3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>
23 #if !defined LOWMEM && defined __GNUC__
24 uint8_t filterlut
[1 << 20];
25 static void __attribute__((constructor
)) fill_lut()
29 for(x
= 0; x
< 1 << 20; ++x
) {
30 f
= 0xf22c0 >> (x
& 0xf) & 16;
31 f
|= 0x6c9c0 >> (x
>> 4 & 0xf) & 8;
32 f
|= 0x3c8b0 >> (x
>> 8 & 0xf) & 4;
33 f
|= 0x1e458 >> (x
>> 12 & 0xf) & 2;
34 f
|= 0x0d938 >> (x
>> 16 & 0xf) & 1;
35 filterlut
[x
] = BIT(0xEC57E80A, f
);
42 typedef struct bucket
{
47 typedef bucket_t bucket_array_t
[2][0x100];
49 typedef struct bucket_info
{
51 uint32_t *head
, *tail
;
52 } bucket_info
[2][0x100];
57 static void bucket_sort_intersect(uint32_t* const estart
, uint32_t* const estop
,
58 uint32_t* const ostart
, uint32_t* const ostop
,
59 bucket_info_t
*bucket_info
, bucket_array_t bucket
)
70 // init buckets to be empty
71 for (uint32_t i
= 0; i
< 2; i
++) {
72 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
73 bucket
[i
][j
].bp
= bucket
[i
][j
].head
;
77 // sort the lists into the buckets based on the MSB (contribution bits)
78 for (uint32_t i
= 0; i
< 2; i
++) {
79 for (p1
= start
[i
]; p1
<= stop
[i
]; p1
++) {
80 uint32_t bucket_index
= (*p1
& 0xff000000) >> 24;
81 *(bucket
[i
][bucket_index
].bp
++) = *p1
;
86 // write back intersecting buckets as sorted list.
87 // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
88 uint32_t nonempty_bucket
;
89 for (uint32_t i
= 0; i
< 2; i
++) {
92 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
93 if (bucket
[0][j
].bp
!= bucket
[0][j
].head
&& bucket
[1][j
].bp
!= bucket
[1][j
].head
) { // non-empty intersecting buckets only
94 bucket_info
->bucket_info
[i
][nonempty_bucket
].head
= p1
;
95 for (p2
= bucket
[i
][j
].head
; p2
< bucket
[i
][j
].bp
; *p1
++ = *p2
++);
96 bucket_info
->bucket_info
[i
][nonempty_bucket
].tail
= p1
- 1;
100 bucket_info
->numbuckets
= nonempty_bucket
;
105 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
107 static inline uint32_t*
108 binsearch(uint32_t *start
, uint32_t *stop
)
110 uint32_t mid
, val
= *stop
& 0xff000000;
112 if(start
[mid
= (stop
- start
) >> 1] > val
)
120 /** update_contribution
121 * helper, calculates the partial linear feedback contributions and puts in MSB
124 update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
126 uint32_t p
= *item
>> 25;
128 p
= p
<< 1 | parity(*item
& mask1
);
129 p
= p
<< 1 | parity(*item
& mask2
);
130 *item
= p
<< 24 | (*item
& 0xffffff);
134 * using a bit of the keystream extend the table of possible lfsr states
137 extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
141 for(uint32_t *p
= tbl
; p
<= *end
; p
++) {
143 if(filter(*p
) != filter(*p
| 1)) { // replace
144 *p
|= filter(*p
) ^ bit
;
145 update_contribution(p
, m1
, m2
);
147 } else if(filter(*p
) == bit
) { // insert
150 update_contribution(p
, m1
, m2
);
152 update_contribution(p
, m1
, m2
);
162 /** extend_table_simple
163 * using a bit of the keystream extend the table of possible lfsr states
166 extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
168 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
169 if(filter(*tbl
) ^ filter(*tbl
| 1)) { // replace
170 *tbl
|= filter(*tbl
) ^ bit
;
171 } else if(filter(*tbl
) == bit
) { // insert
180 * recursively narrow down the search space, 4 bits of keystream at a time
182 static struct Crypto1State
*
183 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
184 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
185 struct Crypto1State
*sl
, uint32_t in
, bucket_array_t bucket
)
188 bucket_info_t bucket_info
;
191 for(e
= e_head
; e
<= e_tail
; ++e
) {
192 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
193 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
195 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
198 sl
->odd
= sl
->even
= 0;
202 for(uint32_t i
= 0; i
< 4 && rem
--; i
++) {
203 extend_table(o_head
, &o_tail
, (oks
>>= 1) & 1,
204 LF_POLY_EVEN
<< 1 | 1, LF_POLY_ODD
<< 1, 0);
208 extend_table(e_head
, &e_tail
, (eks
>>= 1) & 1,
209 LF_POLY_ODD
, LF_POLY_EVEN
<< 1 | 1, (in
>>= 2) & 3);
214 bucket_sort_intersect(e_head
, e_tail
, o_head
, o_tail
, &bucket_info
, bucket
);
216 for (int i
= bucket_info
.numbuckets
- 1; i
>= 0; i
--) {
217 sl
= recover(bucket_info
.bucket_info
[1][i
].head
, bucket_info
.bucket_info
[1][i
].tail
, oks
,
218 bucket_info
.bucket_info
[0][i
].head
, bucket_info
.bucket_info
[0][i
].tail
, eks
,
219 rem
, sl
, in
, bucket
);
225 * recover the state of the lfsr given 32 bits of the keystream
226 * additionally you can use the in parameter to specify the value
227 * that was fed into the lfsr at the time the keystream was generated
229 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
231 struct Crypto1State
*statelist
;
232 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
233 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
236 // split the keystream into an odd and even part
237 for(i
= 31; i
>= 0; i
-= 2)
238 oks
= oks
<< 1 | BEBIT(ks2
, i
);
239 for(i
= 30; i
>= 0; i
-= 2)
240 eks
= eks
<< 1 | BEBIT(ks2
, i
);
242 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
243 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
244 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
245 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
248 statelist
->odd
= statelist
->even
= 0;
250 // allocate memory for out of place bucket_sort
251 bucket_array_t bucket
;
252 for (uint32_t i
= 0; i
< 2; i
++)
253 for (uint32_t j
= 0; j
<= 0xff; j
++) {
254 bucket
[i
][j
].head
= malloc(sizeof(uint32_t)<<14);
255 if (!bucket
[i
][j
].head
) {
260 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
261 for(i
= 1 << 20; i
>= 0; --i
) {
262 if(filter(i
) == (oks
& 1))
264 if(filter(i
) == (eks
& 1))
268 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
269 for(i
= 0; i
< 4; i
++) {
270 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
271 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
274 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
275 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
276 // parameter into account.
278 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00); // Byte swapping
280 recover(odd_head
, odd_tail
, oks
, even_head
, even_tail
, eks
, 11, statelist
, in
<< 1, bucket
);
285 for (uint32_t i
= 0; i
< 2; i
++)
286 for (uint32_t j
= 0; j
<= 0xff; j
++)
287 free(bucket
[i
][j
].head
);
292 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
293 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
294 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
295 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
296 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
297 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
298 0x7EC7EE90, 0x7F63F748, 0x79117020};
299 static const uint32_t T1
[] = {
300 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
301 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
302 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
303 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
304 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
305 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
306 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
307 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
308 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
309 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
310 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
311 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
312 /** Reverse 64 bits of keystream into possible cipher states
313 * Variation mentioned in the paper. Somewhat optimized version
315 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
317 struct Crypto1State
*statelist
, *sl
;
318 uint8_t oks
[32], eks
[32], hi
[32];
319 uint32_t low
= 0, win
= 0;
320 uint32_t *tail
, table
[1 << 16];
323 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
326 sl
->odd
= sl
->even
= 0;
328 for(i
= 30; i
>= 0; i
-= 2) {
329 oks
[i
>> 1] = BIT(ks2
, i
^ 24);
330 oks
[16 + (i
>> 1)] = BIT(ks3
, i
^ 24);
332 for(i
= 31; i
>= 0; i
-= 2) {
333 eks
[i
>> 1] = BIT(ks2
, i
^ 24);
334 eks
[16 + (i
>> 1)] = BIT(ks3
, i
^ 24);
337 for(i
= 0xfffff; i
>= 0; --i
) {
338 if (filter(i
) != oks
[0])
342 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
343 extend_table_simple(table
, &tail
, oks
[j
]);
348 for(j
= 0; j
< 19; ++j
)
349 low
= low
<< 1 | parity(i
& S1
[j
]);
350 for(j
= 0; j
< 32; ++j
)
351 hi
[j
] = parity(i
& T1
[j
]);
353 for(; tail
>= table
; --tail
) {
354 for(j
= 0; j
< 3; ++j
) {
356 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
357 if(filter(*tail
) != oks
[29 + j
])
361 for(j
= 0; j
< 19; ++j
)
362 win
= win
<< 1 | parity(*tail
& S2
[j
]);
365 for(j
= 0; j
< 32; ++j
) {
366 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
367 if(filter(win
) != eks
[j
])
371 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
372 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
375 sl
->odd
= sl
->even
= 0;
382 /** lfsr_rollback_bit
383 * Rollback the shift register in order to get previous states
385 void lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
396 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
397 out
^= LF_POLY_ODD
& s
->odd
;
399 out
^= filter(s
->odd
) & !!fb
;
401 s
->even
|= parity(out
) << 23;
403 /** lfsr_rollback_byte
404 * Rollback the shift register in order to get previous states
406 void lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
409 for (i
= 7; i
>= 0; --i
)
410 lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
);
412 /** lfsr_rollback_word
413 * Rollback the shift register in order to get previous states
415 void lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
418 for (i
= 31; i
>= 0; --i
)
419 lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
);
423 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
425 static uint16_t *dist
= 0;
426 int nonce_distance(uint32_t from
, uint32_t to
)
430 dist
= malloc(2 << 16);
433 for (x
= i
= 1; i
; ++i
) {
434 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
435 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
438 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
442 static uint32_t fastfwd
[2][8] = {
443 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
444 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
449 * Is an exported helper function from the common prefix attack
450 * Described in the "dark side" paper. It returns an -1 terminated array
451 * of possible partial(21 bit) secret state.
452 * The required keystream(ks) needs to contain the keystream that was used to
453 * encrypt the NACK which is observed when varying only the 4 last bits of Nr
454 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
456 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
458 uint32_t *candidates
= malloc(4 << 21);
465 size
= (1 << 21) - 1;
466 for(i
= 0; i
<= size
; ++i
)
469 for(c
= 0; c
< 8; ++c
)
470 for(i
= 0;i
<= size
; ++i
) {
471 entry
= candidates
[i
] ^ fastfwd
[isodd
][c
];
473 if(filter(entry
>> 1) == BIT(ks
[c
], isodd
))
474 if(filter(entry
) == BIT(ks
[c
], isodd
+ 2))
477 candidates
[i
--] = candidates
[size
--];
480 candidates
[size
+ 1] = -1;
486 * helper function which eliminates possible secret states using parity bits
488 static struct Crypto1State
*
489 brute_top(uint32_t prefix
, uint32_t rresp
, unsigned char parities
[8][8],
490 uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
, uint8_t no_chk
)
492 struct Crypto1State s
;
493 uint32_t ks1
, nr
, ks2
, rr
, ks3
, good
, c
;
495 for(c
= 0; c
< 8; ++c
) {
496 s
.odd
= odd
^ fastfwd
[1][c
];
497 s
.even
= even
^ fastfwd
[0][c
];
499 lfsr_rollback_bit(&s
, 0, 0);
500 lfsr_rollback_bit(&s
, 0, 0);
501 lfsr_rollback_bit(&s
, 0, 0);
503 lfsr_rollback_word(&s
, 0, 0);
504 lfsr_rollback_word(&s
, prefix
| c
<< 5, 1);
512 ks1
= crypto1_word(&s
, prefix
| c
<< 5, 1);
513 ks2
= crypto1_word(&s
,0,0);
514 ks3
= crypto1_word(&s
, 0,0);
515 nr
= ks1
^ (prefix
| c
<< 5);
519 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
520 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
521 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
522 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
523 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ BIT(ks3
, 24);
533 /** lfsr_common_prefix
534 * Implentation of the common prefix attack.
535 * Requires the 28 bit constant prefix used as reader nonce (pfx)
536 * The reader response used (rr)
537 * The keystream used to encrypt the observed NACK's (ks)
538 * The parity bits (par)
539 * It returns a zero terminated list of possible cipher states after the
540 * tag nonce was fed in
542 struct Crypto1State
* lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8], uint8_t no_par
)
544 struct Crypto1State
*statelist
, *s
;
545 uint32_t *odd
, *even
, *o
, *e
, top
;
547 odd
= lfsr_prefix_ks(ks
, 1);
548 even
= lfsr_prefix_ks(ks
, 0);
550 statelist
= malloc((sizeof *statelist
) << 21); //how large should be?
551 if(!statelist
|| !odd
|| !even
)
560 for(o
= odd
; *o
!= -1; ++o
)
561 for(e
= even
; *e
!= -1; ++e
)
562 for(top
= 0; top
< 64; ++top
) {
563 *o
= (*o
& 0x1fffff) | (top
<< 21);
564 *e
= (*e
& 0x1fffff) | (top
>> 3) << 21;
565 s
= brute_top(pfx
, rr
, par
, *o
, *e
, s
, no_par
);
568 s
->odd
= s
->even
= -1;
569 //printf("state count = %d\n",s-statelist);
578 struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par, uint32_t nt, uint32_t uid)
580 long long int amount = 0;
581 struct Crypto1State *statelist, *s;
582 uint32_t *odd, *even, *o, *e, top;
584 odd = lfsr_prefix_ks(ks, 1);
585 even = lfsr_prefix_ks(ks, 0);
587 s = statelist = malloc((sizeof *statelist) << 20);
588 if(!s || !odd || !even) {
595 char filename[50] = "archivo.txt";
596 sprintf(filename, "logs/%x.txt", nt);
597 PrintAndLog("Name: %s\n", filename);
598 FILE *file = fopen(filename,"w+");
600 s->odd = s->even = 0;
603 PrintAndLog("Failed to create file");
606 PrintAndLog("Creating file... ");
607 uint32_t xored = uid^nt;
610 for(o = odd; *o + 1; ++o)
611 for(e = even; *e + 1; ++e)
612 for(top = 0; top < 64; ++top) {
614 *e += (!(top & 7) + 1) << 21;
617 if(lastOdd != statelist->odd){
618 // Here I create a temporal crypto1 state,
619 // where I load the odd and even state and work with it,
620 // in order not to interfere with regular mechanism, This is what I save to file
621 struct Crypto1State *state;
622 lastOdd = state->odd = statelist->odd; state->even = statelist->even;
623 lfsr_rollback_word(state,xored,0);
624 fprintf(file,"%x %x \n",state->odd,state->even);
627 //s = check_pfx_parity(pfx, rr, par, *o, *e, s); //This is not useful at all when attacking chineese cards
628 s = brute_top(pfx, rr, par, *o, *e, s, no_par);
631 PrintAndLog("File created, amount %u\n",amount);
633 s->odd = s->even = 0;