TAG_ISO_14443a
:
1094 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1097 case CMD_EPA_PACE_COLLECT_NONCE
:
1098 EPA_PACE_Collect_Nonce(c
);
1100 case CMD_EPA_PACE_REPLAY
:
1104 case CMD_READER_MIFARE
:
1105 ReaderMifare(c
->arg
[0]);
1107 case CMD_MIFARE_READBL
:
1108 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1110 case CMD_MIFAREU_READBL
:
1111 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1113 case CMD_MIFAREUC_AUTH
:
1114 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1116 case CMD_MIFAREU_READCARD
:
1117 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1119 case CMD_MIFAREUC_SETPWD
:
1120 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1122 case CMD_MIFARE_READSC
:
1123 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1125 case CMD_MIFARE_WRITEBL
:
1126 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1128 //case CMD_MIFAREU_WRITEBL_COMPAT:
1129 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1131 case CMD_MIFAREU_WRITEBL
:
1132 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1134 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1135 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1137 case CMD_MIFARE_NESTED
:
1138 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1140 case CMD_MIFARE_CHKKEYS
:
1141 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1143 case CMD_SIMULATE_MIFARE_CARD
:
1144 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1148 case CMD_MIFARE_SET_DBGMODE
:
1149 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1151 case CMD_MIFARE_EML_MEMCLR
:
1152 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1154 case CMD_MIFARE_EML_MEMSET
:
1155 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1157 case CMD_MIFARE_EML_MEMGET
:
1158 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1160 case CMD_MIFARE_EML_CARDLOAD
:
1161 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1164 // Work with "magic Chinese" card
1165 case CMD_MIFARE_CSETBLOCK
:
1166 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1168 case CMD_MIFARE_CGETBLOCK
:
1169 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1171 case CMD_MIFARE_CIDENT
:
1176 case CMD_MIFARE_SNIFFER
:
1177 SniffMifare(c
->arg
[0]);
1181 case CMD_MIFARE_DESFIRE_READBL
: break;
1182 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1183 case CMD_MIFARE_DESFIRE_AUTH1
:
1184 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1186 case CMD_MIFARE_DESFIRE_AUTH2
:
1187 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1189 case CMD_MIFARE_DES_READER
:
1190 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1192 case CMD_MIFARE_DESFIRE_INFO
:
1193 MifareDesfireGetInformation();
1195 case CMD_MIFARE_DESFIRE
:
1196 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1199 case CMD_MIFARE_COLLECT_NONCES
:
1204 // Makes use of ISO14443a FPGA Firmware
1205 case CMD_SNOOP_ICLASS
:
1208 case CMD_SIMULATE_TAG_ICLASS
:
1209 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1211 case CMD_READER_ICLASS
:
1212 ReaderIClass(c
->arg
[0]);
1214 case CMD_READER_ICLASS_REPLAY
:
1215 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1217 case CMD_ICLASS_EML_MEMSET
:
1218 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1220 case CMD_ICLASS_WRITEBLOCK
:
1221 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1223 case CMD_ICLASS_READCHECK
: // auth step 1
1224 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1226 case CMD_ICLASS_READBLOCK
:
1227 iClass_ReadBlk(c
->arg
[0]);
1229 case CMD_ICLASS_AUTHENTICATION
: //check
1230 iClass_Authentication(c
->d
.asBytes
);
1232 case CMD_ICLASS_DUMP
:
1233 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1235 case CMD_ICLASS_CLONE
:
1236 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1240 case CMD_HF_SNIFFER
:
1241 HfSnoop(c
->arg
[0], c
->arg
[1]);
1245 case CMD_BUFF_CLEAR
:
1249 case CMD_MEASURE_ANTENNA_TUNING
:
1250 MeasureAntennaTuning();
1253 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1254 MeasureAntennaTuningHf();
1257 case CMD_LISTEN_READER_FIELD
:
1258 ListenReaderField(c
->arg
[0]);
1261 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1262 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1264 LED_D_OFF(); // LED D indicates field ON or OFF
1267 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1270 uint8_t *BigBuf
= BigBuf_get_addr();
1272 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1273 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1274 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1276 // Trigger a finish downloading signal with an ACK frame
1277 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1281 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1282 uint8_t *b
= BigBuf_get_addr();
1283 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1284 cmd_send(CMD_ACK
,0,0,0,0,0);
1291 case CMD_SET_LF_DIVISOR
:
1292 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1293 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1296 case CMD_SET_ADC_MUX
:
1298 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1299 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1300 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1301 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1312 cmd_send(CMD_ACK
,0,0,0,0,0);
1322 case CMD_SETUP_WRITE
:
1323 case CMD_FINISH_WRITE
:
1324 case CMD_HARDWARE_RESET
:
1327 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1329 // We're going to reset, and the bootrom will take control.
1333 case CMD_START_FLASH
:
1334 if(common_area
.flags
.bootrom_present
) {
1335 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1338 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1342 case CMD_DEVICE_INFO
: {
1343 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1344 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1345 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1349 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1354 void __attribute__((noreturn
)) AppMain(void)
1358 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1359 /* Initialize common area */
1360 memset(&common_area
, 0, sizeof(common_area
));
1361 common_area
.magic
= COMMON_AREA_MAGIC
;
1362 common_area
.version
= 1;
1364 common_area
.flags
.osimage_present
= 1;
1374 // The FPGA gets its clock from us from PCK0 output, so set that up.
1375 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1376 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1377 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1378 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1379 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1380 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1381 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1384 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1386 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1388 // Load the FPGA image, which we have stored in our flash.
1389 // (the HF version by default)
1390 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1398 byte_t rx
[sizeof(UsbCommand
)];
1403 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1405 UsbPacketReceived(rx
,rx_len
);
1411 #ifndef WITH_ISO14443a_StandAlone
1412 if (BUTTON_HELD(1000) > 0)
1416 #ifdef WITH_ISO14443a
1417 #ifdef WITH_ISO14443a_StandAlone
1418 if (BUTTON_HELD(1000) > 0)
1419 StandAloneMode14a();