1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
25 uint8_t *trace
= (uint8_t *) BigBuf
+TRACE_OFFSET
;
30 // the block number for the ISO14443-4 PCB
31 static uint8_t iso14_pcb_blocknum
= 0;
36 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
37 #define REQUEST_GUARD_TIME (7000/16 + 1)
38 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
39 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
40 // bool LastCommandWasRequest = FALSE;
43 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
45 // When the PM acts as reader and is receiving tag data, it takes
46 // 3 ticks delay in the AD converter
47 // 16 ticks until the modulation detector completes and sets curbit
48 // 8 ticks until bit_to_arm is assigned from curbit
49 // 8*16 ticks for the transfer from FPGA to ARM
50 // 4*16 ticks until we measure the time
51 // - 8*16 ticks because we measure the time of the previous transfer
52 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
54 // When the PM acts as a reader and is sending, it takes
55 // 4*16 ticks until we can write data to the sending hold register
56 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
57 // 8 ticks until the first transfer starts
58 // 8 ticks later the FPGA samples the data
59 // 1 tick to assign mod_sig_coil
60 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
62 // When the PM acts as tag and is receiving it takes
63 // 2 ticks delay in the RF part (for the first falling edge),
64 // 3 ticks for the A/D conversion,
65 // 8 ticks on average until the start of the SSC transfer,
66 // 8 ticks until the SSC samples the first data
67 // 7*16 ticks to complete the transfer from FPGA to ARM
68 // 8 ticks until the next ssp_clk rising edge
69 // 4*16 ticks until we measure the time
70 // - 8*16 ticks because we measure the time of the previous transfer
71 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
73 // The FPGA will report its internal sending delay in
74 uint16_t FpgaSendQueueDelay
;
75 // the 5 first bits are the number of bits buffered in mod_sig_buf
76 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
77 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
79 // When the PM acts as tag and is sending, it takes
80 // 4*16 ticks until we can write data to the sending hold register
81 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
82 // 8 ticks until the first transfer starts
83 // 8 ticks later the FPGA samples the data
84 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
85 // + 1 tick to assign mod_sig_coil
86 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
88 // When the PM acts as sniffer and is receiving tag data, it takes
89 // 3 ticks A/D conversion
90 // 14 ticks to complete the modulation detection
91 // 8 ticks (on average) until the result is stored in to_arm
92 // + the delays in transferring data - which is the same for
93 // sniffing reader and tag data and therefore not relevant
94 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
96 // When the PM acts as sniffer and is receiving reader data, it takes
97 // 2 ticks delay in analogue RF receiver (for the falling edge of the
98 // start bit, which marks the start of the communication)
99 // 3 ticks A/D conversion
100 // 8 ticks on average until the data is stored in to_arm.
101 // + the delays in transferring data - which is the same for
102 // sniffing reader and tag data and therefore not relevant
103 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
105 //variables used for timing purposes:
106 //these are in ssp_clk cycles:
107 uint32_t NextTransferTime
;
108 uint32_t LastTimeProxToAirStart
;
109 uint32_t LastProxToAirDuration
;
113 // CARD TO READER - manchester
114 // Sequence D: 11110000 modulation with subcarrier during first half
115 // Sequence E: 00001111 modulation with subcarrier during second half
116 // Sequence F: 00000000 no modulation with subcarrier
117 // READER TO CARD - miller
118 // Sequence X: 00001100 drop after half a period
119 // Sequence Y: 00000000 no drop
120 // Sequence Z: 11000000 drop at start
128 const uint8_t OddByteParity
[256] = {
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
144 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
148 void iso14a_set_trigger(bool enable
) {
152 void iso14a_clear_trace() {
153 memset(trace
, 0x44, TRACE_SIZE
);
157 void iso14a_set_tracing(bool enable
) {
161 void iso14a_set_timeout(uint32_t timeout
) {
162 iso14a_timeout
= timeout
;
165 //-----------------------------------------------------------------------------
166 // Generate the parity value for a byte sequence
168 //-----------------------------------------------------------------------------
169 byte_t
oddparity (const byte_t bt
)
171 return OddByteParity
[bt
];
174 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
179 // Generate the parity bits
180 for (i
= 0; i
< iLen
; i
++) {
181 // and save them to a 32Bit word
182 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
187 void AppendCrc14443a(uint8_t* data
, int len
)
189 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
192 // The function LogTrace() is also used by the iClass implementation in iClass.c
193 bool RAMFUNC
LogTrace(const uint8_t * btBytes
, uint8_t iLen
, uint32_t timestamp
, uint32_t dwParity
, bool readerToTag
)
195 if (!tracing
) return FALSE
;
196 // Return when trace is full
197 if (traceLen
+ sizeof(timestamp
) + sizeof(dwParity
) + iLen
>= TRACE_SIZE
) {
198 tracing
= FALSE
; // don't trace any more
202 // Trace the random, i'm curious
203 trace
[traceLen
++] = ((timestamp
>> 0) & 0xff);
204 trace
[traceLen
++] = ((timestamp
>> 8) & 0xff);
205 trace
[traceLen
++] = ((timestamp
>> 16) & 0xff);
206 trace
[traceLen
++] = ((timestamp
>> 24) & 0xff);
209 trace
[traceLen
- 1] |= 0x80;
211 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
212 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
213 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
214 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
215 trace
[traceLen
++] = iLen
;
216 if (btBytes
!= NULL
&& iLen
!= 0) {
217 memcpy(trace
+ traceLen
, btBytes
, iLen
);
223 //=============================================================================
224 // ISO 14443 Type A - Miller decoder
225 //=============================================================================
227 // This decoder is used when the PM3 acts as a tag.
228 // The reader will generate "pauses" by temporarily switching of the field.
229 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
230 // The FPGA does a comparison with a threshold and would deliver e.g.:
231 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
232 // The Miller decoder needs to identify the following sequences:
233 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
234 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
235 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
236 // Note 1: the bitstream may start at any time. We therefore need to sync.
237 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
238 //-----------------------------------------------------------------------------
241 // Lookup-Table to decide if 4 raw bits are a modulation.
242 // We accept two or three consecutive "0" in any position with the rest "1"
243 const bool Mod_Miller_LUT
[] = {
244 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
245 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
247 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
248 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
252 Uart
.state
= STATE_UNSYNCD
;
254 Uart
.len
= 0; // number of decoded data bytes
255 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
256 Uart
.parityBits
= 0; //
257 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
264 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
265 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
268 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
270 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
271 if (Uart
.highCnt
< 7) { // wait for a stable unmodulated signal
272 if (Uart
.twoBits
== 0xffff) {
278 Uart
.syncBit
= 0xFFFF; // not set
279 // look for 00xx1111 (the start bit)
280 if ((Uart
.twoBits
& 0x6780) == 0x0780) Uart
.syncBit
= 7;
281 else if ((Uart
.twoBits
& 0x33C0) == 0x03C0) Uart
.syncBit
= 6;
282 else if ((Uart
.twoBits
& 0x19E0) == 0x01E0) Uart
.syncBit
= 5;
283 else if ((Uart
.twoBits
& 0x0CF0) == 0x00F0) Uart
.syncBit
= 4;
284 else if ((Uart
.twoBits
& 0x0678) == 0x0078) Uart
.syncBit
= 3;
285 else if ((Uart
.twoBits
& 0x033C) == 0x003C) Uart
.syncBit
= 2;
286 else if ((Uart
.twoBits
& 0x019E) == 0x001E) Uart
.syncBit
= 1;
287 else if ((Uart
.twoBits
& 0x00CF) == 0x000F) Uart
.syncBit
= 0;
288 if (Uart
.syncBit
!= 0xFFFF) {
289 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
290 Uart
.startTime
-= Uart
.syncBit
;
291 Uart
.endTime
= Uart
.startTime
;
292 Uart
.state
= STATE_START_OF_COMMUNICATION
;
298 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
299 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
302 } else { // Modulation in first half = Sequence Z = logic "0"
303 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
308 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
309 Uart
.state
= STATE_MILLER_Z
;
310 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
311 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
312 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
313 Uart
.parityBits
<<= 1; // make room for the parity bit
314 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
321 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
323 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
324 Uart
.state
= STATE_MILLER_X
;
325 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
326 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
327 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
328 Uart
.parityBits
<<= 1; // make room for the new parity bit
329 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
333 } else { // no modulation in both halves - Sequence Y
334 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
335 Uart
.state
= STATE_UNSYNCD
;
336 if(Uart
.len
== 0 && Uart
.bitCount
> 0) { // if we decoded some bits
337 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // add them to the output
338 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
339 Uart
.parityBits
<<= 1; // no parity bit - add "0"
340 Uart
.bitCount
--; // last "0" was part of the EOC sequence
344 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
347 } else { // a logic "0"
349 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
350 Uart
.state
= STATE_MILLER_Y
;
351 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
352 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
353 Uart
.parityBits
<<= 1; // make room for the parity bit
354 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
364 return FALSE
; // not finished yet, need more data
369 //=============================================================================
370 // ISO 14443 Type A - Manchester decoder
371 //=============================================================================
373 // This decoder is used when the PM3 acts as a reader.
374 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
375 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
376 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
377 // The Manchester decoder needs to identify the following sequences:
378 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
379 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
380 // 8 ticks unmodulated: Sequence F = end of communication
381 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
382 // Note 1: the bitstream may start at any time. We therefore need to sync.
383 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
386 // Lookup-Table to decide if 4 raw bits are a modulation.
387 // We accept three or four "1" in any position
388 const bool Mod_Manchester_LUT
[] = {
389 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
390 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
393 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
394 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
399 Demod
.state
= DEMOD_UNSYNCD
;
400 Demod
.len
= 0; // number of decoded data bytes
401 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
402 Demod
.parityBits
= 0; //
403 Demod
.collisionPos
= 0; // Position of collision bit
404 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
410 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
411 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
414 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
416 if (Demod
.state
== DEMOD_UNSYNCD
) {
418 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
419 if (Demod
.twoBits
== 0x0000) {
425 Demod
.syncBit
= 0xFFFF; // not set
426 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
427 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
428 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
429 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
430 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
431 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
432 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
433 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
434 if (Demod
.syncBit
!= 0xFFFF) {
435 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
436 Demod
.startTime
-= Demod
.syncBit
;
437 Demod
.bitCount
= offset
; // number of decoded data bits
438 Demod
.state
= DEMOD_MANCHESTER_DATA
;
444 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
445 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
446 if (!Demod
.collisionPos
) {
447 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
449 } // modulation in first half only - Sequence D = 1
451 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
452 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
453 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
454 Demod
.parityBits
<<= 1; // make room for the parity bit
455 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
459 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
460 } else { // no modulation in first half
461 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
463 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
464 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
465 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
466 Demod
.parityBits
<<= 1; // make room for the new parity bit
467 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
471 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
472 } else { // no modulation in both halves - End of communication
473 if (Demod
.len
> 0 || Demod
.bitCount
> 0) { // received something
474 if(Demod
.bitCount
> 0) { // if we decoded bits
475 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // add the remaining decoded bits to the output
476 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff;
477 // No parity bit, so just shift a 0
478 Demod
.parityBits
<<= 1;
480 return TRUE
; // we are finished with decoding the raw data sequence
481 } else { // nothing received. Start over
489 return FALSE
; // not finished yet, need more data
492 //=============================================================================
493 // Finally, a `sniffer' for ISO 14443 Type A
494 // Both sides of communication!
495 //=============================================================================
497 //-----------------------------------------------------------------------------
498 // Record the sequence of commands sent by the reader to the tag, with
499 // triggering so that we start recording at the point that the tag is moved
501 //-----------------------------------------------------------------------------
502 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
504 // bit 0 - trigger from first card answer
505 // bit 1 - trigger from first reader 7-bit request
509 iso14a_clear_trace();
510 iso14a_set_tracing(TRUE
);
512 // We won't start recording the frames that we acquire until we trigger;
513 // a good trigger condition to get started is probably when we see a
514 // response from the tag.
515 // triggered == FALSE -- to wait first for card
516 bool triggered
= !(param
& 0x03);
518 // The command (reader -> tag) that we're receiving.
519 // The length of a received command will in most cases be no more than 18 bytes.
520 // So 32 should be enough!
521 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
522 // The response (tag -> reader) that we're receiving.
523 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
525 // As we receive stuff, we copy it from receivedCmd or receivedResponse
526 // into trace, along with its length and other annotations.
527 //uint8_t *trace = (uint8_t *)BigBuf;
529 // The DMA buffer, used to stream samples from the FPGA
530 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
531 uint8_t *data
= dmaBuf
;
532 uint8_t previous_data
= 0;
535 bool TagIsActive
= FALSE
;
536 bool ReaderIsActive
= FALSE
;
538 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
540 // Set up the demodulator for tag -> reader responses.
541 Demod
.output
= receivedResponse
;
543 // Set up the demodulator for the reader -> tag commands
544 Uart
.output
= receivedCmd
;
546 // Setup and start DMA.
547 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
549 // And now we loop, receiving samples.
550 for(uint32_t rsamples
= 0; TRUE
; ) {
553 DbpString("cancelled by button");
560 int register readBufDataP
= data
- dmaBuf
;
561 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
562 if (readBufDataP
<= dmaBufDataP
){
563 dataLen
= dmaBufDataP
- readBufDataP
;
565 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
567 // test for length of buffer
568 if(dataLen
> maxDataLen
) {
569 maxDataLen
= dataLen
;
571 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
575 if(dataLen
< 1) continue;
577 // primary buffer was stopped( <-- we lost data!
578 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
579 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
580 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
581 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
583 // secondary buffer sets as primary, secondary buffer was stopped
584 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
585 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
586 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
591 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
593 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
594 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
595 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
598 // check - if there is a short 7bit request from reader
599 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
602 if (!LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, Uart
.parityBits
, TRUE
)) break;
603 if (!LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, 0, TRUE
)) break;
605 /* And ready to receive another command. */
607 /* And also reset the demod code, which might have been */
608 /* false-triggered by the commands from the reader. */
612 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
615 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
616 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
617 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
620 if (!LogTrace(receivedResponse
, Demod
.len
, Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, Demod
.parityBits
, FALSE
)) break;
621 if (!LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, 0, FALSE
)) break;
623 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
625 // And ready to receive another response.
629 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
633 previous_data
= *data
;
636 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
641 DbpString("COMMAND FINISHED");
644 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
645 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen
, (uint32_t)Uart
.output
[0]);
649 //-----------------------------------------------------------------------------
650 // Prepare tag messages
651 //-----------------------------------------------------------------------------
652 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
658 // Correction bit, might be removed when not needed
663 ToSendStuffBit(1); // 1
669 ToSend
[++ToSendMax
] = SEC_D
;
670 LastProxToAirDuration
= 8 * ToSendMax
- 4;
672 for(i
= 0; i
< len
; i
++) {
677 for(j
= 0; j
< 8; j
++) {
679 ToSend
[++ToSendMax
] = SEC_D
;
681 ToSend
[++ToSendMax
] = SEC_E
;
686 // Get the parity bit
687 if ((dwParity
>> i
) & 0x01) {
688 ToSend
[++ToSendMax
] = SEC_D
;
689 LastProxToAirDuration
= 8 * ToSendMax
- 4;
691 ToSend
[++ToSendMax
] = SEC_E
;
692 LastProxToAirDuration
= 8 * ToSendMax
;
697 ToSend
[++ToSendMax
] = SEC_F
;
699 // Convert from last byte pos to length
703 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
704 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
708 static void Code4bitAnswerAsTag(uint8_t cmd
)
714 // Correction bit, might be removed when not needed
719 ToSendStuffBit(1); // 1
725 ToSend
[++ToSendMax
] = SEC_D
;
728 for(i
= 0; i
< 4; i
++) {
730 ToSend
[++ToSendMax
] = SEC_D
;
731 LastProxToAirDuration
= 8 * ToSendMax
- 4;
733 ToSend
[++ToSendMax
] = SEC_E
;
734 LastProxToAirDuration
= 8 * ToSendMax
;
740 ToSend
[++ToSendMax
] = SEC_F
;
742 // Convert from last byte pos to length
746 //-----------------------------------------------------------------------------
747 // Wait for commands from reader
748 // Stop when button is pressed
749 // Or return TRUE when command is captured
750 //-----------------------------------------------------------------------------
751 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
753 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
754 // only, since we are receiving, not transmitting).
755 // Signal field is off with the appropriate LED
757 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
759 // Now run a `software UART' on the stream of incoming samples.
761 Uart
.output
= received
;
764 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
769 if(BUTTON_PRESS()) return FALSE
;
771 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
772 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
773 if(MillerDecoding(b
, 0)) {
781 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
);
782 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
783 int EmSend4bit(uint8_t resp
);
784 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
785 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
786 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
);
787 int EmSendCmd(uint8_t *resp
, int respLen
);
788 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
);
789 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
790 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
);
792 static uint8_t* free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
799 uint32_t ProxToAirDuration
;
800 } tag_response_info_t
;
802 void reset_free_buffer() {
803 free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
806 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
807 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
808 // This will need the following byte array for a modulation sequence
809 // 144 data bits (18 * 8)
812 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
813 // 1 just for the case
815 // 166 bytes, since every bit that needs to be send costs us a byte
818 // Prepare the tag modulation bits from the message
819 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
821 // Make sure we do not exceed the free buffer space
822 if (ToSendMax
> max_buffer_size
) {
823 Dbprintf("Out of memory, when modulating bits for tag answer:");
824 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
828 // Copy the byte array, used for this modulation to the buffer position
829 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
831 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
832 response_info
->modulation_n
= ToSendMax
;
833 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
838 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
839 // Retrieve and store the current buffer index
840 response_info
->modulation
= free_buffer_pointer
;
842 // Determine the maximum size we can use from our buffer
843 size_t max_buffer_size
= (((uint8_t *)BigBuf
)+FREE_BUFFER_OFFSET
+FREE_BUFFER_SIZE
)-free_buffer_pointer
;
845 // Forward the prepare tag modulation function to the inner function
846 if (prepare_tag_modulation(response_info
,max_buffer_size
)) {
847 // Update the free buffer offset
848 free_buffer_pointer
+= ToSendMax
;
855 //-----------------------------------------------------------------------------
856 // Main loop of simulated tag: receive commands from reader, decide what
857 // response to send, and send it.
858 //-----------------------------------------------------------------------------
859 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
861 // Enable and clear the trace
862 iso14a_clear_trace();
863 iso14a_set_tracing(TRUE
);
867 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
868 uint8_t response1
[2];
871 case 1: { // MIFARE Classic
872 // Says: I am Mifare 1k - original line
877 case 2: { // MIFARE Ultralight
878 // Says: I am a stupid memory tag, no crypto
883 case 3: { // MIFARE DESFire
884 // Says: I am a DESFire tag, ph33r me
889 case 4: { // ISO/IEC 14443-4
890 // Says: I am a javacard (JCOP)
896 Dbprintf("Error: unkown tagtype (%d)",tagType
);
901 // The second response contains the (mandatory) first 24 bits of the UID
902 uint8_t response2
[5];
904 // Check if the uid uses the (optional) part
905 uint8_t response2a
[5];
908 num_to_bytes(uid_1st
,3,response2
+1);
909 num_to_bytes(uid_2nd
,4,response2a
);
910 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
912 // Configure the ATQA and SAK accordingly
913 response1
[0] |= 0x40;
916 num_to_bytes(uid_1st
,4,response2
);
917 // Configure the ATQA and SAK accordingly
918 response1
[0] &= 0xBF;
922 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
923 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
925 // Prepare the mandatory SAK (for 4 and 7 byte UID)
926 uint8_t response3
[3];
928 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
930 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
931 uint8_t response3a
[3];
932 response3a
[0] = sak
& 0xFB;
933 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
935 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
936 uint8_t response6
[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
937 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
939 #define TAG_RESPONSE_COUNT 7
940 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
941 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
942 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
943 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
944 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
945 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
946 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
947 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
950 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
951 // Such a response is less time critical, so we can prepare them on the fly
952 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
953 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
954 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
955 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
956 tag_response_info_t dynamic_response_info
= {
957 .response
= dynamic_response_buffer
,
959 .modulation
= dynamic_modulation_buffer
,
963 // Reset the offset pointer of the free buffer
966 // Prepare the responses of the anticollision phase
967 // there will be not enough time to do this at the moment the reader sends it REQA
968 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
969 prepare_allocated_tag_modulation(&responses
[i
]);
972 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
975 // To control where we are in the protocol
979 // Just to allow some checks
984 // We need to listen to the high-frequency, peak-detected path.
985 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
988 tag_response_info_t
* p_response
;
992 // Clean receive command buffer
994 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
995 DbpString("Button press");
1001 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1002 // Okay, look at the command now.
1004 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1005 p_response
= &responses
[0]; order
= 1;
1006 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1007 p_response
= &responses
[0]; order
= 6;
1008 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1009 p_response
= &responses
[1]; order
= 2;
1010 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1011 p_response
= &responses
[2]; order
= 20;
1012 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1013 p_response
= &responses
[3]; order
= 3;
1014 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1015 p_response
= &responses
[4]; order
= 30;
1016 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1017 EmSendCmdEx(data
+(4*receivedCmd
[0]),16,false);
1018 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1019 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1021 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1022 // DbpString("Reader requested we HALT!:");
1024 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1025 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1028 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1029 p_response
= &responses
[5]; order
= 7;
1030 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1031 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1032 EmSend4bit(CARD_NACK_NA
);
1035 p_response
= &responses
[6]; order
= 70;
1037 } else if (order
== 7 && len
== 8) { // Received authentication request
1039 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1040 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1042 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1043 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1044 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1046 // Check for ISO 14443A-4 compliant commands, look at left nibble
1047 switch (receivedCmd
[0]) {
1050 case 0x0A: { // IBlock (command)
1051 dynamic_response_info
.response
[0] = receivedCmd
[0];
1052 dynamic_response_info
.response
[1] = 0x00;
1053 dynamic_response_info
.response
[2] = 0x90;
1054 dynamic_response_info
.response
[3] = 0x00;
1055 dynamic_response_info
.response_n
= 4;
1059 case 0x1B: { // Chaining command
1060 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1061 dynamic_response_info
.response_n
= 2;
1066 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1067 dynamic_response_info
.response_n
= 2;
1071 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1072 dynamic_response_info
.response_n
= 2;
1076 case 0xC2: { // Readers sends deselect command
1077 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1078 dynamic_response_info
.response_n
= 2;
1082 // Never seen this command before
1084 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1085 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1087 Dbprintf("Received unknown command (len=%d):",len
);
1088 Dbhexdump(len
,receivedCmd
,false);
1090 dynamic_response_info
.response_n
= 0;
1094 if (dynamic_response_info
.response_n
> 0) {
1095 // Copy the CID from the reader query
1096 dynamic_response_info
.response
[1] = receivedCmd
[1];
1098 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1099 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1100 dynamic_response_info
.response_n
+= 2;
1102 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1103 Dbprintf("Error preparing tag response");
1105 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1106 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1110 p_response
= &dynamic_response_info
;
1114 // Count number of wakeups received after a halt
1115 if(order
== 6 && lastorder
== 5) { happened
++; }
1117 // Count number of other messages after a halt
1118 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1120 if(cmdsRecvd
> 999) {
1121 DbpString("1000 commands later...");
1126 if (p_response
!= NULL
) {
1127 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1128 // do the tracing for the previous reader request and this tag answer:
1129 EmLogTrace(Uart
.output
,
1131 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1132 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1134 p_response
->response
,
1135 p_response
->response_n
,
1136 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1137 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1138 SwapBits(GetParity(p_response
->response
, p_response
->response_n
), p_response
->response_n
));
1142 Dbprintf("Trace Full. Simulation stopped.");
1147 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1152 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1153 // of bits specified in the delay parameter.
1154 void PrepareDelayedTransfer(uint16_t delay
)
1156 uint8_t bitmask
= 0;
1157 uint8_t bits_to_shift
= 0;
1158 uint8_t bits_shifted
= 0;
1162 for (uint16_t i
= 0; i
< delay
; i
++) {
1163 bitmask
|= (0x01 << i
);
1165 ToSend
[ToSendMax
++] = 0x00;
1166 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1167 bits_to_shift
= ToSend
[i
] & bitmask
;
1168 ToSend
[i
] = ToSend
[i
] >> delay
;
1169 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1170 bits_shifted
= bits_to_shift
;
1176 //-------------------------------------------------------------------------------------
1177 // Transmit the command (to the tag) that was placed in ToSend[].
1178 // Parameter timing:
1179 // if NULL: transfer at next possible time, taking into account
1180 // request guard time and frame delay time
1181 // if == 0: transfer immediately and return time of transfer
1182 // if != 0: delay transfer until time specified
1183 //-------------------------------------------------------------------------------------
1184 static void TransmitFor14443a(const uint8_t *cmd
, int len
, uint32_t *timing
)
1187 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1189 uint32_t ThisTransferTime
= 0;
1192 if(*timing
== 0) { // Measure time
1193 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1195 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1197 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1198 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1199 LastTimeProxToAirStart
= *timing
;
1201 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1202 while(GetCountSspClk() < ThisTransferTime
);
1203 LastTimeProxToAirStart
= ThisTransferTime
;
1207 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1209 // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
1210 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1211 // AT91C_BASE_SSC->SSC_THR = SEC_Y;
1218 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1219 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1227 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1232 //-----------------------------------------------------------------------------
1233 // Prepare reader command (in bits, support short frames) to send to FPGA
1234 //-----------------------------------------------------------------------------
1235 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd
, int bits
, uint32_t dwParity
)
1243 // Start of Communication (Seq. Z)
1244 ToSend
[++ToSendMax
] = SEC_Z
;
1245 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1248 size_t bytecount
= nbytes(bits
);
1249 // Generate send structure for the data bits
1250 for (i
= 0; i
< bytecount
; i
++) {
1251 // Get the current byte to send
1253 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1255 for (j
= 0; j
< bitsleft
; j
++) {
1258 ToSend
[++ToSendMax
] = SEC_X
;
1259 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1264 ToSend
[++ToSendMax
] = SEC_Z
;
1265 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1268 ToSend
[++ToSendMax
] = SEC_Y
;
1275 // Only transmit (last) parity bit if we transmitted a complete byte
1277 // Get the parity bit
1278 if ((dwParity
>> i
) & 0x01) {
1280 ToSend
[++ToSendMax
] = SEC_X
;
1281 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1286 ToSend
[++ToSendMax
] = SEC_Z
;
1287 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1290 ToSend
[++ToSendMax
] = SEC_Y
;
1297 // End of Communication: Logic 0 followed by Sequence Y
1300 ToSend
[++ToSendMax
] = SEC_Z
;
1301 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1304 ToSend
[++ToSendMax
] = SEC_Y
;
1307 ToSend
[++ToSendMax
] = SEC_Y
;
1309 // Convert to length of command:
1313 //-----------------------------------------------------------------------------
1314 // Prepare reader command to send to FPGA
1315 //-----------------------------------------------------------------------------
1316 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1318 CodeIso14443aBitsAsReaderPar(cmd
,len
*8,dwParity
);
1321 //-----------------------------------------------------------------------------
1322 // Wait for commands from reader
1323 // Stop when button is pressed (return 1) or field was gone (return 2)
1324 // Or return 0 when command is captured
1325 //-----------------------------------------------------------------------------
1326 static int EmGetCmd(uint8_t *received
, int *len
)
1330 uint32_t timer
= 0, vtime
= 0;
1334 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1335 // only, since we are receiving, not transmitting).
1336 // Signal field is off with the appropriate LED
1338 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1340 // Set ADC to read field strength
1341 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1342 AT91C_BASE_ADC
->ADC_MR
=
1343 ADC_MODE_PRESCALE(32) |
1344 ADC_MODE_STARTUP_TIME(16) |
1345 ADC_MODE_SAMPLE_HOLD_TIME(8);
1346 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1348 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1350 // Now run a 'software UART' on the stream of incoming samples.
1352 Uart
.output
= received
;
1355 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1360 if (BUTTON_PRESS()) return 1;
1362 // test if the field exists
1363 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1365 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1366 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1367 if (analogCnt
>= 32) {
1368 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1369 vtime
= GetTickCount();
1370 if (!timer
) timer
= vtime
;
1371 // 50ms no field --> card to idle state
1372 if (vtime
- timer
> 50) return 2;
1374 if (timer
) timer
= 0;
1380 // receive and test the miller decoding
1381 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1382 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1383 if(MillerDecoding(b
, 0)) {
1393 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
)
1397 uint32_t ThisTransferTime
;
1399 // Modulate Manchester
1400 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1402 // include correction bit if necessary
1403 if (Uart
.parityBits
& 0x01) {
1404 correctionNeeded
= TRUE
;
1406 if(correctionNeeded
) {
1407 // 1236, so correction bit needed
1413 // clear receiving shift register and holding register
1414 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1415 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1416 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1417 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1419 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1420 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1421 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1422 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1425 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1428 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1431 for(; i
<= respLen
; ) {
1432 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1433 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1434 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1437 if(BUTTON_PRESS()) {
1442 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1443 for (i
= 0; i
< 2 ; ) {
1444 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1445 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1446 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1451 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1456 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1457 Code4bitAnswerAsTag(resp
);
1458 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1459 // do the tracing for the previous reader request and this tag answer:
1460 EmLogTrace(Uart
.output
,
1462 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1463 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1467 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1468 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1469 SwapBits(GetParity(&resp
, 1), 1));
1473 int EmSend4bit(uint8_t resp
){
1474 return EmSend4bitEx(resp
, false);
1477 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
){
1478 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1479 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1480 // do the tracing for the previous reader request and this tag answer:
1481 EmLogTrace(Uart
.output
,
1483 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1484 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1488 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1489 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1490 SwapBits(GetParity(resp
, respLen
), respLen
));
1494 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
){
1495 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1498 int EmSendCmd(uint8_t *resp
, int respLen
){
1499 return EmSendCmdExPar(resp
, respLen
, false, GetParity(resp
, respLen
));
1502 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1503 return EmSendCmdExPar(resp
, respLen
, false, par
);
1506 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
1507 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
)
1510 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1511 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1512 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1513 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1514 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1515 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1516 reader_EndTime
= tag_StartTime
- exact_fdt
;
1517 reader_StartTime
= reader_EndTime
- reader_modlen
;
1518 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_Parity
, TRUE
)) {
1520 } else if (!LogTrace(NULL
, 0, reader_EndTime
, 0, TRUE
)) {
1522 } else if (!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_Parity
, FALSE
)) {
1525 return (!LogTrace(NULL
, 0, tag_EndTime
, 0, FALSE
));
1532 //-----------------------------------------------------------------------------
1533 // Wait a certain time for tag response
1534 // If a response is captured return TRUE
1535 // If it takes too long return FALSE
1536 //-----------------------------------------------------------------------------
1537 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint16_t offset
, int maxLen
)
1541 // Set FPGA mode to "reader listen mode", no modulation (listen
1542 // only, since we are receiving, not transmitting).
1543 // Signal field is on with the appropriate LED
1545 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1547 // Now get the answer from the card
1549 Demod
.output
= receivedResponse
;
1552 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1558 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1559 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1560 if(ManchesterDecoding(b
, offset
, 0)) {
1561 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1563 } else if(c
++ > iso14a_timeout
) {
1570 void ReaderTransmitBitsPar(uint8_t* frame
, int bits
, uint32_t par
, uint32_t *timing
)
1573 CodeIso14443aBitsAsReaderPar(frame
,bits
,par
);
1575 // Send command to tag
1576 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1580 // Log reader command in trace buffer
1582 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1583 LogTrace(NULL
, 0, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, 0, TRUE
);
1587 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
, uint32_t *timing
)
1589 ReaderTransmitBitsPar(frame
,len
*8,par
, timing
);
1592 void ReaderTransmitBits(uint8_t* frame
, int len
, uint32_t *timing
)
1594 // Generate parity and redirect
1595 ReaderTransmitBitsPar(frame
,len
,GetParity(frame
,len
/8), timing
);
1598 void ReaderTransmit(uint8_t* frame
, int len
, uint32_t *timing
)
1600 // Generate parity and redirect
1601 ReaderTransmitBitsPar(frame
,len
*8,GetParity(frame
,len
), timing
);
1604 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
)
1606 if (!GetIso14443aAnswerFromTag(receivedAnswer
,offset
,160)) return FALSE
;
1608 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1609 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1614 int ReaderReceive(uint8_t* receivedAnswer
)
1616 return ReaderReceiveOffset(receivedAnswer
, 0);
1619 int ReaderReceivePar(uint8_t *receivedAnswer
, uint32_t *parptr
)
1621 if (!GetIso14443aAnswerFromTag(receivedAnswer
,0,160)) return FALSE
;
1623 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1624 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1626 *parptr
= Demod
.parityBits
;
1630 /* performs iso14443a anticollision procedure
1631 * fills the uid pointer unless NULL
1632 * fills resp_data unless NULL */
1633 int iso14443a_select_card(byte_t
* uid_ptr
, iso14a_card_select_t
* p_hi14a_card
, uint32_t* cuid_ptr
) {
1634 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1635 uint8_t sel_all
[] = { 0x93,0x20 };
1636 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1637 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1638 uint8_t* resp
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); // was 3560 - tied to other size changes
1640 size_t uid_resp_len
;
1642 uint8_t sak
= 0x04; // cascade uid
1643 int cascade_level
= 0;
1646 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1647 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1650 if(!ReaderReceive(resp
)) return 0;
1651 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1654 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1655 p_hi14a_card
->uidlen
= 0;
1656 memset(p_hi14a_card
->uid
,0,10);
1661 memset(uid_ptr
,0,10);
1664 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1665 // which case we need to make a cascade 2 request and select - this is a long UID
1666 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1667 for(; sak
& 0x04; cascade_level
++) {
1668 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1669 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1672 ReaderTransmit(sel_all
,sizeof(sel_all
), NULL
);
1673 if (!ReaderReceive(resp
)) return 0;
1675 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1676 memset(uid_resp
, 0, 4);
1677 uint16_t uid_resp_bits
= 0;
1678 uint16_t collision_answer_offset
= 0;
1679 // anti-collision-loop:
1680 while (Demod
.collisionPos
) {
1681 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1682 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1683 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1684 uid_resp
[uid_resp_bits
& 0xf8] |= UIDbit
<< (uid_resp_bits
% 8);
1686 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1688 // construct anticollosion command:
1689 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1690 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1691 sel_uid
[2+i
] = uid_resp
[i
];
1693 collision_answer_offset
= uid_resp_bits
%8;
1694 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1695 if (!ReaderReceiveOffset(resp
, collision_answer_offset
)) return 0;
1697 // finally, add the last bits and BCC of the UID
1698 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1699 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1700 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1703 } else { // no collision, use the response to SELECT_ALL as current uid
1704 memcpy(uid_resp
,resp
,4);
1707 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
1709 // calculate crypto UID. Always use last 4 Bytes.
1711 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1714 // Construct SELECT UID command
1715 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1716 memcpy(sel_uid
+2,uid_resp
,4); // the UID
1717 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1718 AppendCrc14443a(sel_uid
,7); // calculate and add CRC
1719 ReaderTransmit(sel_uid
,sizeof(sel_uid
), NULL
);
1722 if (!ReaderReceive(resp
)) return 0;
1725 // Test if more parts of the uid are comming
1726 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1727 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1728 // http://www.nxp.com/documents/application_note/AN10927.pdf
1729 memcpy(uid_resp
, uid_resp
+ 1, 3);
1734 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1738 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1739 p_hi14a_card
->uidlen
+= uid_resp_len
;
1744 p_hi14a_card
->sak
= sak
;
1745 p_hi14a_card
->ats_len
= 0;
1748 if( (sak
& 0x20) == 0) {
1749 return 2; // non iso14443a compliant tag
1752 // Request for answer to select
1753 AppendCrc14443a(rats
, 2);
1754 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1756 if (!(len
= ReaderReceive(resp
))) return 0;
1759 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1760 p_hi14a_card
->ats_len
= len
;
1763 // reset the PCB block number
1764 iso14_pcb_blocknum
= 0;
1768 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1769 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1770 // Set up the synchronous serial port
1772 // connect Demodulated Signal to ADC:
1773 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1775 // Signal field is on with the appropriate LED
1776 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1777 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1782 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1789 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1790 iso14a_set_timeout(1050); // 10ms default
1793 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1794 uint8_t real_cmd
[cmd_len
+4];
1795 real_cmd
[0] = 0x0a; //I-Block
1796 // put block number into the PCB
1797 real_cmd
[0] |= iso14_pcb_blocknum
;
1798 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1799 memcpy(real_cmd
+2, cmd
, cmd_len
);
1800 AppendCrc14443a(real_cmd
,cmd_len
+2);
1802 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1803 size_t len
= ReaderReceive(data
);
1804 uint8_t * data_bytes
= (uint8_t *) data
;
1806 return 0; //DATA LINK ERROR
1807 // if we received an I- or R(ACK)-Block with a block number equal to the
1808 // current block number, toggle the current block number
1809 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1810 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1811 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1812 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1814 iso14_pcb_blocknum
^= 1;
1820 //-----------------------------------------------------------------------------
1821 // Read an ISO 14443a tag. Send out commands and store answers.
1823 //-----------------------------------------------------------------------------
1824 void ReaderIso14443a(UsbCommand
*c
)
1826 iso14a_command_t param
= c
->arg
[0];
1827 uint8_t *cmd
= c
->d
.asBytes
;
1828 size_t len
= c
->arg
[1];
1829 size_t lenbits
= c
->arg
[2];
1831 byte_t buf
[USB_CMD_DATA_SIZE
];
1833 if(param
& ISO14A_CONNECT
) {
1834 iso14a_clear_trace();
1837 iso14a_set_tracing(TRUE
);
1839 if(param
& ISO14A_REQUEST_TRIGGER
) {
1840 iso14a_set_trigger(TRUE
);
1843 if(param
& ISO14A_CONNECT
) {
1844 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1845 if(!(param
& ISO14A_NO_SELECT
)) {
1846 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1847 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1848 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1852 if(param
& ISO14A_SET_TIMEOUT
) {
1853 iso14a_timeout
= c
->arg
[2];
1856 if(param
& ISO14A_APDU
) {
1857 arg0
= iso14_apdu(cmd
, len
, buf
);
1858 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1861 if(param
& ISO14A_RAW
) {
1862 if(param
& ISO14A_APPEND_CRC
) {
1863 AppendCrc14443a(cmd
,len
);
1865 if (lenbits
) lenbits
+= 16;
1868 ReaderTransmitBitsPar(cmd
,lenbits
,GetParity(cmd
,lenbits
/8), NULL
);
1870 ReaderTransmit(cmd
,len
, NULL
);
1872 arg0
= ReaderReceive(buf
);
1873 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1876 if(param
& ISO14A_REQUEST_TRIGGER
) {
1877 iso14a_set_trigger(FALSE
);
1880 if(param
& ISO14A_NO_DISCONNECT
) {
1884 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1889 // Determine the distance between two nonces.
1890 // Assume that the difference is small, but we don't know which is first.
1891 // Therefore try in alternating directions.
1892 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1895 uint32_t nttmp1
, nttmp2
;
1897 if (nt1
== nt2
) return 0;
1902 for (i
= 1; i
< 32768; i
++) {
1903 nttmp1
= prng_successor(nttmp1
, 1);
1904 if (nttmp1
== nt2
) return i
;
1905 nttmp2
= prng_successor(nttmp2
, 1);
1906 if (nttmp2
== nt1
) return -i
;
1909 return(-99999); // either nt1 or nt2 are invalid nonces
1913 //-----------------------------------------------------------------------------
1914 // Recover several bits of the cypher stream. This implements (first stages of)
1915 // the algorithm described in "The Dark Side of Security by Obscurity and
1916 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1917 // (article by Nicolas T. Courtois, 2009)
1918 //-----------------------------------------------------------------------------
1919 void ReaderMifare(bool first_try
)
1922 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1923 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1924 static uint8_t mf_nr_ar3
;
1926 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1928 iso14a_clear_trace();
1929 iso14a_set_tracing(TRUE
);
1933 //byte_t par_mask = 0xff;
1934 static byte_t par_low
= 0;
1939 uint32_t nt
, previous_nt
;
1940 static uint32_t nt_attacked
= 0;
1941 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1942 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1944 static uint32_t sync_time
;
1945 static uint32_t sync_cycles
;
1946 int catch_up_cycles
= 0;
1947 int last_catch_up
= 0;
1948 uint16_t consecutive_resyncs
= 0;
1955 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
1956 sync_time
= GetCountSspClk() & 0xfffffff8;
1957 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1963 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1964 // nt_attacked = prng_successor(nt_attacked, 1);
1966 mf_nr_ar
[3] = mf_nr_ar3
;
1975 for(uint16_t i
= 0; TRUE
; i
++) {
1979 // Test if the action was cancelled
1980 if(BUTTON_PRESS()) {
1986 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1987 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
1991 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
1992 catch_up_cycles
= 0;
1994 // if we missed the sync time already, advance to the next nonce repeat
1995 while(GetCountSspClk() > sync_time
) {
1996 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
1999 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2000 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2002 // Receive the (4 Byte) "random" nonce
2003 if (!ReaderReceive(receivedAnswer
)) {
2004 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2009 nt
= bytes_to_num(receivedAnswer
, 4);
2011 // Transmit reader nonce with fake par
2012 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2014 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2015 int nt_distance
= dist_nt(previous_nt
, nt
);
2016 if (nt_distance
== 0) {
2020 if (nt_distance
== -99999) { // invalid nonce received, try again
2023 sync_cycles
= (sync_cycles
- nt_distance
);
2024 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2029 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2030 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2031 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2032 catch_up_cycles
= 0;
2035 if (catch_up_cycles
== last_catch_up
) {
2036 consecutive_resyncs
++;
2039 last_catch_up
= catch_up_cycles
;
2040 consecutive_resyncs
= 0;
2042 if (consecutive_resyncs
< 3) {
2043 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2046 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2047 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2052 consecutive_resyncs
= 0;
2054 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2055 if (ReaderReceive(receivedAnswer
))
2057 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2061 par_low
= par
& 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2065 if(led_on
) LED_B_ON(); else LED_B_OFF();
2067 par_list
[nt_diff
] = par
;
2068 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2070 // Test if the information is complete
2071 if (nt_diff
== 0x07) {
2076 nt_diff
= (nt_diff
+ 1) & 0x07;
2077 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2080 if (nt_diff
== 0 && first_try
)
2084 par
= (((par
>> 3) + 1) << 3) | par_low
;
2090 mf_nr_ar
[3] &= 0x1F;
2093 memcpy(buf
+ 0, uid
, 4);
2094 num_to_bytes(nt
, 4, buf
+ 4);
2095 memcpy(buf
+ 8, par_list
, 8);
2096 memcpy(buf
+ 16, ks_list
, 8);
2097 memcpy(buf
+ 24, mf_nr_ar
, 4);
2099 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2102 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2105 iso14a_set_tracing(FALSE
);
2109 *MIFARE 1K simulate.
2112 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2113 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2114 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2115 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2116 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2118 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2120 int cardSTATE
= MFEMUL_NOFIELD
;
2122 int vHf
= 0; // in mV
2124 uint32_t selTimer
= 0;
2125 uint32_t authTimer
= 0;
2128 uint8_t cardWRBL
= 0;
2129 uint8_t cardAUTHSC
= 0;
2130 uint8_t cardAUTHKEY
= 0xff; // no authentication
2131 uint32_t cardRr
= 0;
2133 //uint32_t rn_enc = 0;
2135 uint32_t cardINTREG
= 0;
2136 uint8_t cardINTBLOCK
= 0;
2137 struct Crypto1State mpcs
= {0, 0};
2138 struct Crypto1State
*pcs
;
2140 uint32_t numReads
= 0;//Counts numer of times reader read a block
2141 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
2142 uint8_t *response
= eml_get_bigbufptr_sendbuf();
2144 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2145 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2146 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2147 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2148 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2150 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2151 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2153 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2154 // This can be used in a reader-only attack.
2155 // (it can also be retrieved via 'hf 14a list', but hey...
2156 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2157 uint8_t ar_nr_collected
= 0;
2160 iso14a_clear_trace();
2161 iso14a_set_tracing(TRUE
);
2163 // Authenticate response - nonce
2164 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2166 //-- Determine the UID
2167 // Can be set from emulator memory, incoming data
2168 // and can be 7 or 4 bytes long
2169 if (flags
& FLAG_4B_UID_IN_DATA
)
2171 // 4B uid comes from data-portion of packet
2172 memcpy(rUIDBCC1
,datain
,4);
2173 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2175 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2176 // 7B uid comes from data-portion of packet
2177 memcpy(&rUIDBCC1
[1],datain
,3);
2178 memcpy(rUIDBCC2
, datain
+3, 4);
2181 // get UID from emul memory
2182 emlGetMemBt(receivedCmd
, 7, 1);
2183 _7BUID
= !(receivedCmd
[0] == 0x00);
2184 if (!_7BUID
) { // ---------- 4BUID
2185 emlGetMemBt(rUIDBCC1
, 0, 4);
2186 } else { // ---------- 7BUID
2187 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2188 emlGetMemBt(rUIDBCC2
, 3, 4);
2193 * Regardless of what method was used to set the UID, set fifth byte and modify
2194 * the ATQA for 4 or 7-byte UID
2196 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2200 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2203 // We need to listen to the high-frequency, peak-detected path.
2204 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2207 if (MF_DBGLEVEL
>= 1) {
2209 Dbprintf("4B UID: %02x%02x%02x%02x",
2210 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2212 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2213 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2214 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2218 bool finished
= FALSE
;
2219 while (!BUTTON_PRESS() && !finished
) {
2222 // find reader field
2223 // Vref = 3300mV, and an 10:1 voltage divider on the input
2224 // can measure voltages up to 33000 mV
2225 if (cardSTATE
== MFEMUL_NOFIELD
) {
2226 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2227 if (vHf
> MF_MINFIELDV
) {
2228 cardSTATE_TO_IDLE();
2232 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2236 res
= EmGetCmd(receivedCmd
, &len
);
2237 if (res
== 2) { //Field is off!
2238 cardSTATE
= MFEMUL_NOFIELD
;
2241 } else if (res
== 1) {
2242 break; //return value 1 means button press
2245 // REQ or WUP request in ANY state and WUP in HALTED state
2246 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2247 selTimer
= GetTickCount();
2248 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2249 cardSTATE
= MFEMUL_SELECT1
;
2251 // init crypto block
2254 crypto1_destroy(pcs
);
2259 switch (cardSTATE
) {
2260 case MFEMUL_NOFIELD
:
2263 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2264 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2267 case MFEMUL_SELECT1
:{
2269 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2270 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2271 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2275 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2277 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2281 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2282 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2283 cuid
= bytes_to_num(rUIDBCC1
, 4);
2285 cardSTATE
= MFEMUL_WORK
;
2287 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2290 cardSTATE
= MFEMUL_SELECT2
;
2298 cardSTATE_TO_IDLE();
2299 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2300 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2303 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2304 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2307 if(ar_nr_collected
< 2){
2308 if(ar_nr_responses
[2] != ar
)
2309 {// Avoid duplicates... probably not necessary, ar should vary.
2310 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2311 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2312 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2313 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2319 crypto1_word(pcs
, ar
, 1);
2320 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2323 if (cardRr
!= prng_successor(nonce
, 64)){
2324 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2325 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2326 cardRr
, prng_successor(nonce
, 64));
2327 // Shouldn't we respond anything here?
2328 // Right now, we don't nack or anything, which causes the
2329 // reader to do a WUPA after a while. /Martin
2330 // -- which is the correct response. /piwi
2331 cardSTATE_TO_IDLE();
2332 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2333 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2337 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2339 num_to_bytes(ans
, 4, rAUTH_AT
);
2341 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2343 cardSTATE
= MFEMUL_WORK
;
2344 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2345 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2346 GetTickCount() - authTimer
);
2349 case MFEMUL_SELECT2
:{
2351 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2352 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2355 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2356 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2362 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2363 EmSendCmd(rSAK
, sizeof(rSAK
));
2364 cuid
= bytes_to_num(rUIDBCC2
, 4);
2365 cardSTATE
= MFEMUL_WORK
;
2367 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2371 // i guess there is a command). go into the work state.
2373 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2374 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2377 cardSTATE
= MFEMUL_WORK
;
2379 //intentional fall-through to the next case-stmt
2384 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2385 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2389 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2391 if(encrypted_data
) {
2393 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2396 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2397 authTimer
= GetTickCount();
2398 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2399 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2400 crypto1_destroy(pcs
);//Added by martin
2401 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2403 if (!encrypted_data
) { // first authentication
2404 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2406 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2407 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2408 } else { // nested authentication
2409 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2410 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2411 num_to_bytes(ans
, 4, rAUTH_AT
);
2413 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2414 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2415 cardSTATE
= MFEMUL_AUTH1
;
2419 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2420 // BUT... ACK --> NACK
2421 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2422 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2426 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2427 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2428 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2433 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2434 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2438 if(receivedCmd
[0] == 0x30 // read block
2439 || receivedCmd
[0] == 0xA0 // write block
2440 || receivedCmd
[0] == 0xC0 // inc
2441 || receivedCmd
[0] == 0xC1 // dec
2442 || receivedCmd
[0] == 0xC2 // restore
2443 || receivedCmd
[0] == 0xB0) { // transfer
2444 if (receivedCmd
[1] >= 16 * 4) {
2445 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2446 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2450 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2451 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2452 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2457 if (receivedCmd
[0] == 0x30) {
2458 if (MF_DBGLEVEL
>= 4) {
2459 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2461 emlGetMem(response
, receivedCmd
[1], 1);
2462 AppendCrc14443a(response
, 16);
2463 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2464 EmSendCmdPar(response
, 18, par
);
2466 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2467 Dbprintf("%d reads done, exiting", numReads
);
2473 if (receivedCmd
[0] == 0xA0) {
2474 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2475 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2476 cardSTATE
= MFEMUL_WRITEBL2
;
2477 cardWRBL
= receivedCmd
[1];
2480 // increment, decrement, restore
2481 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2482 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2483 if (emlCheckValBl(receivedCmd
[1])) {
2484 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2485 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2488 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2489 if (receivedCmd
[0] == 0xC1)
2490 cardSTATE
= MFEMUL_INTREG_INC
;
2491 if (receivedCmd
[0] == 0xC0)
2492 cardSTATE
= MFEMUL_INTREG_DEC
;
2493 if (receivedCmd
[0] == 0xC2)
2494 cardSTATE
= MFEMUL_INTREG_REST
;
2495 cardWRBL
= receivedCmd
[1];
2499 if (receivedCmd
[0] == 0xB0) {
2500 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2501 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2502 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2504 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2508 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2511 cardSTATE
= MFEMUL_HALTED
;
2512 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2513 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2514 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2518 if (receivedCmd
[0] == 0xe0) {//RATS
2519 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2522 // command not allowed
2523 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2524 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2527 case MFEMUL_WRITEBL2
:{
2529 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2530 emlSetMem(receivedCmd
, cardWRBL
, 1);
2531 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2532 cardSTATE
= MFEMUL_WORK
;
2534 cardSTATE_TO_IDLE();
2535 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2536 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2541 case MFEMUL_INTREG_INC
:{
2542 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2543 memcpy(&ans
, receivedCmd
, 4);
2544 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2545 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2546 cardSTATE_TO_IDLE();
2549 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2550 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2551 cardINTREG
= cardINTREG
+ ans
;
2552 cardSTATE
= MFEMUL_WORK
;
2555 case MFEMUL_INTREG_DEC
:{
2556 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2557 memcpy(&ans
, receivedCmd
, 4);
2558 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2559 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2560 cardSTATE_TO_IDLE();
2563 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2564 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2565 cardINTREG
= cardINTREG
- ans
;
2566 cardSTATE
= MFEMUL_WORK
;
2569 case MFEMUL_INTREG_REST
:{
2570 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2571 memcpy(&ans
, receivedCmd
, 4);
2572 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2573 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2574 cardSTATE_TO_IDLE();
2577 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2578 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2579 cardSTATE
= MFEMUL_WORK
;
2585 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2588 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2590 //May just aswell send the collected ar_nr in the response aswell
2591 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2594 if(flags
& FLAG_NR_AR_ATTACK
)
2596 if(ar_nr_collected
> 1) {
2597 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2598 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2599 ar_nr_responses
[0], // UID
2600 ar_nr_responses
[1], //NT
2601 ar_nr_responses
[2], //AR1
2602 ar_nr_responses
[3], //NR1
2603 ar_nr_responses
[6], //AR2
2604 ar_nr_responses
[7] //NR2
2607 Dbprintf("Failed to obtain two AR/NR pairs!");
2608 if(ar_nr_collected
>0) {
2609 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2610 ar_nr_responses
[0], // UID
2611 ar_nr_responses
[1], //NT
2612 ar_nr_responses
[2], //AR1
2613 ar_nr_responses
[3] //NR1
2618 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2623 //-----------------------------------------------------------------------------
2626 //-----------------------------------------------------------------------------
2627 void RAMFUNC
SniffMifare(uint8_t param
) {
2629 // bit 0 - trigger from first card answer
2630 // bit 1 - trigger from first reader 7-bit request
2632 // C(red) A(yellow) B(green)
2634 // init trace buffer
2635 iso14a_clear_trace();
2636 iso14a_set_tracing(TRUE
);
2638 // The command (reader -> tag) that we're receiving.
2639 // The length of a received command will in most cases be no more than 18 bytes.
2640 // So 32 should be enough!
2641 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2642 // The response (tag -> reader) that we're receiving.
2643 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2645 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2646 // into trace, along with its length and other annotations.
2647 //uint8_t *trace = (uint8_t *)BigBuf;
2649 // The DMA buffer, used to stream samples from the FPGA
2650 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2651 uint8_t *data
= dmaBuf
;
2652 uint8_t previous_data
= 0;
2655 bool ReaderIsActive
= FALSE
;
2656 bool TagIsActive
= FALSE
;
2658 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2660 // Set up the demodulator for tag -> reader responses.
2661 Demod
.output
= receivedResponse
;
2663 // Set up the demodulator for the reader -> tag commands
2664 Uart
.output
= receivedCmd
;
2666 // Setup for the DMA.
2667 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2674 // And now we loop, receiving samples.
2675 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2677 if(BUTTON_PRESS()) {
2678 DbpString("cancelled by button");
2685 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2686 // check if a transaction is completed (timeout after 2000ms).
2687 // if yes, stop the DMA transfer and send what we have so far to the client
2688 if (MfSniffSend(2000)) {
2689 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2693 ReaderIsActive
= FALSE
;
2694 TagIsActive
= FALSE
;
2695 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2699 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2700 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2701 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2702 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2704 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2706 // test for length of buffer
2707 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2708 maxDataLen
= dataLen
;
2710 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2714 if(dataLen
< 1) continue;
2716 // primary buffer was stopped ( <-- we lost data!
2717 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2718 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2719 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2720 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2722 // secondary buffer sets as primary, secondary buffer was stopped
2723 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2724 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2725 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2730 if (sniffCounter
& 0x01) {
2732 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2733 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2734 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2736 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parityBits
, Uart
.bitCount
, TRUE
)) break;
2738 /* And ready to receive another command. */
2741 /* And also reset the demod code */
2744 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2747 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2748 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2749 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2752 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parityBits
, Demod
.bitCount
, FALSE
)) break;
2754 // And ready to receive another response.
2757 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2761 previous_data
= *data
;
2764 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2770 DbpString("COMMAND FINISHED");
2772 FpgaDisableSscDma();
2775 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);