]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
Merge pull request #322 from Proxmark/iceman1001-patch-2
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "iso14443a.h"
14
15 #include "proxmark3.h"
16 #include "apps.h"
17 #include "util.h"
18 #include "string.h"
19 #include "cmd.h"
20 #include "iso14443crc.h"
21 #include "crapto1/crapto1.h"
22 #include "mifareutil.h"
23 #include "mifaresniff.h"
24 #include "BigBuf.h"
25 #include "protocols.h"
26 #include "parity.h"
27
28 typedef struct {
29 enum {
30 DEMOD_UNSYNCD,
31 // DEMOD_HALF_SYNCD,
32 // DEMOD_MOD_FIRST_HALF,
33 // DEMOD_NOMOD_FIRST_HALF,
34 DEMOD_MANCHESTER_DATA
35 } state;
36 uint16_t twoBits;
37 uint16_t highCnt;
38 uint16_t bitCount;
39 uint16_t collisionPos;
40 uint16_t syncBit;
41 uint8_t parityBits;
42 uint8_t parityLen;
43 uint16_t shiftReg;
44 uint16_t samples;
45 uint16_t len;
46 uint32_t startTime, endTime;
47 uint8_t *output;
48 uint8_t *parity;
49 } tDemod;
50
51 typedef enum {
52 MOD_NOMOD = 0,
53 MOD_SECOND_HALF,
54 MOD_FIRST_HALF,
55 MOD_BOTH_HALVES
56 } Modulation_t;
57
58 typedef struct {
59 enum {
60 STATE_UNSYNCD,
61 STATE_START_OF_COMMUNICATION,
62 STATE_MILLER_X,
63 STATE_MILLER_Y,
64 STATE_MILLER_Z,
65 // DROP_NONE,
66 // DROP_FIRST_HALF,
67 } state;
68 uint16_t shiftReg;
69 int16_t bitCount;
70 uint16_t len;
71 uint16_t byteCntMax;
72 uint16_t posCnt;
73 uint16_t syncBit;
74 uint8_t parityBits;
75 uint8_t parityLen;
76 uint32_t fourBits;
77 uint32_t startTime, endTime;
78 uint8_t *output;
79 uint8_t *parity;
80 } tUart;
81
82 static uint32_t iso14a_timeout;
83 int rsamples = 0;
84 uint8_t trigger = 0;
85 // the block number for the ISO14443-4 PCB
86 static uint8_t iso14_pcb_blocknum = 0;
87
88 //
89 // ISO14443 timing:
90 //
91 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
92 #define REQUEST_GUARD_TIME (7000/16 + 1)
93 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
94 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
95 // bool LastCommandWasRequest = false;
96
97 //
98 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
99 //
100 // When the PM acts as reader and is receiving tag data, it takes
101 // 3 ticks delay in the AD converter
102 // 16 ticks until the modulation detector completes and sets curbit
103 // 8 ticks until bit_to_arm is assigned from curbit
104 // 8*16 ticks for the transfer from FPGA to ARM
105 // 4*16 ticks until we measure the time
106 // - 8*16 ticks because we measure the time of the previous transfer
107 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
108
109 // When the PM acts as a reader and is sending, it takes
110 // 4*16 ticks until we can write data to the sending hold register
111 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
112 // 8 ticks until the first transfer starts
113 // 8 ticks later the FPGA samples the data
114 // 1 tick to assign mod_sig_coil
115 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
116
117 // When the PM acts as tag and is receiving it takes
118 // 2 ticks delay in the RF part (for the first falling edge),
119 // 3 ticks for the A/D conversion,
120 // 8 ticks on average until the start of the SSC transfer,
121 // 8 ticks until the SSC samples the first data
122 // 7*16 ticks to complete the transfer from FPGA to ARM
123 // 8 ticks until the next ssp_clk rising edge
124 // 4*16 ticks until we measure the time
125 // - 8*16 ticks because we measure the time of the previous transfer
126 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
127
128 // The FPGA will report its internal sending delay in
129 uint16_t FpgaSendQueueDelay;
130 // the 5 first bits are the number of bits buffered in mod_sig_buf
131 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
132 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
133
134 // When the PM acts as tag and is sending, it takes
135 // 4*16 ticks until we can write data to the sending hold register
136 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
137 // 8 ticks until the first transfer starts
138 // 8 ticks later the FPGA samples the data
139 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
140 // + 1 tick to assign mod_sig_coil
141 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
142
143 // When the PM acts as sniffer and is receiving tag data, it takes
144 // 3 ticks A/D conversion
145 // 14 ticks to complete the modulation detection
146 // 8 ticks (on average) until the result is stored in to_arm
147 // + the delays in transferring data - which is the same for
148 // sniffing reader and tag data and therefore not relevant
149 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
150
151 // When the PM acts as sniffer and is receiving reader data, it takes
152 // 2 ticks delay in analogue RF receiver (for the falling edge of the
153 // start bit, which marks the start of the communication)
154 // 3 ticks A/D conversion
155 // 8 ticks on average until the data is stored in to_arm.
156 // + the delays in transferring data - which is the same for
157 // sniffing reader and tag data and therefore not relevant
158 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
159
160 //variables used for timing purposes:
161 //these are in ssp_clk cycles:
162 static uint32_t NextTransferTime;
163 static uint32_t LastTimeProxToAirStart;
164 static uint32_t LastProxToAirDuration;
165
166
167
168 // CARD TO READER - manchester
169 // Sequence D: 11110000 modulation with subcarrier during first half
170 // Sequence E: 00001111 modulation with subcarrier during second half
171 // Sequence F: 00000000 no modulation with subcarrier
172 // READER TO CARD - miller
173 // Sequence X: 00001100 drop after half a period
174 // Sequence Y: 00000000 no drop
175 // Sequence Z: 11000000 drop at start
176 #define SEC_D 0xf0
177 #define SEC_E 0x0f
178 #define SEC_F 0x00
179 #define SEC_X 0x0c
180 #define SEC_Y 0x00
181 #define SEC_Z 0xc0
182
183 void iso14a_set_trigger(bool enable) {
184 trigger = enable;
185 }
186
187
188 void iso14a_set_timeout(uint32_t timeout) {
189 iso14a_timeout = timeout;
190 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
191 }
192
193
194 void iso14a_set_ATS_timeout(uint8_t *ats) {
195
196 uint8_t tb1;
197 uint8_t fwi;
198 uint32_t fwt;
199
200 if (ats[0] > 1) { // there is a format byte T0
201 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
202 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
203 tb1 = ats[3];
204 } else {
205 tb1 = ats[2];
206 }
207 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
208 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
209
210 iso14a_set_timeout(fwt/(8*16));
211 }
212 }
213 }
214
215
216 //-----------------------------------------------------------------------------
217 // Generate the parity value for a byte sequence
218 //
219 //-----------------------------------------------------------------------------
220 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
221 {
222 uint16_t paritybit_cnt = 0;
223 uint16_t paritybyte_cnt = 0;
224 uint8_t parityBits = 0;
225
226 for (uint16_t i = 0; i < iLen; i++) {
227 // Generate the parity bits
228 parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
229 if (paritybit_cnt == 7) {
230 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
231 parityBits = 0; // and advance to next Parity Byte
232 paritybyte_cnt++;
233 paritybit_cnt = 0;
234 } else {
235 paritybit_cnt++;
236 }
237 }
238
239 // save remaining parity bits
240 par[paritybyte_cnt] = parityBits;
241
242 }
243
244 void AppendCrc14443a(uint8_t* data, int len)
245 {
246 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
247 }
248
249 void AppendCrc14443b(uint8_t* data, int len)
250 {
251 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
252 }
253
254
255 //=============================================================================
256 // ISO 14443 Type A - Miller decoder
257 //=============================================================================
258 // Basics:
259 // This decoder is used when the PM3 acts as a tag.
260 // The reader will generate "pauses" by temporarily switching of the field.
261 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
262 // The FPGA does a comparison with a threshold and would deliver e.g.:
263 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
264 // The Miller decoder needs to identify the following sequences:
265 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
266 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
267 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
268 // Note 1: the bitstream may start at any time. We therefore need to sync.
269 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
270 //-----------------------------------------------------------------------------
271 static tUart Uart;
272
273 // Lookup-Table to decide if 4 raw bits are a modulation.
274 // We accept the following:
275 // 0001 - a 3 tick wide pause
276 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
277 // 0111 - a 2 tick wide pause shifted left
278 // 1001 - a 2 tick wide pause shifted right
279 const bool Mod_Miller_LUT[] = {
280 false, true, false, true, false, false, false, true,
281 false, true, false, false, false, false, false, false
282 };
283 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
284 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
285
286 void UartReset()
287 {
288 Uart.state = STATE_UNSYNCD;
289 Uart.bitCount = 0;
290 Uart.len = 0; // number of decoded data bytes
291 Uart.parityLen = 0; // number of decoded parity bytes
292 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
293 Uart.parityBits = 0; // holds 8 parity bits
294 Uart.startTime = 0;
295 Uart.endTime = 0;
296 }
297
298 void UartInit(uint8_t *data, uint8_t *parity)
299 {
300 Uart.output = data;
301 Uart.parity = parity;
302 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
303 UartReset();
304 }
305
306 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
307 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
308 {
309
310 Uart.fourBits = (Uart.fourBits << 8) | bit;
311
312 if (Uart.state == STATE_UNSYNCD) { // not yet synced
313
314 Uart.syncBit = 9999; // not set
315 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
316 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
317 // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
318 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
319 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
320 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
321 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
322 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
323 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
324 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
325 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
326 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
327 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
328 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
329
330 if (Uart.syncBit != 9999) { // found a sync bit
331 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
332 Uart.startTime -= Uart.syncBit;
333 Uart.endTime = Uart.startTime;
334 Uart.state = STATE_START_OF_COMMUNICATION;
335 }
336
337 } else {
338
339 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
340 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
341 UartReset();
342 } else { // Modulation in first half = Sequence Z = logic "0"
343 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
344 UartReset();
345 } else {
346 Uart.bitCount++;
347 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
348 Uart.state = STATE_MILLER_Z;
349 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
350 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
351 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
352 Uart.parityBits <<= 1; // make room for the parity bit
353 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
354 Uart.bitCount = 0;
355 Uart.shiftReg = 0;
356 if((Uart.len&0x0007) == 0) { // every 8 data bytes
357 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
358 Uart.parityBits = 0;
359 }
360 }
361 }
362 }
363 } else {
364 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
365 Uart.bitCount++;
366 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
367 Uart.state = STATE_MILLER_X;
368 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
369 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
370 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
371 Uart.parityBits <<= 1; // make room for the new parity bit
372 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
373 Uart.bitCount = 0;
374 Uart.shiftReg = 0;
375 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
376 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
377 Uart.parityBits = 0;
378 }
379 }
380 } else { // no modulation in both halves - Sequence Y
381 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
382 Uart.state = STATE_UNSYNCD;
383 Uart.bitCount--; // last "0" was part of EOC sequence
384 Uart.shiftReg <<= 1; // drop it
385 if(Uart.bitCount > 0) { // if we decoded some bits
386 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
387 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
388 Uart.parityBits <<= 1; // add a (void) parity bit
389 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
390 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
391 return true;
392 } else if (Uart.len & 0x0007) { // there are some parity bits to store
393 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
394 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
395 }
396 if (Uart.len) {
397 return true; // we are finished with decoding the raw data sequence
398 } else {
399 UartReset(); // Nothing received - start over
400 }
401 }
402 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
403 UartReset();
404 } else { // a logic "0"
405 Uart.bitCount++;
406 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
407 Uart.state = STATE_MILLER_Y;
408 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
409 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
410 Uart.parityBits <<= 1; // make room for the parity bit
411 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
412 Uart.bitCount = 0;
413 Uart.shiftReg = 0;
414 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
415 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
416 Uart.parityBits = 0;
417 }
418 }
419 }
420 }
421 }
422
423 }
424
425 return false; // not finished yet, need more data
426 }
427
428
429
430 //=============================================================================
431 // ISO 14443 Type A - Manchester decoder
432 //=============================================================================
433 // Basics:
434 // This decoder is used when the PM3 acts as a reader.
435 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
436 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
437 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
438 // The Manchester decoder needs to identify the following sequences:
439 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
440 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
441 // 8 ticks unmodulated: Sequence F = end of communication
442 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
443 // Note 1: the bitstream may start at any time. We therefore need to sync.
444 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
445 static tDemod Demod;
446
447 // Lookup-Table to decide if 4 raw bits are a modulation.
448 // We accept three or four "1" in any position
449 const bool Mod_Manchester_LUT[] = {
450 false, false, false, false, false, false, false, true,
451 false, false, false, true, false, true, true, true
452 };
453
454 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
455 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
456
457
458 void DemodReset()
459 {
460 Demod.state = DEMOD_UNSYNCD;
461 Demod.len = 0; // number of decoded data bytes
462 Demod.parityLen = 0;
463 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
464 Demod.parityBits = 0; //
465 Demod.collisionPos = 0; // Position of collision bit
466 Demod.twoBits = 0xffff; // buffer for 2 Bits
467 Demod.highCnt = 0;
468 Demod.startTime = 0;
469 Demod.endTime = 0;
470 }
471
472 void DemodInit(uint8_t *data, uint8_t *parity)
473 {
474 Demod.output = data;
475 Demod.parity = parity;
476 DemodReset();
477 }
478
479 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
480 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
481 {
482
483 Demod.twoBits = (Demod.twoBits << 8) | bit;
484
485 if (Demod.state == DEMOD_UNSYNCD) {
486
487 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
488 if (Demod.twoBits == 0x0000) {
489 Demod.highCnt++;
490 } else {
491 Demod.highCnt = 0;
492 }
493 } else {
494 Demod.syncBit = 0xFFFF; // not set
495 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
496 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
497 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
498 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
499 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
500 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
501 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
502 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
503 if (Demod.syncBit != 0xFFFF) {
504 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
505 Demod.startTime -= Demod.syncBit;
506 Demod.bitCount = offset; // number of decoded data bits
507 Demod.state = DEMOD_MANCHESTER_DATA;
508 }
509 }
510
511 } else {
512
513 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
514 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
515 if (!Demod.collisionPos) {
516 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
517 }
518 } // modulation in first half only - Sequence D = 1
519 Demod.bitCount++;
520 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
521 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
522 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
523 Demod.parityBits <<= 1; // make room for the parity bit
524 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
525 Demod.bitCount = 0;
526 Demod.shiftReg = 0;
527 if((Demod.len&0x0007) == 0) { // every 8 data bytes
528 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
529 Demod.parityBits = 0;
530 }
531 }
532 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
533 } else { // no modulation in first half
534 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
535 Demod.bitCount++;
536 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
537 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
538 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
539 Demod.parityBits <<= 1; // make room for the new parity bit
540 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
541 Demod.bitCount = 0;
542 Demod.shiftReg = 0;
543 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
544 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
545 Demod.parityBits = 0;
546 }
547 }
548 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
549 } else { // no modulation in both halves - End of communication
550 if(Demod.bitCount > 0) { // there are some remaining data bits
551 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
552 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
553 Demod.parityBits <<= 1; // add a (void) parity bit
554 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
555 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
556 return true;
557 } else if (Demod.len & 0x0007) { // there are some parity bits to store
558 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
559 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
560 }
561 if (Demod.len) {
562 return true; // we are finished with decoding the raw data sequence
563 } else { // nothing received. Start over
564 DemodReset();
565 }
566 }
567 }
568
569 }
570
571 return false; // not finished yet, need more data
572 }
573
574 //=============================================================================
575 // Finally, a `sniffer' for ISO 14443 Type A
576 // Both sides of communication!
577 //=============================================================================
578
579 //-----------------------------------------------------------------------------
580 // Record the sequence of commands sent by the reader to the tag, with
581 // triggering so that we start recording at the point that the tag is moved
582 // near the reader.
583 //-----------------------------------------------------------------------------
584 void RAMFUNC SnoopIso14443a(uint8_t param) {
585 // param:
586 // bit 0 - trigger from first card answer
587 // bit 1 - trigger from first reader 7-bit request
588
589 LEDsoff();
590
591 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
592
593 // Allocate memory from BigBuf for some buffers
594 // free all previous allocations first
595 BigBuf_free();
596
597 // The command (reader -> tag) that we're receiving.
598 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
599 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
600
601 // The response (tag -> reader) that we're receiving.
602 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
603 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
604
605 // The DMA buffer, used to stream samples from the FPGA
606 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
607
608 // init trace buffer
609 clear_trace();
610 set_tracing(true);
611
612 uint8_t *data = dmaBuf;
613 uint8_t previous_data = 0;
614 int maxDataLen = 0;
615 int dataLen = 0;
616 bool TagIsActive = false;
617 bool ReaderIsActive = false;
618
619 // Set up the demodulator for tag -> reader responses.
620 DemodInit(receivedResponse, receivedResponsePar);
621
622 // Set up the demodulator for the reader -> tag commands
623 UartInit(receivedCmd, receivedCmdPar);
624
625 // Setup and start DMA.
626 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
627
628 // We won't start recording the frames that we acquire until we trigger;
629 // a good trigger condition to get started is probably when we see a
630 // response from the tag.
631 // triggered == false -- to wait first for card
632 bool triggered = !(param & 0x03);
633
634 // And now we loop, receiving samples.
635 for(uint32_t rsamples = 0; true; ) {
636
637 if(BUTTON_PRESS()) {
638 DbpString("cancelled by button");
639 break;
640 }
641
642 LED_A_ON();
643 WDT_HIT();
644
645 int register readBufDataP = data - dmaBuf;
646 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
647 if (readBufDataP <= dmaBufDataP){
648 dataLen = dmaBufDataP - readBufDataP;
649 } else {
650 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
651 }
652 // test for length of buffer
653 if(dataLen > maxDataLen) {
654 maxDataLen = dataLen;
655 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
656 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
657 break;
658 }
659 }
660 if(dataLen < 1) continue;
661
662 // primary buffer was stopped( <-- we lost data!
663 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
664 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
665 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
666 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
667 }
668 // secondary buffer sets as primary, secondary buffer was stopped
669 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
670 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
671 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
672 }
673
674 LED_A_OFF();
675
676 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
677
678 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
679 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
680 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
681 LED_C_ON();
682
683 // check - if there is a short 7bit request from reader
684 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = true;
685
686 if(triggered) {
687 if (!LogTrace(receivedCmd,
688 Uart.len,
689 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
690 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
691 Uart.parity,
692 true)) break;
693 }
694 /* And ready to receive another command. */
695 UartReset();
696 /* And also reset the demod code, which might have been */
697 /* false-triggered by the commands from the reader. */
698 DemodReset();
699 LED_B_OFF();
700 }
701 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
702 }
703
704 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
705 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
706 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
707 LED_B_ON();
708
709 if (!LogTrace(receivedResponse,
710 Demod.len,
711 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
712 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
713 Demod.parity,
714 false)) break;
715
716 if ((!triggered) && (param & 0x01)) triggered = true;
717
718 // And ready to receive another response.
719 DemodReset();
720 // And reset the Miller decoder including itS (now outdated) input buffer
721 UartInit(receivedCmd, receivedCmdPar);
722
723 LED_C_OFF();
724 }
725 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
726 }
727 }
728
729 previous_data = *data;
730 rsamples++;
731 data++;
732 if(data == dmaBuf + DMA_BUFFER_SIZE) {
733 data = dmaBuf;
734 }
735 } // main cycle
736
737 DbpString("COMMAND FINISHED");
738
739 FpgaDisableSscDma();
740 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
741 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
742 LEDsoff();
743 }
744
745 //-----------------------------------------------------------------------------
746 // Prepare tag messages
747 //-----------------------------------------------------------------------------
748 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
749 {
750 ToSendReset();
751
752 // Correction bit, might be removed when not needed
753 ToSendStuffBit(0);
754 ToSendStuffBit(0);
755 ToSendStuffBit(0);
756 ToSendStuffBit(0);
757 ToSendStuffBit(1); // 1
758 ToSendStuffBit(0);
759 ToSendStuffBit(0);
760 ToSendStuffBit(0);
761
762 // Send startbit
763 ToSend[++ToSendMax] = SEC_D;
764 LastProxToAirDuration = 8 * ToSendMax - 4;
765
766 for(uint16_t i = 0; i < len; i++) {
767 uint8_t b = cmd[i];
768
769 // Data bits
770 for(uint16_t j = 0; j < 8; j++) {
771 if(b & 1) {
772 ToSend[++ToSendMax] = SEC_D;
773 } else {
774 ToSend[++ToSendMax] = SEC_E;
775 }
776 b >>= 1;
777 }
778
779 // Get the parity bit
780 if (parity[i>>3] & (0x80>>(i&0x0007))) {
781 ToSend[++ToSendMax] = SEC_D;
782 LastProxToAirDuration = 8 * ToSendMax - 4;
783 } else {
784 ToSend[++ToSendMax] = SEC_E;
785 LastProxToAirDuration = 8 * ToSendMax;
786 }
787 }
788
789 // Send stopbit
790 ToSend[++ToSendMax] = SEC_F;
791
792 // Convert from last byte pos to length
793 ToSendMax++;
794 }
795
796 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
797 {
798 uint8_t par[MAX_PARITY_SIZE];
799
800 GetParity(cmd, len, par);
801 CodeIso14443aAsTagPar(cmd, len, par);
802 }
803
804
805 static void Code4bitAnswerAsTag(uint8_t cmd)
806 {
807 int i;
808
809 ToSendReset();
810
811 // Correction bit, might be removed when not needed
812 ToSendStuffBit(0);
813 ToSendStuffBit(0);
814 ToSendStuffBit(0);
815 ToSendStuffBit(0);
816 ToSendStuffBit(1); // 1
817 ToSendStuffBit(0);
818 ToSendStuffBit(0);
819 ToSendStuffBit(0);
820
821 // Send startbit
822 ToSend[++ToSendMax] = SEC_D;
823
824 uint8_t b = cmd;
825 for(i = 0; i < 4; i++) {
826 if(b & 1) {
827 ToSend[++ToSendMax] = SEC_D;
828 LastProxToAirDuration = 8 * ToSendMax - 4;
829 } else {
830 ToSend[++ToSendMax] = SEC_E;
831 LastProxToAirDuration = 8 * ToSendMax;
832 }
833 b >>= 1;
834 }
835
836 // Send stopbit
837 ToSend[++ToSendMax] = SEC_F;
838
839 // Convert from last byte pos to length
840 ToSendMax++;
841 }
842
843 //-----------------------------------------------------------------------------
844 // Wait for commands from reader
845 // Stop when button is pressed
846 // Or return true when command is captured
847 //-----------------------------------------------------------------------------
848 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
849 {
850 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
851 // only, since we are receiving, not transmitting).
852 // Signal field is off with the appropriate LED
853 LED_D_OFF();
854 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
855
856 // Now run a `software UART' on the stream of incoming samples.
857 UartInit(received, parity);
858
859 // clear RXRDY:
860 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
861
862 for(;;) {
863 WDT_HIT();
864
865 if(BUTTON_PRESS()) return false;
866
867 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
868 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
869 if(MillerDecoding(b, 0)) {
870 *len = Uart.len;
871 return true;
872 }
873 }
874 }
875 }
876
877 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
878 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
879 int EmSend4bit(uint8_t resp);
880 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
881 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
882 int EmSendCmd(uint8_t *resp, uint16_t respLen);
883 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
884 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
885 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
886
887 static uint8_t* free_buffer_pointer;
888
889 typedef struct {
890 uint8_t* response;
891 size_t response_n;
892 uint8_t* modulation;
893 size_t modulation_n;
894 uint32_t ProxToAirDuration;
895 } tag_response_info_t;
896
897 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
898 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
899 // This will need the following byte array for a modulation sequence
900 // 144 data bits (18 * 8)
901 // 18 parity bits
902 // 2 Start and stop
903 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
904 // 1 just for the case
905 // ----------- +
906 // 166 bytes, since every bit that needs to be send costs us a byte
907 //
908
909
910 // Prepare the tag modulation bits from the message
911 CodeIso14443aAsTag(response_info->response,response_info->response_n);
912
913 // Make sure we do not exceed the free buffer space
914 if (ToSendMax > max_buffer_size) {
915 Dbprintf("Out of memory, when modulating bits for tag answer:");
916 Dbhexdump(response_info->response_n,response_info->response,false);
917 return false;
918 }
919
920 // Copy the byte array, used for this modulation to the buffer position
921 memcpy(response_info->modulation,ToSend,ToSendMax);
922
923 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
924 response_info->modulation_n = ToSendMax;
925 response_info->ProxToAirDuration = LastProxToAirDuration;
926
927 return true;
928 }
929
930
931 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
932 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
933 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
934 // -> need 273 bytes buffer
935 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
936
937 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
938 // Retrieve and store the current buffer index
939 response_info->modulation = free_buffer_pointer;
940
941 // Determine the maximum size we can use from our buffer
942 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
943
944 // Forward the prepare tag modulation function to the inner function
945 if (prepare_tag_modulation(response_info, max_buffer_size)) {
946 // Update the free buffer offset
947 free_buffer_pointer += ToSendMax;
948 return true;
949 } else {
950 return false;
951 }
952 }
953
954 //-----------------------------------------------------------------------------
955 // Main loop of simulated tag: receive commands from reader, decide what
956 // response to send, and send it.
957 //-----------------------------------------------------------------------------
958 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
959 {
960 uint8_t sak;
961
962 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
963 uint8_t response1[2];
964
965 switch (tagType) {
966 case 1: { // MIFARE Classic
967 // Says: I am Mifare 1k - original line
968 response1[0] = 0x04;
969 response1[1] = 0x00;
970 sak = 0x08;
971 } break;
972 case 2: { // MIFARE Ultralight
973 // Says: I am a stupid memory tag, no crypto
974 response1[0] = 0x04;
975 response1[1] = 0x00;
976 sak = 0x00;
977 } break;
978 case 3: { // MIFARE DESFire
979 // Says: I am a DESFire tag, ph33r me
980 response1[0] = 0x04;
981 response1[1] = 0x03;
982 sak = 0x20;
983 } break;
984 case 4: { // ISO/IEC 14443-4
985 // Says: I am a javacard (JCOP)
986 response1[0] = 0x04;
987 response1[1] = 0x00;
988 sak = 0x28;
989 } break;
990 case 5: { // MIFARE TNP3XXX
991 // Says: I am a toy
992 response1[0] = 0x01;
993 response1[1] = 0x0f;
994 sak = 0x01;
995 } break;
996 default: {
997 Dbprintf("Error: unkown tagtype (%d)",tagType);
998 return;
999 } break;
1000 }
1001
1002 // The second response contains the (mandatory) first 24 bits of the UID
1003 uint8_t response2[5] = {0x00};
1004
1005 // Check if the uid uses the (optional) part
1006 uint8_t response2a[5] = {0x00};
1007
1008 if (uid_2nd) {
1009 response2[0] = 0x88;
1010 num_to_bytes(uid_1st,3,response2+1);
1011 num_to_bytes(uid_2nd,4,response2a);
1012 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1013
1014 // Configure the ATQA and SAK accordingly
1015 response1[0] |= 0x40;
1016 sak |= 0x04;
1017 } else {
1018 num_to_bytes(uid_1st,4,response2);
1019 // Configure the ATQA and SAK accordingly
1020 response1[0] &= 0xBF;
1021 sak &= 0xFB;
1022 }
1023
1024 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1025 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1026
1027 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1028 uint8_t response3[3] = {0x00};
1029 response3[0] = sak;
1030 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1031
1032 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1033 uint8_t response3a[3] = {0x00};
1034 response3a[0] = sak & 0xFB;
1035 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1036
1037 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1038 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1039 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1040 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1041 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1042 // TC(1) = 0x02: CID supported, NAD not supported
1043 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1044
1045 #define TAG_RESPONSE_COUNT 7
1046 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1047 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1048 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1049 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1050 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1051 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1052 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1053 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1054 };
1055
1056 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1057 // Such a response is less time critical, so we can prepare them on the fly
1058 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1059 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1060 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1061 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1062 tag_response_info_t dynamic_response_info = {
1063 .response = dynamic_response_buffer,
1064 .response_n = 0,
1065 .modulation = dynamic_modulation_buffer,
1066 .modulation_n = 0
1067 };
1068
1069 // We need to listen to the high-frequency, peak-detected path.
1070 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1071
1072 BigBuf_free_keep_EM();
1073
1074 // allocate buffers:
1075 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1076 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1077 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1078
1079 // clear trace
1080 clear_trace();
1081 set_tracing(true);
1082
1083 // Prepare the responses of the anticollision phase
1084 // there will be not enough time to do this at the moment the reader sends it REQA
1085 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1086 prepare_allocated_tag_modulation(&responses[i]);
1087 }
1088
1089 int len = 0;
1090
1091 // To control where we are in the protocol
1092 int order = 0;
1093 int lastorder;
1094
1095 // Just to allow some checks
1096 int happened = 0;
1097 int happened2 = 0;
1098 int cmdsRecvd = 0;
1099
1100 cmdsRecvd = 0;
1101 tag_response_info_t* p_response;
1102
1103 LED_A_ON();
1104 for(;;) {
1105 // Clean receive command buffer
1106 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1107 DbpString("Button press");
1108 break;
1109 }
1110
1111 p_response = NULL;
1112
1113 // Okay, look at the command now.
1114 lastorder = order;
1115 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1116 p_response = &responses[0]; order = 1;
1117 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1118 p_response = &responses[0]; order = 6;
1119 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1120 p_response = &responses[1]; order = 2;
1121 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1122 p_response = &responses[2]; order = 20;
1123 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1124 p_response = &responses[3]; order = 3;
1125 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1126 p_response = &responses[4]; order = 30;
1127 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1128 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
1129 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1130 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1131 p_response = NULL;
1132 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1133
1134 if (tracing) {
1135 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
1136 }
1137 p_response = NULL;
1138 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1139 p_response = &responses[5]; order = 7;
1140 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1141 if (tagType == 1 || tagType == 2) { // RATS not supported
1142 EmSend4bit(CARD_NACK_NA);
1143 p_response = NULL;
1144 } else {
1145 p_response = &responses[6]; order = 70;
1146 }
1147 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1148 if (tracing) {
1149 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
1150 }
1151 uint32_t nr = bytes_to_num(receivedCmd,4);
1152 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1153 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1154 } else {
1155 // Check for ISO 14443A-4 compliant commands, look at left nibble
1156 switch (receivedCmd[0]) {
1157
1158 case 0x0B:
1159 case 0x0A: { // IBlock (command)
1160 dynamic_response_info.response[0] = receivedCmd[0];
1161 dynamic_response_info.response[1] = 0x00;
1162 dynamic_response_info.response[2] = 0x90;
1163 dynamic_response_info.response[3] = 0x00;
1164 dynamic_response_info.response_n = 4;
1165 } break;
1166
1167 case 0x1A:
1168 case 0x1B: { // Chaining command
1169 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1170 dynamic_response_info.response_n = 2;
1171 } break;
1172
1173 case 0xaa:
1174 case 0xbb: {
1175 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1176 dynamic_response_info.response_n = 2;
1177 } break;
1178
1179 case 0xBA: { //
1180 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1181 dynamic_response_info.response_n = 2;
1182 } break;
1183
1184 case 0xCA:
1185 case 0xC2: { // Readers sends deselect command
1186 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1187 dynamic_response_info.response_n = 2;
1188 } break;
1189
1190 default: {
1191 // Never seen this command before
1192 if (tracing) {
1193 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
1194 }
1195 Dbprintf("Received unknown command (len=%d):",len);
1196 Dbhexdump(len,receivedCmd,false);
1197 // Do not respond
1198 dynamic_response_info.response_n = 0;
1199 } break;
1200 }
1201
1202 if (dynamic_response_info.response_n > 0) {
1203 // Copy the CID from the reader query
1204 dynamic_response_info.response[1] = receivedCmd[1];
1205
1206 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1207 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1208 dynamic_response_info.response_n += 2;
1209
1210 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1211 Dbprintf("Error preparing tag response");
1212 if (tracing) {
1213 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
1214 }
1215 break;
1216 }
1217 p_response = &dynamic_response_info;
1218 }
1219 }
1220
1221 // Count number of wakeups received after a halt
1222 if(order == 6 && lastorder == 5) { happened++; }
1223
1224 // Count number of other messages after a halt
1225 if(order != 6 && lastorder == 5) { happened2++; }
1226
1227 if(cmdsRecvd > 999) {
1228 DbpString("1000 commands later...");
1229 break;
1230 }
1231 cmdsRecvd++;
1232
1233 if (p_response != NULL) {
1234 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1235 // do the tracing for the previous reader request and this tag answer:
1236 uint8_t par[MAX_PARITY_SIZE];
1237 GetParity(p_response->response, p_response->response_n, par);
1238
1239 EmLogTrace(Uart.output,
1240 Uart.len,
1241 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1242 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1243 Uart.parity,
1244 p_response->response,
1245 p_response->response_n,
1246 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1247 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1248 par);
1249 }
1250
1251 if (!tracing) {
1252 Dbprintf("Trace Full. Simulation stopped.");
1253 break;
1254 }
1255 }
1256
1257 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1258 LED_A_OFF();
1259 BigBuf_free_keep_EM();
1260 }
1261
1262
1263 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1264 // of bits specified in the delay parameter.
1265 void PrepareDelayedTransfer(uint16_t delay)
1266 {
1267 uint8_t bitmask = 0;
1268 uint8_t bits_to_shift = 0;
1269 uint8_t bits_shifted = 0;
1270
1271 delay &= 0x07;
1272 if (delay) {
1273 for (uint16_t i = 0; i < delay; i++) {
1274 bitmask |= (0x01 << i);
1275 }
1276 ToSend[ToSendMax++] = 0x00;
1277 for (uint16_t i = 0; i < ToSendMax; i++) {
1278 bits_to_shift = ToSend[i] & bitmask;
1279 ToSend[i] = ToSend[i] >> delay;
1280 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1281 bits_shifted = bits_to_shift;
1282 }
1283 }
1284 }
1285
1286
1287 //-------------------------------------------------------------------------------------
1288 // Transmit the command (to the tag) that was placed in ToSend[].
1289 // Parameter timing:
1290 // if NULL: transfer at next possible time, taking into account
1291 // request guard time and frame delay time
1292 // if == 0: transfer immediately and return time of transfer
1293 // if != 0: delay transfer until time specified
1294 //-------------------------------------------------------------------------------------
1295 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1296 {
1297
1298 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1299
1300 uint32_t ThisTransferTime = 0;
1301
1302 if (timing) {
1303 if(*timing == 0) { // Measure time
1304 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1305 } else {
1306 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1307 }
1308 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1309 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1310 LastTimeProxToAirStart = *timing;
1311 } else {
1312 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1313 while(GetCountSspClk() < ThisTransferTime);
1314 LastTimeProxToAirStart = ThisTransferTime;
1315 }
1316
1317 // clear TXRDY
1318 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1319
1320 uint16_t c = 0;
1321 for(;;) {
1322 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1323 AT91C_BASE_SSC->SSC_THR = cmd[c];
1324 c++;
1325 if(c >= len) {
1326 break;
1327 }
1328 }
1329 }
1330
1331 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1332 }
1333
1334
1335 //-----------------------------------------------------------------------------
1336 // Prepare reader command (in bits, support short frames) to send to FPGA
1337 //-----------------------------------------------------------------------------
1338 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1339 {
1340 int i, j;
1341 int last;
1342 uint8_t b;
1343
1344 ToSendReset();
1345
1346 // Start of Communication (Seq. Z)
1347 ToSend[++ToSendMax] = SEC_Z;
1348 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1349 last = 0;
1350
1351 size_t bytecount = nbytes(bits);
1352 // Generate send structure for the data bits
1353 for (i = 0; i < bytecount; i++) {
1354 // Get the current byte to send
1355 b = cmd[i];
1356 size_t bitsleft = MIN((bits-(i*8)),8);
1357
1358 for (j = 0; j < bitsleft; j++) {
1359 if (b & 1) {
1360 // Sequence X
1361 ToSend[++ToSendMax] = SEC_X;
1362 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1363 last = 1;
1364 } else {
1365 if (last == 0) {
1366 // Sequence Z
1367 ToSend[++ToSendMax] = SEC_Z;
1368 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1369 } else {
1370 // Sequence Y
1371 ToSend[++ToSendMax] = SEC_Y;
1372 last = 0;
1373 }
1374 }
1375 b >>= 1;
1376 }
1377
1378 // Only transmit parity bit if we transmitted a complete byte
1379 if (j == 8 && parity != NULL) {
1380 // Get the parity bit
1381 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1382 // Sequence X
1383 ToSend[++ToSendMax] = SEC_X;
1384 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1385 last = 1;
1386 } else {
1387 if (last == 0) {
1388 // Sequence Z
1389 ToSend[++ToSendMax] = SEC_Z;
1390 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1391 } else {
1392 // Sequence Y
1393 ToSend[++ToSendMax] = SEC_Y;
1394 last = 0;
1395 }
1396 }
1397 }
1398 }
1399
1400 // End of Communication: Logic 0 followed by Sequence Y
1401 if (last == 0) {
1402 // Sequence Z
1403 ToSend[++ToSendMax] = SEC_Z;
1404 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1405 } else {
1406 // Sequence Y
1407 ToSend[++ToSendMax] = SEC_Y;
1408 last = 0;
1409 }
1410 ToSend[++ToSendMax] = SEC_Y;
1411
1412 // Convert to length of command:
1413 ToSendMax++;
1414 }
1415
1416 //-----------------------------------------------------------------------------
1417 // Prepare reader command to send to FPGA
1418 //-----------------------------------------------------------------------------
1419 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1420 {
1421 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1422 }
1423
1424
1425 //-----------------------------------------------------------------------------
1426 // Wait for commands from reader
1427 // Stop when button is pressed (return 1) or field was gone (return 2)
1428 // Or return 0 when command is captured
1429 //-----------------------------------------------------------------------------
1430 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1431 {
1432 *len = 0;
1433
1434 uint32_t timer = 0, vtime = 0;
1435 int analogCnt = 0;
1436 int analogAVG = 0;
1437
1438 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1439 // only, since we are receiving, not transmitting).
1440 // Signal field is off with the appropriate LED
1441 LED_D_OFF();
1442 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1443
1444 // Set ADC to read field strength
1445 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1446 AT91C_BASE_ADC->ADC_MR =
1447 ADC_MODE_PRESCALE(63) |
1448 ADC_MODE_STARTUP_TIME(1) |
1449 ADC_MODE_SAMPLE_HOLD_TIME(15);
1450 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1451 // start ADC
1452 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1453
1454 // Now run a 'software UART' on the stream of incoming samples.
1455 UartInit(received, parity);
1456
1457 // Clear RXRDY:
1458 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1459
1460 for(;;) {
1461 WDT_HIT();
1462
1463 if (BUTTON_PRESS()) return 1;
1464
1465 // test if the field exists
1466 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1467 analogCnt++;
1468 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1469 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1470 if (analogCnt >= 32) {
1471 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1472 vtime = GetTickCount();
1473 if (!timer) timer = vtime;
1474 // 50ms no field --> card to idle state
1475 if (vtime - timer > 50) return 2;
1476 } else
1477 if (timer) timer = 0;
1478 analogCnt = 0;
1479 analogAVG = 0;
1480 }
1481 }
1482
1483 // receive and test the miller decoding
1484 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1485 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1486 if(MillerDecoding(b, 0)) {
1487 *len = Uart.len;
1488 return 0;
1489 }
1490 }
1491
1492 }
1493 }
1494
1495
1496 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1497 {
1498 uint8_t b;
1499 uint16_t i = 0;
1500 uint32_t ThisTransferTime;
1501
1502 // Modulate Manchester
1503 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1504
1505 // include correction bit if necessary
1506 if (Uart.parityBits & 0x01) {
1507 correctionNeeded = true;
1508 }
1509 if(correctionNeeded) {
1510 // 1236, so correction bit needed
1511 i = 0;
1512 } else {
1513 i = 1;
1514 }
1515
1516 // clear receiving shift register and holding register
1517 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1518 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1519 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1520 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1521
1522 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1523 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1524 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1525 if (AT91C_BASE_SSC->SSC_RHR) break;
1526 }
1527
1528 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1529
1530 // Clear TXRDY:
1531 AT91C_BASE_SSC->SSC_THR = SEC_F;
1532
1533 // send cycle
1534 for(; i < respLen; ) {
1535 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1536 AT91C_BASE_SSC->SSC_THR = resp[i++];
1537 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1538 }
1539
1540 if(BUTTON_PRESS()) {
1541 break;
1542 }
1543 }
1544
1545 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1546 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1547 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
1548 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1549 AT91C_BASE_SSC->SSC_THR = SEC_F;
1550 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1551 i++;
1552 }
1553 }
1554
1555 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1556
1557 return 0;
1558 }
1559
1560 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1561 Code4bitAnswerAsTag(resp);
1562 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1563 // do the tracing for the previous reader request and this tag answer:
1564 uint8_t par[1];
1565 GetParity(&resp, 1, par);
1566 EmLogTrace(Uart.output,
1567 Uart.len,
1568 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1569 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1570 Uart.parity,
1571 &resp,
1572 1,
1573 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1574 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1575 par);
1576 return res;
1577 }
1578
1579 int EmSend4bit(uint8_t resp){
1580 return EmSend4bitEx(resp, false);
1581 }
1582
1583 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1584 CodeIso14443aAsTagPar(resp, respLen, par);
1585 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1586 // do the tracing for the previous reader request and this tag answer:
1587 EmLogTrace(Uart.output,
1588 Uart.len,
1589 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1590 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1591 Uart.parity,
1592 resp,
1593 respLen,
1594 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1595 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1596 par);
1597 return res;
1598 }
1599
1600 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1601 uint8_t par[MAX_PARITY_SIZE];
1602 GetParity(resp, respLen, par);
1603 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1604 }
1605
1606 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1607 uint8_t par[MAX_PARITY_SIZE];
1608 GetParity(resp, respLen, par);
1609 return EmSendCmdExPar(resp, respLen, false, par);
1610 }
1611
1612 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1613 return EmSendCmdExPar(resp, respLen, false, par);
1614 }
1615
1616 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1617 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1618 {
1619 if (tracing) {
1620 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1621 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1622 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1623 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1624 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1625 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1626 reader_EndTime = tag_StartTime - exact_fdt;
1627 reader_StartTime = reader_EndTime - reader_modlen;
1628 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, true)) {
1629 return false;
1630 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false));
1631 } else {
1632 return true;
1633 }
1634 }
1635
1636 //-----------------------------------------------------------------------------
1637 // Wait a certain time for tag response
1638 // If a response is captured return true
1639 // If it takes too long return false
1640 //-----------------------------------------------------------------------------
1641 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1642 {
1643 uint32_t c;
1644
1645 // Set FPGA mode to "reader listen mode", no modulation (listen
1646 // only, since we are receiving, not transmitting).
1647 // Signal field is on with the appropriate LED
1648 LED_D_ON();
1649 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1650
1651 // Now get the answer from the card
1652 DemodInit(receivedResponse, receivedResponsePar);
1653
1654 // clear RXRDY:
1655 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1656
1657 c = 0;
1658 for(;;) {
1659 WDT_HIT();
1660
1661 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1662 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1663 if(ManchesterDecoding(b, offset, 0)) {
1664 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1665 return true;
1666 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1667 return false;
1668 }
1669 }
1670 }
1671 }
1672
1673
1674 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1675 {
1676 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1677
1678 // Send command to tag
1679 TransmitFor14443a(ToSend, ToSendMax, timing);
1680 if(trigger)
1681 LED_A_ON();
1682
1683 // Log reader command in trace buffer
1684 if (tracing) {
1685 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
1686 }
1687 }
1688
1689
1690 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1691 {
1692 ReaderTransmitBitsPar(frame, len*8, par, timing);
1693 }
1694
1695
1696 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1697 {
1698 // Generate parity and redirect
1699 uint8_t par[MAX_PARITY_SIZE];
1700 GetParity(frame, len/8, par);
1701 ReaderTransmitBitsPar(frame, len, par, timing);
1702 }
1703
1704
1705 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1706 {
1707 // Generate parity and redirect
1708 uint8_t par[MAX_PARITY_SIZE];
1709 GetParity(frame, len, par);
1710 ReaderTransmitBitsPar(frame, len*8, par, timing);
1711 }
1712
1713 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1714 {
1715 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false;
1716 if (tracing) {
1717 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
1718 }
1719 return Demod.len;
1720 }
1721
1722 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1723 {
1724 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false;
1725 if (tracing) {
1726 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
1727 }
1728 return Demod.len;
1729 }
1730
1731 // performs iso14443a anticollision (optional) and card select procedure
1732 // fills the uid and cuid pointer unless NULL
1733 // fills the card info record unless NULL
1734 // if anticollision is false, then the UID must be provided in uid_ptr[]
1735 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1736 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
1737 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1738 uint8_t sel_all[] = { 0x93,0x20 };
1739 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1740 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1741 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1742 uint8_t resp_par[MAX_PARITY_SIZE];
1743 byte_t uid_resp[4];
1744 size_t uid_resp_len;
1745
1746 uint8_t sak = 0x04; // cascade uid
1747 int cascade_level = 0;
1748 int len;
1749
1750 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1751 ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
1752
1753 // Receive the ATQA
1754 if(!ReaderReceive(resp, resp_par)) return 0;
1755
1756 if(p_hi14a_card) {
1757 memcpy(p_hi14a_card->atqa, resp, 2);
1758 p_hi14a_card->uidlen = 0;
1759 memset(p_hi14a_card->uid,0,10);
1760 }
1761
1762 if (anticollision) {
1763 // clear uid
1764 if (uid_ptr) {
1765 memset(uid_ptr,0,10);
1766 }
1767 }
1768
1769 // check for proprietary anticollision:
1770 if ((resp[0] & 0x1F) == 0) {
1771 return 3;
1772 }
1773
1774 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1775 // which case we need to make a cascade 2 request and select - this is a long UID
1776 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1777 for(; sak & 0x04; cascade_level++) {
1778 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1779 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1780
1781 if (anticollision) {
1782 // SELECT_ALL
1783 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1784 if (!ReaderReceive(resp, resp_par)) return 0;
1785
1786 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1787 memset(uid_resp, 0, 4);
1788 uint16_t uid_resp_bits = 0;
1789 uint16_t collision_answer_offset = 0;
1790 // anti-collision-loop:
1791 while (Demod.collisionPos) {
1792 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1793 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1794 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1795 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1796 }
1797 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1798 uid_resp_bits++;
1799 // construct anticollosion command:
1800 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1801 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1802 sel_uid[2+i] = uid_resp[i];
1803 }
1804 collision_answer_offset = uid_resp_bits%8;
1805 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1806 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1807 }
1808 // finally, add the last bits and BCC of the UID
1809 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1810 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1811 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1812 }
1813
1814 } else { // no collision, use the response to SELECT_ALL as current uid
1815 memcpy(uid_resp, resp, 4);
1816 }
1817 } else {
1818 if (cascade_level < num_cascades - 1) {
1819 uid_resp[0] = 0x88;
1820 memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
1821 } else {
1822 memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
1823 }
1824 }
1825 uid_resp_len = 4;
1826
1827 // calculate crypto UID. Always use last 4 Bytes.
1828 if(cuid_ptr) {
1829 *cuid_ptr = bytes_to_num(uid_resp, 4);
1830 }
1831
1832 // Construct SELECT UID command
1833 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1834 memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
1835 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1836 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1837 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1838
1839 // Receive the SAK
1840 if (!ReaderReceive(resp, resp_par)) return 0;
1841 sak = resp[0];
1842
1843 // Test if more parts of the uid are coming
1844 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1845 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1846 // http://www.nxp.com/documents/application_note/AN10927.pdf
1847 uid_resp[0] = uid_resp[1];
1848 uid_resp[1] = uid_resp[2];
1849 uid_resp[2] = uid_resp[3];
1850 uid_resp_len = 3;
1851 }
1852
1853 if(uid_ptr && anticollision) {
1854 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1855 }
1856
1857 if(p_hi14a_card) {
1858 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1859 p_hi14a_card->uidlen += uid_resp_len;
1860 }
1861 }
1862
1863 if(p_hi14a_card) {
1864 p_hi14a_card->sak = sak;
1865 p_hi14a_card->ats_len = 0;
1866 }
1867
1868 // non iso14443a compliant tag
1869 if( (sak & 0x20) == 0) return 2;
1870
1871 // Request for answer to select
1872 AppendCrc14443a(rats, 2);
1873 ReaderTransmit(rats, sizeof(rats), NULL);
1874
1875 if (!(len = ReaderReceive(resp, resp_par))) return 0;
1876
1877
1878 if(p_hi14a_card) {
1879 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1880 p_hi14a_card->ats_len = len;
1881 }
1882
1883 // reset the PCB block number
1884 iso14_pcb_blocknum = 0;
1885
1886 // set default timeout based on ATS
1887 iso14a_set_ATS_timeout(resp);
1888
1889 return 1;
1890 }
1891
1892 void iso14443a_setup(uint8_t fpga_minor_mode) {
1893 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1894 // Set up the synchronous serial port
1895 FpgaSetupSsc();
1896 // connect Demodulated Signal to ADC:
1897 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1898
1899 // Signal field is on with the appropriate LED
1900 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1901 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1902 LED_D_ON();
1903 } else {
1904 LED_D_OFF();
1905 }
1906 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1907
1908 // Start the timer
1909 StartCountSspClk();
1910
1911 DemodReset();
1912 UartReset();
1913 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1914 iso14a_set_timeout(1050); // 10ms default
1915 }
1916
1917 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1918 uint8_t parity[MAX_PARITY_SIZE];
1919 uint8_t real_cmd[cmd_len+4];
1920 real_cmd[0] = 0x0a; //I-Block
1921 // put block number into the PCB
1922 real_cmd[0] |= iso14_pcb_blocknum;
1923 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1924 memcpy(real_cmd+2, cmd, cmd_len);
1925 AppendCrc14443a(real_cmd,cmd_len+2);
1926
1927 ReaderTransmit(real_cmd, cmd_len+4, NULL);
1928 size_t len = ReaderReceive(data, parity);
1929 uint8_t *data_bytes = (uint8_t *) data;
1930 if (!len)
1931 return 0; //DATA LINK ERROR
1932 // if we received an I- or R(ACK)-Block with a block number equal to the
1933 // current block number, toggle the current block number
1934 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1935 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1936 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1937 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1938 {
1939 iso14_pcb_blocknum ^= 1;
1940 }
1941
1942 return len;
1943 }
1944
1945 //-----------------------------------------------------------------------------
1946 // Read an ISO 14443a tag. Send out commands and store answers.
1947 //
1948 //-----------------------------------------------------------------------------
1949 void ReaderIso14443a(UsbCommand *c)
1950 {
1951 iso14a_command_t param = c->arg[0];
1952 uint8_t *cmd = c->d.asBytes;
1953 size_t len = c->arg[1] & 0xffff;
1954 size_t lenbits = c->arg[1] >> 16;
1955 uint32_t timeout = c->arg[2];
1956 uint32_t arg0 = 0;
1957 byte_t buf[USB_CMD_DATA_SIZE];
1958 uint8_t par[MAX_PARITY_SIZE];
1959
1960 if(param & ISO14A_CONNECT) {
1961 clear_trace();
1962 }
1963
1964 set_tracing(true);
1965
1966 if(param & ISO14A_REQUEST_TRIGGER) {
1967 iso14a_set_trigger(true);
1968 }
1969
1970 if(param & ISO14A_CONNECT) {
1971 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
1972 if(!(param & ISO14A_NO_SELECT)) {
1973 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1974 arg0 = iso14443a_select_card(NULL, card, NULL, true, 0);
1975 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1976 }
1977 }
1978
1979 if(param & ISO14A_SET_TIMEOUT) {
1980 iso14a_set_timeout(timeout);
1981 }
1982
1983 if(param & ISO14A_APDU) {
1984 arg0 = iso14_apdu(cmd, len, buf);
1985 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1986 }
1987
1988 if(param & ISO14A_RAW) {
1989 if(param & ISO14A_APPEND_CRC) {
1990 if(param & ISO14A_TOPAZMODE) {
1991 AppendCrc14443b(cmd,len);
1992 } else {
1993 AppendCrc14443a(cmd,len);
1994 }
1995 len += 2;
1996 if (lenbits) lenbits += 16;
1997 }
1998 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
1999 if(param & ISO14A_TOPAZMODE) {
2000 int bits_to_send = lenbits;
2001 uint16_t i = 0;
2002 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2003 bits_to_send -= 7;
2004 while (bits_to_send > 0) {
2005 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2006 bits_to_send -= 8;
2007 }
2008 } else {
2009 GetParity(cmd, lenbits/8, par);
2010 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2011 }
2012 } else { // want to send complete bytes only
2013 if(param & ISO14A_TOPAZMODE) {
2014 uint16_t i = 0;
2015 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2016 while (i < len) {
2017 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2018 }
2019 } else {
2020 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2021 }
2022 }
2023 arg0 = ReaderReceive(buf, par);
2024 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2025 }
2026
2027 if(param & ISO14A_REQUEST_TRIGGER) {
2028 iso14a_set_trigger(false);
2029 }
2030
2031 if(param & ISO14A_NO_DISCONNECT) {
2032 return;
2033 }
2034
2035 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2036 LEDsoff();
2037 }
2038
2039
2040 // Determine the distance between two nonces.
2041 // Assume that the difference is small, but we don't know which is first.
2042 // Therefore try in alternating directions.
2043 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2044
2045 uint16_t i;
2046 uint32_t nttmp1, nttmp2;
2047
2048 if (nt1 == nt2) return 0;
2049
2050 nttmp1 = nt1;
2051 nttmp2 = nt2;
2052
2053 for (i = 1; i < 32768; i++) {
2054 nttmp1 = prng_successor(nttmp1, 1);
2055 if (nttmp1 == nt2) return i;
2056 nttmp2 = prng_successor(nttmp2, 1);
2057 if (nttmp2 == nt1) return -i;
2058 }
2059
2060 return(-99999); // either nt1 or nt2 are invalid nonces
2061 }
2062
2063
2064 //-----------------------------------------------------------------------------
2065 // Recover several bits of the cypher stream. This implements (first stages of)
2066 // the algorithm described in "The Dark Side of Security by Obscurity and
2067 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2068 // (article by Nicolas T. Courtois, 2009)
2069 //-----------------------------------------------------------------------------
2070 void ReaderMifare(bool first_try)
2071 {
2072 // Mifare AUTH
2073 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2074 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2075 static uint8_t mf_nr_ar3;
2076
2077 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
2078 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
2079
2080 if (first_try) {
2081 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2082 }
2083
2084 // free eventually allocated BigBuf memory. We want all for tracing.
2085 BigBuf_free();
2086
2087 clear_trace();
2088 set_tracing(true);
2089
2090 byte_t nt_diff = 0;
2091 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2092 static byte_t par_low = 0;
2093 bool led_on = true;
2094 uint8_t uid[10] ={0};
2095 uint32_t cuid;
2096
2097 uint32_t nt = 0;
2098 uint32_t previous_nt = 0;
2099 static uint32_t nt_attacked = 0;
2100 byte_t par_list[8] = {0x00};
2101 byte_t ks_list[8] = {0x00};
2102
2103 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2104 static uint32_t sync_time;
2105 static int32_t sync_cycles;
2106 int catch_up_cycles = 0;
2107 int last_catch_up = 0;
2108 uint16_t elapsed_prng_sequences;
2109 uint16_t consecutive_resyncs = 0;
2110 int isOK = 0;
2111
2112 if (first_try) {
2113 mf_nr_ar3 = 0;
2114 sync_time = GetCountSspClk() & 0xfffffff8;
2115 sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
2116 nt_attacked = 0;
2117 par[0] = 0;
2118 }
2119 else {
2120 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2121 mf_nr_ar3++;
2122 mf_nr_ar[3] = mf_nr_ar3;
2123 par[0] = par_low;
2124 }
2125
2126 LED_A_ON();
2127 LED_B_OFF();
2128 LED_C_OFF();
2129
2130
2131 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2132 #define MAX_SYNC_TRIES 32
2133 #define NUM_DEBUG_INFOS 8 // per strategy
2134 #define MAX_STRATEGY 3
2135 uint16_t unexpected_random = 0;
2136 uint16_t sync_tries = 0;
2137 int16_t debug_info_nr = -1;
2138 uint16_t strategy = 0;
2139 int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
2140 uint32_t select_time;
2141 uint32_t halt_time;
2142
2143 for(uint16_t i = 0; true; i++) {
2144
2145 LED_C_ON();
2146 WDT_HIT();
2147
2148 // Test if the action was cancelled
2149 if(BUTTON_PRESS()) {
2150 isOK = -1;
2151 break;
2152 }
2153
2154 if (strategy == 2) {
2155 // test with additional hlt command
2156 halt_time = 0;
2157 int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
2158 if (len && MF_DBGLEVEL >= 3) {
2159 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
2160 }
2161 }
2162
2163 if (strategy == 3) {
2164 // test with FPGA power off/on
2165 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2166 SpinDelay(200);
2167 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2168 SpinDelay(100);
2169 }
2170
2171 if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
2172 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2173 continue;
2174 }
2175 select_time = GetCountSspClk();
2176
2177 elapsed_prng_sequences = 1;
2178 if (debug_info_nr == -1) {
2179 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2180 catch_up_cycles = 0;
2181
2182 // if we missed the sync time already, advance to the next nonce repeat
2183 while(GetCountSspClk() > sync_time) {
2184 elapsed_prng_sequences++;
2185 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2186 }
2187
2188 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2189 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2190 } else {
2191 // collect some information on tag nonces for debugging:
2192 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2193 if (strategy == 0) {
2194 // nonce distances at fixed time after card select:
2195 sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
2196 } else if (strategy == 1) {
2197 // nonce distances at fixed time between authentications:
2198 sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
2199 } else if (strategy == 2) {
2200 // nonce distances at fixed time after halt:
2201 sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
2202 } else {
2203 // nonce_distances at fixed time after power on
2204 sync_time = DEBUG_FIXED_SYNC_CYCLES;
2205 }
2206 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2207 }
2208
2209 // Receive the (4 Byte) "random" nonce
2210 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2211 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2212 continue;
2213 }
2214
2215 previous_nt = nt;
2216 nt = bytes_to_num(receivedAnswer, 4);
2217
2218 // Transmit reader nonce with fake par
2219 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2220
2221 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2222 int nt_distance = dist_nt(previous_nt, nt);
2223 if (nt_distance == 0) {
2224 nt_attacked = nt;
2225 } else {
2226 if (nt_distance == -99999) { // invalid nonce received
2227 unexpected_random++;
2228 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
2229 isOK = -3; // Card has an unpredictable PRNG. Give up
2230 break;
2231 } else {
2232 continue; // continue trying...
2233 }
2234 }
2235 if (++sync_tries > MAX_SYNC_TRIES) {
2236 if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
2237 isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2238 break;
2239 } else { // continue for a while, just to collect some debug info
2240 debug_info[strategy][debug_info_nr] = nt_distance;
2241 debug_info_nr++;
2242 if (debug_info_nr == NUM_DEBUG_INFOS) {
2243 strategy++;
2244 debug_info_nr = 0;
2245 }
2246 continue;
2247 }
2248 }
2249 sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
2250 if (sync_cycles <= 0) {
2251 sync_cycles += PRNG_SEQUENCE_LENGTH;
2252 }
2253 if (MF_DBGLEVEL >= 3) {
2254 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
2255 }
2256 continue;
2257 }
2258 }
2259
2260 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2261 catch_up_cycles = -dist_nt(nt_attacked, nt);
2262 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2263 catch_up_cycles = 0;
2264 continue;
2265 }
2266 catch_up_cycles /= elapsed_prng_sequences;
2267 if (catch_up_cycles == last_catch_up) {
2268 consecutive_resyncs++;
2269 }
2270 else {
2271 last_catch_up = catch_up_cycles;
2272 consecutive_resyncs = 0;
2273 }
2274 if (consecutive_resyncs < 3) {
2275 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2276 }
2277 else {
2278 sync_cycles = sync_cycles + catch_up_cycles;
2279 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2280 last_catch_up = 0;
2281 catch_up_cycles = 0;
2282 consecutive_resyncs = 0;
2283 }
2284 continue;
2285 }
2286
2287 consecutive_resyncs = 0;
2288
2289 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2290 if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2291 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2292
2293 if (nt_diff == 0) {
2294 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2295 }
2296
2297 led_on = !led_on;
2298 if(led_on) LED_B_ON(); else LED_B_OFF();
2299
2300 par_list[nt_diff] = SwapBits(par[0], 8);
2301 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2302
2303 // Test if the information is complete
2304 if (nt_diff == 0x07) {
2305 isOK = 1;
2306 break;
2307 }
2308
2309 nt_diff = (nt_diff + 1) & 0x07;
2310 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2311 par[0] = par_low;
2312 } else {
2313 if (nt_diff == 0 && first_try)
2314 {
2315 par[0]++;
2316 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2317 isOK = -2;
2318 break;
2319 }
2320 } else {
2321 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2322 }
2323 }
2324 }
2325
2326
2327 mf_nr_ar[3] &= 0x1F;
2328
2329 if (isOK == -4) {
2330 if (MF_DBGLEVEL >= 3) {
2331 for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
2332 for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
2333 Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
2334 }
2335 }
2336 }
2337 }
2338
2339 byte_t buf[28];
2340 memcpy(buf + 0, uid, 4);
2341 num_to_bytes(nt, 4, buf + 4);
2342 memcpy(buf + 8, par_list, 8);
2343 memcpy(buf + 16, ks_list, 8);
2344 memcpy(buf + 24, mf_nr_ar, 4);
2345
2346 cmd_send(CMD_ACK, isOK, 0, 0, buf, 28);
2347
2348 // Thats it...
2349 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2350 LEDsoff();
2351
2352 set_tracing(false);
2353 }
2354
2355 typedef struct {
2356 uint32_t cuid;
2357 uint8_t sector;
2358 uint8_t keytype;
2359 uint32_t nonce;
2360 uint32_t ar;
2361 uint32_t nr;
2362 uint32_t nonce2;
2363 uint32_t ar2;
2364 uint32_t nr2;
2365 } nonces_t;
2366
2367 /**
2368 *MIFARE 1K simulate.
2369 *
2370 *@param flags :
2371 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2372 * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2373 * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2374 * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished
2375 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2376 * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack)
2377 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
2378 * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
2379 */
2380 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2381 {
2382 int cardSTATE = MFEMUL_NOFIELD;
2383 int _UID_LEN = 0; // 4, 7, 10
2384 int vHf = 0; // in mV
2385 int res;
2386 uint32_t selTimer = 0;
2387 uint32_t authTimer = 0;
2388 uint16_t len = 0;
2389 uint8_t cardWRBL = 0;
2390 uint8_t cardAUTHSC = 0;
2391 uint8_t cardAUTHKEY = 0xff; // no authentication
2392 uint32_t cardRr = 0;
2393 uint32_t cuid = 0;
2394 //uint32_t rn_enc = 0;
2395 uint32_t ans = 0;
2396 uint32_t cardINTREG = 0;
2397 uint8_t cardINTBLOCK = 0;
2398 struct Crypto1State mpcs = {0, 0};
2399 struct Crypto1State *pcs;
2400 pcs = &mpcs;
2401 uint32_t numReads = 0;//Counts numer of times reader read a block
2402 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2403 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2404 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2405 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
2406
2407 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2408 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2409 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2410 uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2411
2412 uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd}; // mifare 1k indicated
2413 uint8_t rSAK1[] = {0x04, 0xda, 0x17}; // indicate UID not finished
2414
2415 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2416 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2417
2418 //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
2419 // This will be used in the reader-only attack.
2420
2421 //allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
2422 #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7)
2423 nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types (nml, moebius)
2424 memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
2425
2426 uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; //*2 for 2nd attack type (moebius)
2427 memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
2428 uint8_t nonce1_count = 0;
2429 uint8_t nonce2_count = 0;
2430 uint8_t moebius_n_count = 0;
2431 bool gettingMoebius = false;
2432 uint8_t mM = 0; //moebius_modifier for collection storage
2433
2434 // Authenticate response - nonce
2435 uint32_t nonce;
2436 if (flags & FLAG_RANDOM_NONCE) {
2437 nonce = prand();
2438 } else {
2439 nonce = bytes_to_num(rAUTH_NT, 4);
2440 }
2441
2442 //-- Determine the UID
2443 // Can be set from emulator memory, incoming data
2444 // and can be 7 or 4 bytes long
2445 if (flags & FLAG_4B_UID_IN_DATA)
2446 {
2447 // 4B uid comes from data-portion of packet
2448 memcpy(rUIDBCC1,datain,4);
2449 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2450 _UID_LEN = 4;
2451 } else if (flags & FLAG_7B_UID_IN_DATA) {
2452 // 7B uid comes from data-portion of packet
2453 memcpy(&rUIDBCC1[1],datain,3);
2454 memcpy(rUIDBCC2, datain+3, 4);
2455 _UID_LEN = 7;
2456 } else if (flags & FLAG_10B_UID_IN_DATA) {
2457 memcpy(&rUIDBCC1[1], datain, 3);
2458 memcpy(&rUIDBCC2[1], datain+3, 3);
2459 memcpy( rUIDBCC3, datain+6, 4);
2460 _UID_LEN = 10;
2461 } else {
2462 // get UID from emul memory - guess at length
2463 emlGetMemBt(receivedCmd, 7, 1);
2464 if (receivedCmd[0] == 0x00) { // ---------- 4BUID
2465 emlGetMemBt(rUIDBCC1, 0, 4);
2466 _UID_LEN = 4;
2467 } else { // ---------- 7BUID
2468 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2469 emlGetMemBt(rUIDBCC2, 3, 4);
2470 _UID_LEN = 7;
2471 }
2472 }
2473
2474 switch (_UID_LEN) {
2475 case 4:
2476 // save CUID
2477 cuid = bytes_to_num(rUIDBCC1, 4);
2478 // BCC
2479 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2480 if (MF_DBGLEVEL >= 2) {
2481 Dbprintf("4B UID: %02x%02x%02x%02x",
2482 rUIDBCC1[0],
2483 rUIDBCC1[1],
2484 rUIDBCC1[2],
2485 rUIDBCC1[3]
2486 );
2487 }
2488 break;
2489 case 7:
2490 rATQA[0] |= 0x40;
2491 // save CUID
2492 cuid = bytes_to_num(rUIDBCC2, 4);
2493 // CascadeTag, CT
2494 rUIDBCC1[0] = 0x88;
2495 // BCC
2496 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2497 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2498 if (MF_DBGLEVEL >= 2) {
2499 Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
2500 rUIDBCC1[1],
2501 rUIDBCC1[2],
2502 rUIDBCC1[3],
2503 rUIDBCC2[0],
2504 rUIDBCC2[1],
2505 rUIDBCC2[2],
2506 rUIDBCC2[3]
2507 );
2508 }
2509 break;
2510 case 10:
2511 rATQA[0] |= 0x80;
2512 //sak_10[0] &= 0xFB;
2513 // save CUID
2514 cuid = bytes_to_num(rUIDBCC3, 4);
2515 // CascadeTag, CT
2516 rUIDBCC1[0] = 0x88;
2517 rUIDBCC2[0] = 0x88;
2518 // BCC
2519 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2520 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2521 rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
2522
2523 if (MF_DBGLEVEL >= 2) {
2524 Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
2525 rUIDBCC1[1],
2526 rUIDBCC1[2],
2527 rUIDBCC1[3],
2528 rUIDBCC2[1],
2529 rUIDBCC2[2],
2530 rUIDBCC2[3],
2531 rUIDBCC3[0],
2532 rUIDBCC3[1],
2533 rUIDBCC3[2],
2534 rUIDBCC3[3]
2535 );
2536 }
2537 break;
2538 default:
2539 break;
2540 }
2541
2542 // We need to listen to the high-frequency, peak-detected path.
2543 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2544
2545 // free eventually allocated BigBuf memory but keep Emulator Memory
2546 BigBuf_free_keep_EM();
2547
2548 // clear trace
2549 clear_trace();
2550 set_tracing(true);
2551
2552 bool finished = false;
2553 bool button_pushed = BUTTON_PRESS();
2554 while (!button_pushed && !finished && !usb_poll_validate_length()) {
2555 WDT_HIT();
2556
2557 // find reader field
2558 if (cardSTATE == MFEMUL_NOFIELD) {
2559 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
2560 if (vHf > MF_MINFIELDV) {
2561 cardSTATE_TO_IDLE();
2562 LED_A_ON();
2563 }
2564 }
2565 if (cardSTATE == MFEMUL_NOFIELD) continue;
2566
2567 //Now, get data
2568 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2569 if (res == 2) { //Field is off!
2570 cardSTATE = MFEMUL_NOFIELD;
2571 LEDsoff();
2572 continue;
2573 } else if (res == 1) {
2574 break; //return value 1 means button press
2575 }
2576
2577 // REQ or WUP request in ANY state and WUP in HALTED state
2578 if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
2579 selTimer = GetTickCount();
2580 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == ISO14443A_CMD_WUPA));
2581 cardSTATE = MFEMUL_SELECT1;
2582
2583 // init crypto block
2584 LED_B_OFF();
2585 LED_C_OFF();
2586 crypto1_destroy(pcs);
2587 cardAUTHKEY = 0xff;
2588 if (flags & FLAG_RANDOM_NONCE) {
2589 nonce = prand();
2590 }
2591 continue;
2592 }
2593
2594 switch (cardSTATE) {
2595 case MFEMUL_NOFIELD:
2596 case MFEMUL_HALTED:
2597 case MFEMUL_IDLE:{
2598 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2599 break;
2600 }
2601 case MFEMUL_SELECT1:{
2602 // select all - 0x93 0x20
2603 if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
2604 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2605 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2606 break;
2607 }
2608
2609 // select card - 0x93 0x70 ...
2610 if (len == 9 &&
2611 (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2612 if (MF_DBGLEVEL >= 4)
2613 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2614
2615 switch(_UID_LEN) {
2616 case 4:
2617 cardSTATE = MFEMUL_WORK;
2618 LED_B_ON();
2619 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2620 EmSendCmd(rSAKfinal, sizeof(rSAKfinal));
2621 break;
2622 case 7:
2623 cardSTATE = MFEMUL_SELECT2;
2624 EmSendCmd(rSAK1, sizeof(rSAK1));
2625 break;
2626 case 10:
2627 cardSTATE = MFEMUL_SELECT2;
2628 EmSendCmd(rSAK1, sizeof(rSAK1));
2629 break;
2630 default:break;
2631 }
2632 } else {
2633 cardSTATE_TO_IDLE();
2634 }
2635 break;
2636 }
2637 case MFEMUL_SELECT3:{
2638 if (!len) {
2639 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2640 break;
2641 }
2642 // select all cl3 - 0x97 0x20
2643 if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) {
2644 EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3));
2645 break;
2646 }
2647 // select card cl3 - 0x97 0x70
2648 if (len == 9 &&
2649 (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 &&
2650 receivedCmd[1] == 0x70 &&
2651 memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) {
2652
2653 EmSendCmd(rSAKfinal, sizeof(rSAKfinal));
2654 cardSTATE = MFEMUL_WORK;
2655 LED_B_ON();
2656 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
2657 break;
2658 }
2659 cardSTATE_TO_IDLE();
2660 break;
2661 }
2662 case MFEMUL_AUTH1:{
2663 if( len != 8) {
2664 cardSTATE_TO_IDLE();
2665 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2666 break;
2667 }
2668
2669 uint32_t nr = bytes_to_num(receivedCmd, 4);
2670 uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
2671
2672 // Collect AR/NR per keytype & sector
2673 if(flags & FLAG_NR_AR_ATTACK) {
2674 for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
2675 if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) {
2676 // if first auth for sector, or matches sector and keytype of previous auth
2677 if (ar_nr_collected[i+mM] < 2) {
2678 // if we haven't already collected 2 nonces for this sector
2679 if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
2680 // Avoid duplicates... probably not necessary, ar should vary.
2681 if (ar_nr_collected[i+mM]==0) {
2682 // first nonce collect
2683 ar_nr_resp[i+mM].cuid = cuid;
2684 ar_nr_resp[i+mM].sector = cardAUTHSC;
2685 ar_nr_resp[i+mM].keytype = cardAUTHKEY;
2686 ar_nr_resp[i+mM].nonce = nonce;
2687 ar_nr_resp[i+mM].nr = nr;
2688 ar_nr_resp[i+mM].ar = ar;
2689 nonce1_count++;
2690 // add this nonce to first moebius nonce
2691 ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid;
2692 ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC;
2693 ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY;
2694 ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce;
2695 ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr;
2696 ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar;
2697 ar_nr_collected[i+ATTACK_KEY_COUNT]++;
2698 } else { // second nonce collect (std and moebius)
2699 ar_nr_resp[i+mM].nonce2 = nonce;
2700 ar_nr_resp[i+mM].nr2 = nr;
2701 ar_nr_resp[i+mM].ar2 = ar;
2702 if (!gettingMoebius) {
2703 nonce2_count++;
2704 // check if this was the last second nonce we need for std attack
2705 if ( nonce2_count == nonce1_count ) {
2706 // done collecting std test switch to moebius
2707 // first finish incrementing last sample
2708 ar_nr_collected[i+mM]++;
2709 // switch to moebius collection
2710 gettingMoebius = true;
2711 mM = ATTACK_KEY_COUNT;
2712 if (flags & FLAG_RANDOM_NONCE) {
2713 nonce = prand();
2714 } else {
2715 nonce = nonce*7;
2716 }
2717 break;
2718 }
2719 } else {
2720 moebius_n_count++;
2721 // if we've collected all the nonces we need - finish.
2722 if (nonce1_count == moebius_n_count) finished = true;
2723 }
2724 }
2725 ar_nr_collected[i+mM]++;
2726 }
2727 }
2728 // we found right spot for this nonce stop looking
2729 break;
2730 }
2731 }
2732 }
2733
2734 // --- crypto
2735 crypto1_word(pcs, nr , 1);
2736 cardRr = ar ^ crypto1_word(pcs, 0, 0);
2737
2738 // test if auth OK
2739 if (cardRr != prng_successor(nonce, 64)){
2740 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2741 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2742 cardRr, prng_successor(nonce, 64));
2743 // Shouldn't we respond anything here?
2744 // Right now, we don't nack or anything, which causes the
2745 // reader to do a WUPA after a while. /Martin
2746 // -- which is the correct response. /piwi
2747 cardSTATE_TO_IDLE();
2748 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2749 break;
2750 }
2751
2752 //auth successful
2753 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2754
2755 num_to_bytes(ans, 4, rAUTH_AT);
2756 // --- crypto
2757 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2758 LED_C_ON();
2759 cardSTATE = MFEMUL_WORK;
2760 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2761 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2762 GetTickCount() - authTimer);
2763 break;
2764 }
2765 case MFEMUL_SELECT2:{
2766 if (!len) {
2767 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2768 break;
2769 }
2770 // select all cl2 - 0x95 0x20
2771 if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
2772 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2773 break;
2774 }
2775
2776 // select cl2 card - 0x95 0x70 xxxxxxxxxxxx
2777 if (len == 9 &&
2778 (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2779 switch(_UID_LEN) {
2780 case 7:
2781 EmSendCmd(rSAKfinal, sizeof(rSAKfinal));
2782 cardSTATE = MFEMUL_WORK;
2783 LED_B_ON();
2784 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2785 break;
2786 case 10:
2787 EmSendCmd(rSAK1, sizeof(rSAK1));
2788 cardSTATE = MFEMUL_SELECT3;
2789 break;
2790 default:break;
2791 }
2792 break;
2793 }
2794
2795 // i guess there is a command). go into the work state.
2796 if (len != 4) {
2797 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2798 break;
2799 }
2800 cardSTATE = MFEMUL_WORK;
2801 //goto lbWORK;
2802 //intentional fall-through to the next case-stmt
2803 }
2804
2805 case MFEMUL_WORK:{
2806 if (len == 0) {
2807 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2808 break;
2809 }
2810
2811 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2812
2813 if(encrypted_data) {
2814 // decrypt seqence
2815 mf_crypto1_decrypt(pcs, receivedCmd, len);
2816 }
2817
2818 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2819
2820 // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack
2821 if (receivedCmd[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) {
2822 //is this the correct response to an auth on a out of range block? marshmellow
2823 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2824 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2825 break;
2826 }
2827
2828 authTimer = GetTickCount();
2829 cardAUTHSC = receivedCmd[1] / 4; // received block num
2830 cardAUTHKEY = receivedCmd[0] - 0x60;
2831 crypto1_destroy(pcs);//Added by martin
2832 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2833 //uint64_t key=emlGetKey(cardAUTHSC, cardAUTHKEY);
2834 //Dbprintf("key: %04x%08x",(uint32_t)(key>>32)&0xFFFF,(uint32_t)(key&0xFFFFFFFF));
2835
2836 if (!encrypted_data) { // first authentication
2837 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2838
2839 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2840 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2841 } else { // nested authentication
2842 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2843 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2844 num_to_bytes(ans, 4, rAUTH_AT);
2845 }
2846
2847 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2848 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2849 cardSTATE = MFEMUL_AUTH1;
2850 break;
2851 }
2852
2853 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2854 // BUT... ACK --> NACK
2855 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2856 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2857 break;
2858 }
2859
2860 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2861 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2862 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2863 break;
2864 }
2865
2866 if(len != 4) {
2867 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2868 break;
2869 }
2870
2871 if(receivedCmd[0] == 0x30 // read block
2872 || receivedCmd[0] == 0xA0 // write block
2873 || receivedCmd[0] == 0xC0 // inc
2874 || receivedCmd[0] == 0xC1 // dec
2875 || receivedCmd[0] == 0xC2 // restore
2876 || receivedCmd[0] == 0xB0) { // transfer
2877 if (receivedCmd[1] >= 16 * 4) {
2878 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2879 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2880 break;
2881 }
2882
2883 if (receivedCmd[1] / 4 != cardAUTHSC) {
2884 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2885 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2886 break;
2887 }
2888 }
2889 // read block
2890 if (receivedCmd[0] == 0x30) {
2891 if (MF_DBGLEVEL >= 4) {
2892 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2893 }
2894 emlGetMem(response, receivedCmd[1], 1);
2895 AppendCrc14443a(response, 16);
2896 mf_crypto1_encrypt(pcs, response, 18, response_par);
2897 EmSendCmdPar(response, 18, response_par);
2898 numReads++;
2899 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
2900 Dbprintf("%d reads done, exiting", numReads);
2901 finished = true;
2902 }
2903 break;
2904 }
2905 // write block
2906 if (receivedCmd[0] == 0xA0) {
2907 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2908 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2909 cardSTATE = MFEMUL_WRITEBL2;
2910 cardWRBL = receivedCmd[1];
2911 break;
2912 }
2913 // increment, decrement, restore
2914 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2915 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2916 if (emlCheckValBl(receivedCmd[1])) {
2917 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2918 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2919 break;
2920 }
2921 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2922 if (receivedCmd[0] == 0xC1)
2923 cardSTATE = MFEMUL_INTREG_INC;
2924 if (receivedCmd[0] == 0xC0)
2925 cardSTATE = MFEMUL_INTREG_DEC;
2926 if (receivedCmd[0] == 0xC2)
2927 cardSTATE = MFEMUL_INTREG_REST;
2928 cardWRBL = receivedCmd[1];
2929 break;
2930 }
2931 // transfer
2932 if (receivedCmd[0] == 0xB0) {
2933 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2934 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2935 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2936 else
2937 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2938 break;
2939 }
2940 // halt
2941 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2942 LED_B_OFF();
2943 LED_C_OFF();
2944 cardSTATE = MFEMUL_HALTED;
2945 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2946 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2947 break;
2948 }
2949 // RATS
2950 if (receivedCmd[0] == 0xe0) {//RATS
2951 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2952 break;
2953 }
2954 // command not allowed
2955 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2956 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2957 break;
2958 }
2959 case MFEMUL_WRITEBL2:{
2960 if (len == 18){
2961 mf_crypto1_decrypt(pcs, receivedCmd, len);
2962 emlSetMem(receivedCmd, cardWRBL, 1);
2963 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2964 cardSTATE = MFEMUL_WORK;
2965 } else {
2966 cardSTATE_TO_IDLE();
2967 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2968 }
2969 break;
2970 }
2971
2972 case MFEMUL_INTREG_INC:{
2973 mf_crypto1_decrypt(pcs, receivedCmd, len);
2974 memcpy(&ans, receivedCmd, 4);
2975 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2976 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2977 cardSTATE_TO_IDLE();
2978 break;
2979 }
2980 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2981 cardINTREG = cardINTREG + ans;
2982 cardSTATE = MFEMUL_WORK;
2983 break;
2984 }
2985 case MFEMUL_INTREG_DEC:{
2986 mf_crypto1_decrypt(pcs, receivedCmd, len);
2987 memcpy(&ans, receivedCmd, 4);
2988 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2989 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2990 cardSTATE_TO_IDLE();
2991 break;
2992 }
2993 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
2994 cardINTREG = cardINTREG - ans;
2995 cardSTATE = MFEMUL_WORK;
2996 break;
2997 }
2998 case MFEMUL_INTREG_REST:{
2999 mf_crypto1_decrypt(pcs, receivedCmd, len);
3000 memcpy(&ans, receivedCmd, 4);
3001 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
3002 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
3003 cardSTATE_TO_IDLE();
3004 break;
3005 }
3006 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
3007 cardSTATE = MFEMUL_WORK;
3008 break;
3009 }
3010 }
3011 button_pushed = BUTTON_PRESS();
3012 }
3013
3014 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
3015 LEDsoff();
3016
3017 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) {
3018 for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
3019 if (ar_nr_collected[i] == 2) {
3020 Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
3021 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
3022 ar_nr_resp[i].cuid, //UID
3023 ar_nr_resp[i].nonce, //NT
3024 ar_nr_resp[i].nr, //NR1
3025 ar_nr_resp[i].ar, //AR1
3026 ar_nr_resp[i].nr2, //NR2
3027 ar_nr_resp[i].ar2 //AR2
3028 );
3029 }
3030 }
3031 for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
3032 if (ar_nr_collected[i] == 2) {
3033 Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
3034 Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
3035 ar_nr_resp[i].cuid, //UID
3036 ar_nr_resp[i].nonce, //NT
3037 ar_nr_resp[i].nr, //NR1
3038 ar_nr_resp[i].ar, //AR1
3039 ar_nr_resp[i].nonce2,//NT2
3040 ar_nr_resp[i].nr2, //NR2
3041 ar_nr_resp[i].ar2 //AR2
3042 );
3043 }
3044 }
3045 }
3046 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
3047
3048 if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK
3049 //Send the collected ar_nr in the response
3050 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,button_pushed,0,&ar_nr_resp,sizeof(ar_nr_resp));
3051 }
3052 }
3053
3054
3055 //-----------------------------------------------------------------------------
3056 // MIFARE sniffer.
3057 //
3058 //-----------------------------------------------------------------------------
3059 void RAMFUNC SniffMifare(uint8_t param) {
3060 // param:
3061 // bit 0 - trigger from first card answer
3062 // bit 1 - trigger from first reader 7-bit request
3063
3064 // C(red) A(yellow) B(green)
3065 LEDsoff();
3066 // init trace buffer
3067 clear_trace();
3068 set_tracing(true);
3069
3070 // The command (reader -> tag) that we're receiving.
3071 // The length of a received command will in most cases be no more than 18 bytes.
3072 // So 32 should be enough!
3073 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
3074 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
3075 // The response (tag -> reader) that we're receiving.
3076 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
3077 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
3078
3079 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
3080
3081 // free eventually allocated BigBuf memory
3082 BigBuf_free();
3083 // allocate the DMA buffer, used to stream samples from the FPGA
3084 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
3085 uint8_t *data = dmaBuf;
3086 uint8_t previous_data = 0;
3087 int maxDataLen = 0;
3088 int dataLen = 0;
3089 bool ReaderIsActive = false;
3090 bool TagIsActive = false;
3091
3092 // Set up the demodulator for tag -> reader responses.
3093 DemodInit(receivedResponse, receivedResponsePar);
3094
3095 // Set up the demodulator for the reader -> tag commands
3096 UartInit(receivedCmd, receivedCmdPar);
3097
3098 // Setup for the DMA.
3099 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
3100
3101 LED_D_OFF();
3102
3103 // init sniffer
3104 MfSniffInit();
3105
3106 // And now we loop, receiving samples.
3107 for(uint32_t sniffCounter = 0; true; ) {
3108
3109 if(BUTTON_PRESS()) {
3110 DbpString("cancelled by button");
3111 break;
3112 }
3113
3114 LED_A_ON();
3115 WDT_HIT();
3116
3117 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
3118 // check if a transaction is completed (timeout after 2000ms).
3119 // if yes, stop the DMA transfer and send what we have so far to the client
3120 if (MfSniffSend(2000)) {
3121 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3122 sniffCounter = 0;
3123 data = dmaBuf;
3124 maxDataLen = 0;
3125 ReaderIsActive = false;
3126 TagIsActive = false;
3127 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
3128 }
3129 }
3130
3131 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
3132 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
3133 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
3134 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
3135 } else {
3136 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
3137 }
3138 // test for length of buffer
3139 if(dataLen > maxDataLen) { // we are more behind than ever...
3140 maxDataLen = dataLen;
3141 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
3142 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
3143 break;
3144 }
3145 }
3146 if(dataLen < 1) continue;
3147
3148 // primary buffer was stopped ( <-- we lost data!
3149 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3150 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3151 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
3152 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
3153 }
3154 // secondary buffer sets as primary, secondary buffer was stopped
3155 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3156 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
3157 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3158 }
3159
3160 LED_A_OFF();
3161
3162 if (sniffCounter & 0x01) {
3163
3164 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
3165 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3166 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3167 LED_C_INV();
3168 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break;
3169
3170 /* And ready to receive another command. */
3171 UartInit(receivedCmd, receivedCmdPar);
3172
3173 /* And also reset the demod code */
3174 DemodReset();
3175 }
3176 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3177 }
3178
3179 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
3180 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3181 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3182 LED_C_INV();
3183
3184 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break;
3185
3186 // And ready to receive another response.
3187 DemodReset();
3188 // And reset the Miller decoder including its (now outdated) input buffer
3189 UartInit(receivedCmd, receivedCmdPar);
3190 }
3191 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3192 }
3193 }
3194
3195 previous_data = *data;
3196 sniffCounter++;
3197 data++;
3198 if(data == dmaBuf + DMA_BUFFER_SIZE) {
3199 data = dmaBuf;
3200 }
3201
3202 } // main cycle
3203
3204 DbpString("COMMAND FINISHED");
3205
3206 FpgaDisableSscDma();
3207 MfSniffEnd();
3208
3209 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
3210 LEDsoff();
3211 }
Impressum, Datenschutz