]>
git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
16 //un_comment to allow debug print calls when used not on device
17 void dummy ( char * fmt
, ...){}
21 #include "cmdparser.h"
23 #define prnt PrintAndLog
25 uint8_t g_debugMode
= 0 ;
29 uint8_t justNoise ( uint8_t * BitStream
, size_t size
)
31 static const uint8_t THRESHOLD
= 123 ;
32 //test samples are not just noise
33 uint8_t justNoise1
= 1 ;
34 for ( size_t idx
= 0 ; idx
< size
&& justNoise1
; idx
++){
35 justNoise1
= BitStream
[ idx
] < THRESHOLD
;
41 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
42 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
46 // get high and low thresholds
47 for ( size_t i
= 0 ; i
< size
; i
++){
48 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
49 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
51 if (* high
< 123 ) return - 1 ; // just noise
52 * high
= ((* high
- 128 )* fuzzHi
+ 12800 )/ 100 ;
53 * low
= ((* low
- 128 )* fuzzLo
+ 12800 )/ 100 ;
58 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
59 // returns 1 if passed
60 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
63 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
64 ans
^= (( bits
>> i
) & 1 );
66 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
67 return ( ans
== pType
);
71 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
72 // Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
73 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
75 uint32_t parityWd
= 0 ;
76 size_t j
= 0 , bitCnt
= 0 ;
77 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
){
78 for ( int bit
= 0 ; bit
< pLen
; bit
++){
79 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
80 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
82 j
--; // overwrite parity with next data
83 // if parity fails then return 0
84 if ( pType
== 2 ) { // then marker bit which should be a 1
85 if (! BitStream
[ j
]) return 0 ;
87 if ( parityTest ( parityWd
, pLen
, pType
) == 0 ) return 0 ;
92 // if we got here then all the parities passed
93 //return ID start index and size
98 // takes a array of binary values, length of bits per parity (includes parity bit),
99 // Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
100 size_t addParity ( uint8_t * BitSource
, uint8_t * dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
102 uint32_t parityWd
= 0 ;
103 size_t j
= 0 , bitCnt
= 0 ;
104 for ( int word
= 0 ; word
< sourceLen
; word
+= pLen
- 1 ) {
105 for ( int bit
= 0 ; bit
< pLen
- 1 ; bit
++){
106 parityWd
= ( parityWd
<< 1 ) | BitSource
[ word
+ bit
];
107 dest
[ j
++] = ( BitSource
[ word
+ bit
]);
109 // if parity fails then return 0
110 if ( pType
== 2 ) { // then marker bit which should be a 1
113 dest
[ j
++] = parityTest ( parityWd
, pLen
- 1 , pType
) ^ 1 ;
118 // if we got here then all the parities passed
119 //return ID start index and size
123 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
)
126 for ( int i
= 0 ; i
< numbits
; i
++)
128 num
= ( num
<< 1 ) | (* src
);
134 //least significant bit first
135 uint32_t bytebits_to_byteLSBF ( uint8_t * src
, size_t numbits
)
138 for ( int i
= 0 ; i
< numbits
; i
++) {
139 num
= ( num
<< 1 ) | *( src
+ ( numbits
-( i
+ 1 )));
145 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
146 uint8_t preambleSearch ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
)
149 for ( int idx
= 0 ; idx
< * size
- pLen
; idx
++){
150 if ( memcmp ( BitStream
+ idx
, preamble
, pLen
) == 0 ){
157 * size
= idx
- * startIdx
;
166 //takes 1s and 0s and searches for EM410x format - output EM ID
167 uint8_t Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
, uint32_t * hi
, uint64_t * lo
)
169 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
170 // otherwise could be a void with no arguments
173 if ( BitStream
[ 1 ]> 1 ) return 0 ; //allow only 1s and 0s
175 // 111111111 bit pattern represent start of frame
176 // include 0 in front to help get start pos
177 uint8_t preamble
[] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
179 uint32_t parityBits
= 0 ;
183 errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, startIdx
);
184 if ( errChk
== 0 || * size
< 64 ) return 0 ;
185 if (* size
> 64 ) FmtLen
= 22 ;
186 * startIdx
+= 1 ; //get rid of 0 from preamble
188 for ( i
= 0 ; i
< FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
189 parityBits
= bytebits_to_byte ( BitStream
+( i
* 5 )+ idx
, 5 );
190 //check even parity - quit if failed
191 if ( parityTest ( parityBits
, 5 , 0 ) == 0 ) return 0 ;
192 //set uint64 with ID from BitStream
193 for ( uint8_t ii
= 0 ; ii
< 4 ; ii
++){
194 * hi
= (* hi
<< 1 ) | (* lo
>> 63 );
195 * lo
= (* lo
<< 1 ) | ( BitStream
[( i
* 5 )+ ii
+ idx
]);
198 if ( errChk
!= 0 ) return 1 ;
199 //skip last 5 bit parity test for simplicity.
205 //demodulates strong heavily clipped samples
206 int cleanAskRawDemod ( uint8_t * BinStream
, size_t * size
, int clk
, int invert
, int high
, int low
)
208 size_t bitCnt
= 0 , smplCnt
= 0 , errCnt
= 0 ;
209 uint8_t waveHigh
= 0 ;
210 for ( size_t i
= 0 ; i
< * size
; i
++){
211 if ( BinStream
[ i
] >= high
&& waveHigh
){
213 } else if ( BinStream
[ i
] <= low
&& ! waveHigh
){
215 } else { //transition
216 if (( BinStream
[ i
] >= high
&& ! waveHigh
) || ( BinStream
[ i
] <= low
&& waveHigh
)){
217 if ( smplCnt
> clk
-( clk
/ 4 )- 1 ) { //full clock
218 if ( smplCnt
> clk
+ ( clk
/ 4 )+ 1 ) { //too many samples
220 BinStream
[ bitCnt
++]= 7 ;
221 } else if ( waveHigh
) {
222 BinStream
[ bitCnt
++] = invert
;
223 BinStream
[ bitCnt
++] = invert
;
224 } else if (! waveHigh
) {
225 BinStream
[ bitCnt
++] = invert
^ 1 ;
226 BinStream
[ bitCnt
++] = invert
^ 1 ;
230 } else if ( smplCnt
> ( clk
/ 2 ) - ( clk
/ 4 )- 1 ) {
232 BinStream
[ bitCnt
++] = invert
;
233 } else if (! waveHigh
) {
234 BinStream
[ bitCnt
++] = invert
^ 1 ;
238 } else if (! bitCnt
) {
240 waveHigh
= ( BinStream
[ i
] >= high
);
244 //transition bit oops
246 } else { //haven't hit new high or new low yet
256 void askAmp ( uint8_t * BitStream
, size_t size
)
258 for ( size_t i
= 1 ; i
< size
; i
++){
259 if ( BitStream
[ i
]- BitStream
[ i
- 1 ]>= 30 ) //large jump up
261 else if ( BitStream
[ i
]- BitStream
[ i
- 1 ]<=- 20 ) //large jump down
268 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
269 int askdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
271 if (* size
== 0 ) return - 1 ;
272 int start
= DetectASKClock ( BinStream
, * size
, clk
, maxErr
); //clock default
273 if (* clk
== 0 || start
< 0 ) return - 3 ;
274 if (* invert
!= 1 ) * invert
= 0 ;
275 if ( amp
== 1 ) askAmp ( BinStream
, * size
);
276 if ( g_debugMode
== 2 ) prnt ( "DEBUG: clk %d, beststart %d" , * clk
, start
);
278 uint8_t initLoopMax
= 255 ;
279 if ( initLoopMax
> * size
) initLoopMax
= * size
;
280 // Detect high and lows
281 //25% clip in case highs and lows aren't clipped [marshmellow]
283 if ( getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 ) < 1 )
284 return - 2 ; //just noise
287 // if clean clipped waves detected run alternate demod
288 if ( DetectCleanAskWave ( BinStream
, * size
, high
, low
)) {
289 if ( g_debugMode
== 2 ) prnt ( "DEBUG: Clean Wave Detected" );
290 errCnt
= cleanAskRawDemod ( BinStream
, size
, * clk
, * invert
, high
, low
);
291 if ( askType
) //askman
292 return manrawdecode ( BinStream
, size
, 0 );
297 int lastBit
; //set first clock check - can go negative
298 size_t i
, bitnum
= 0 ; //output counter
300 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
301 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
302 size_t MaxBits
= 3072 ;
303 lastBit
= start
- * clk
;
305 for ( i
= start
; i
< * size
; ++ i
) {
306 if ( i
- lastBit
>= * clk
- tol
){
307 if ( BinStream
[ i
] >= high
) {
308 BinStream
[ bitnum
++] = * invert
;
309 } else if ( BinStream
[ i
] <= low
) {
310 BinStream
[ bitnum
++] = * invert
^ 1 ;
311 } else if ( i
- lastBit
>= * clk
+ tol
) {
313 BinStream
[ bitnum
++]= 7 ;
316 } else { //in tolerance - looking for peak
321 } else if ( i
- lastBit
>= (* clk
/ 2 - tol
) && ! midBit
&& ! askType
){
322 if ( BinStream
[ i
] >= high
) {
323 BinStream
[ bitnum
++] = * invert
;
324 } else if ( BinStream
[ i
] <= low
) {
325 BinStream
[ bitnum
++] = * invert
^ 1 ;
326 } else if ( i
- lastBit
>= * clk
/ 2 + tol
) {
327 BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
329 } else { //in tolerance - looking for peak
334 if ( bitnum
>= MaxBits
) break ;
341 //take 10 and 01 and manchester decode
342 //run through 2 times and take least errCnt
343 int manrawdecode ( uint8_t * BitStream
, size_t * size
, uint8_t invert
)
345 uint16_t bitnum
= 0 , MaxBits
= 512 , errCnt
= 0 ;
347 uint16_t bestErr
= 1000 , bestRun
= 0 ;
348 if (* size
< 16 ) return - 1 ;
349 //find correct start position [alignment]
350 for ( ii
= 0 ; ii
< 2 ;++ ii
){
351 for ( i
= ii
; i
<* size
- 3 ; i
+= 2 )
352 if ( BitStream
[ i
]== BitStream
[ i
+ 1 ])
362 for ( i
= bestRun
; i
< * size
- 3 ; i
+= 2 ){
363 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
364 BitStream
[ bitnum
++]= invert
;
365 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
366 BitStream
[ bitnum
++]= invert
^ 1 ;
368 BitStream
[ bitnum
++]= 7 ;
370 if ( bitnum
> MaxBits
) break ;
376 uint32_t manchesterEncode2Bytes ( uint16_t datain
) {
379 for ( uint8_t i
= 0 ; i
< 16 ; i
++) {
380 curBit
= ( datain
>> ( 15 - i
) & 1 );
381 output
|= ( 1 <<((( 15 - i
)* 2 )+ curBit
));
387 //encode binary data into binary manchester
388 int ManchesterEncode ( uint8_t * BitStream
, size_t size
)
390 size_t modIdx
= 20000 , i
= 0 ;
391 if ( size
> modIdx
) return - 1 ;
392 for ( size_t idx
= 0 ; idx
< size
; idx
++){
393 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
394 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
396 for (; i
<( size
* 2 ); i
++){
397 BitStream
[ i
] = BitStream
[ i
+ 20000 ];
403 //take 01 or 10 = 1 and 11 or 00 = 0
404 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
405 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
406 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
)
411 uint16_t MaxBits
= 512 ;
412 //if not enough samples - error
413 if (* size
< 51 ) return - 1 ;
414 //check for phase change faults - skip one sample if faulty
415 uint8_t offsetA
= 1 , offsetB
= 1 ;
417 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) offsetA
= 0 ;
418 if ( BitStream
[ i
+ 2 ]== BitStream
[ i
+ 3 ]) offsetB
= 0 ;
420 if (! offsetA
&& offsetB
) offset
++;
421 for ( i
= offset
; i
<* size
- 3 ; i
+= 2 ){
422 //check for phase error
423 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) {
424 BitStream
[ bitnum
++]= 7 ;
427 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
428 BitStream
[ bitnum
++]= 1 ^ invert
;
429 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
430 BitStream
[ bitnum
++]= invert
;
432 BitStream
[ bitnum
++]= 7 ;
435 if ( bitnum
> MaxBits
) break ;
442 // demod gProxIIDemod
443 // error returns as -x
444 // success returns start position in BitStream
445 // BitStream must contain previously askrawdemod and biphasedemoded data
446 int gProxII_Demod ( uint8_t BitStream
[], size_t * size
)
449 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 0 };
451 uint8_t errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, & startIdx
);
452 if ( errChk
== 0 ) return - 3 ; //preamble not found
453 if (* size
!= 96 ) return - 2 ; //should have found 96 bits
454 //check first 6 spacer bits to verify format
455 if (! BitStream
[ startIdx
+ 5 ] && ! BitStream
[ startIdx
+ 10 ] && ! BitStream
[ startIdx
+ 15 ] && ! BitStream
[ startIdx
+ 20 ] && ! BitStream
[ startIdx
+ 25 ] && ! BitStream
[ startIdx
+ 30 ]){
456 //confirmed proper separator bits found
457 //return start position
458 return ( int ) startIdx
;
463 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
464 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
466 size_t last_transition
= 0 ;
469 if ( fchigh
== 0 ) fchigh
= 10 ;
470 if ( fclow
== 0 ) fclow
= 8 ;
471 //set the threshold close to 0 (graph) or 128 std to avoid static
472 uint8_t threshold_value
= 123 ;
473 size_t preLastSample
= 0 ;
474 size_t LastSample
= 0 ;
475 size_t currSample
= 0 ;
476 // sync to first lo-hi transition, and threshold
478 // Need to threshold first sample
479 // skip 160 samples to allow antenna/samples to settle
480 if ( dest
[ 160 ] < threshold_value
) dest
[ 0 ] = 0 ;
484 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
485 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
486 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
487 for ( idx
= 161 ; idx
< size
- 20 ; idx
++) {
488 // threshold current value
490 if ( dest
[ idx
] < threshold_value
) dest
[ idx
] = 0 ;
493 // Check for 0->1 transition
494 if ( dest
[ idx
- 1 ] < dest
[ idx
]) { // 0 -> 1 transition
495 preLastSample
= LastSample
;
496 LastSample
= currSample
;
497 currSample
= idx
- last_transition
;
498 if ( currSample
< ( fclow
- 2 )){ //0-5 = garbage noise (or 0-3)
499 //do nothing with extra garbage
500 } else if ( currSample
< ( fchigh
- 1 )) { //6-8 = 8 sample waves or 3-6 = 5
501 if ( LastSample
> ( fchigh
- 2 ) && ( preLastSample
< ( fchigh
- 1 ) || preLastSample
== 0 )){
502 dest
[ numBits
- 1 ]= 1 ; //correct previous 9 wave surrounded by 8 waves
506 } else if ( currSample
> ( fchigh
) && ! numBits
) { //12 + and first bit = garbage
507 //do nothing with beginning garbage
508 } else if ( currSample
== ( fclow
+ 1 ) && LastSample
== ( fclow
- 1 )) { // had a 7 then a 9 should be two 8's
510 } else { //9+ = 10 sample waves
513 last_transition
= idx
;
516 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
519 //translate 11111100000 to 10
520 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
,
521 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
523 uint8_t lastval
= dest
[ 0 ];
527 for ( idx
= 1 ; idx
< size
; idx
++) {
529 if ( dest
[ idx
]== lastval
) continue ;
531 //if lastval was 1, we have a 1->0 crossing
532 if ( dest
[ idx
- 1 ]== 1 ) {
533 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
534 } else { // 0->1 crossing
535 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
539 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
544 // if valid extra bits at the end were all the same frequency - add them in
545 if ( n
> rfLen
/ fchigh
) {
546 if ( dest
[ idx
- 2 ]== 1 ) {
547 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
549 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
551 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
557 //by marshmellow (from holiman's base)
558 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
559 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
562 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
);
563 size
= aggregate_bits ( dest
, size
, rfLen
, invert
, fchigh
, fclow
);
567 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
568 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
570 if ( justNoise ( dest
, * size
)) return - 1 ;
572 size_t numStart
= 0 , size2
=* size
, startIdx
= 0 ;
574 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
575 if (* size
< 96 * 2 ) return - 2 ;
576 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
577 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 };
578 // find bitstring in array
579 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
580 if ( errChk
== 0 ) return - 3 ; //preamble not found
582 numStart
= startIdx
+ sizeof ( preamble
);
583 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
584 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
585 if ( dest
[ idx
] == dest
[ idx
+ 1 ]){
586 return - 4 ; //not manchester data
588 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
589 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
590 //Then, shift in a 0 or one into low
591 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
596 return ( int ) startIdx
;
599 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
600 int ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
602 if ( justNoise ( dest
, * size
)) return - 1 ;
604 size_t numStart
= 0 , size2
=* size
, startIdx
= 0 ;
606 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
607 if (* size
< 96 ) return - 2 ;
609 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
610 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
612 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
613 if ( errChk
== 0 ) return - 3 ; //preamble not found
615 numStart
= startIdx
+ sizeof ( preamble
);
616 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
617 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
618 if ( dest
[ idx
] == dest
[ idx
+ 1 ])
619 return - 4 ; //not manchester data
620 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
621 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
622 //Then, shift in a 0 or one into low
623 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
628 return ( int ) startIdx
;
631 int IOdemodFSK ( uint8_t * dest
, size_t size
)
633 if ( justNoise ( dest
, size
)) return - 1 ;
634 //make sure buffer has data
635 if ( size
< 66 * 64 ) return - 2 ;
637 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // FSK2a RF/64
638 if ( size
< 65 ) return - 3 ; //did we get a good demod?
640 //0 10 20 30 40 50 60
642 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
643 //-----------------------------------------------------------------------------
644 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
646 //XSF(version)facility:codeone+codetwo
649 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
650 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), & size
, & startIdx
);
651 if ( errChk
== 0 ) return - 4 ; //preamble not found
653 if (! dest
[ startIdx
+ 8 ] && dest
[ startIdx
+ 17 ]== 1 && dest
[ startIdx
+ 26 ]== 1 && dest
[ startIdx
+ 35 ]== 1 && dest
[ startIdx
+ 44 ]== 1 && dest
[ startIdx
+ 53 ]== 1 ){
654 //confirmed proper separator bits found
655 //return start position
656 return ( int ) startIdx
;
662 // find viking preamble 0xF200 in already demoded data
663 int VikingDemod_AM ( uint8_t * dest
, size_t * size
) {
664 //make sure buffer has data
665 if (* size
< 64 * 2 ) return - 2 ;
668 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
669 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
670 if ( errChk
== 0 ) return - 4 ; //preamble not found
671 uint32_t checkCalc
= bytebits_to_byte ( dest
+ startIdx
, 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 8 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 16 , 8 )
672 ^ bytebits_to_byte ( dest
+ startIdx
+ 24 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 32 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 40 , 8 )
673 ^ bytebits_to_byte ( dest
+ startIdx
+ 48 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
674 if ( checkCalc
!= 0xA8 ) return - 5 ;
675 if (* size
!= 64 ) return - 6 ;
676 //return start position
677 return ( int ) startIdx
;
680 // find presco preamble 0x10D in already demoded data
681 int PrescoDemod ( uint8_t * dest
, size_t * size
) {
682 //make sure buffer has data
683 if (* size
< 64 * 2 ) return - 2 ;
686 uint8_t preamble
[] = { 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
687 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
688 if ( errChk
== 0 ) return - 4 ; //preamble not found
689 //return start position
690 return ( int ) startIdx
;
694 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
695 // BitStream must contain previously askrawdemod and biphasedemoded data
696 int FDXBdemodBI ( uint8_t * dest
, size_t * size
)
698 //make sure buffer has enough data
699 if (* size
< 128 ) return - 1 ;
702 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
704 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
705 if ( errChk
== 0 ) return - 2 ; //preamble not found
706 return ( int ) startIdx
;
710 // FSK Demod then try to locate an AWID ID
711 int AWIDdemodFSK ( uint8_t * dest
, size_t * size
)
713 //make sure buffer has enough data
714 if (* size
< 96 * 50 ) return - 1 ;
716 if ( justNoise ( dest
, * size
)) return - 2 ;
719 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
720 if (* size
< 96 ) return - 3 ; //did we get a good demod?
722 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
724 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
725 if ( errChk
== 0 ) return - 4 ; //preamble not found
726 if (* size
!= 96 ) return - 5 ;
727 return ( int ) startIdx
;
731 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
732 int PyramiddemodFSK ( uint8_t * dest
, size_t * size
)
734 //make sure buffer has data
735 if (* size
< 128 * 50 ) return - 5 ;
737 //test samples are not just noise
738 if ( justNoise ( dest
, * size
)) return - 1 ;
741 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
742 if (* size
< 128 ) return - 2 ; //did we get a good demod?
744 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
746 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
747 if ( errChk
== 0 ) return - 4 ; //preamble not found
748 if (* size
!= 128 ) return - 3 ;
749 return ( int ) startIdx
;
753 // to detect a wave that has heavily clipped (clean) samples
754 uint8_t DetectCleanAskWave ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
756 bool allArePeaks
= true ;
758 size_t loopEnd
= 512 + 160 ;
759 if ( loopEnd
> size
) loopEnd
= size
;
760 for ( size_t i
= 160 ; i
< loopEnd
; i
++){
761 if ( dest
[ i
]> low
&& dest
[ i
]< high
)
767 if ( cntPeaks
> 300 ) return true ;
772 // to help detect clocks on heavily clipped samples
773 // based on count of low to low
774 int DetectStrongAskClock ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
776 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
780 // get to first full low to prime loop and skip incomplete first pulse
781 while (( dest
[ i
] < high
) && ( i
< size
))
783 while (( dest
[ i
] > low
) && ( i
< size
))
786 // loop through all samples
788 // measure from low to low
789 while (( dest
[ i
] > low
) && ( i
< size
))
792 while (( dest
[ i
] < high
) && ( i
< size
))
794 while (( dest
[ i
] > low
) && ( i
< size
))
796 //get minimum measured distance
797 if ( i
- startwave
< minClk
&& i
< size
)
798 minClk
= i
- startwave
;
801 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectstrongASKclk smallest wave: %d" , minClk
);
802 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
803 if ( minClk
>= fndClk
[ clkCnt
]-( fndClk
[ clkCnt
]/ 8 ) && minClk
<= fndClk
[ clkCnt
]+ 1 )
804 return fndClk
[ clkCnt
];
810 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
811 // maybe somehow adjust peak trimming value based on samples to fix?
812 // return start index of best starting position for that clock and return clock (by reference)
813 int DetectASKClock ( uint8_t dest
[], size_t size
, int * clock
, int maxErr
)
816 uint8_t clk
[] = { 255 , 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
818 uint8_t loopCnt
= 255 ; //don't need to loop through entire array...
819 if ( size
<= loopCnt
+ 60 ) return - 1 ; //not enough samples
820 size
-= 60 ; //sometimes there is a strange end wave - filter out this....
821 //if we already have a valid clock
824 if ( clk
[ i
] == * clock
) clockFnd
= i
;
825 //clock found but continue to find best startpos
827 //get high and low peak
829 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return - 1 ;
831 //test for large clean peaks
833 if ( DetectCleanAskWave ( dest
, size
, peak
, low
)== 1 ){
834 int ans
= DetectStrongAskClock ( dest
, size
, peak
, low
);
835 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d" , ans
);
836 for ( i
= clkEnd
- 1 ; i
> 0 ; i
--){
840 return 0 ; // for strong waves i don't use the 'best start position' yet...
841 //break; //clock found but continue to find best startpos [not yet]
847 uint8_t clkCnt
, tol
= 0 ;
848 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
849 uint8_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
851 size_t arrLoc
, loopEnd
;
859 //test each valid clock from smallest to greatest to see which lines up
860 for (; clkCnt
< clkEnd
; clkCnt
++){
861 if ( clk
[ clkCnt
] <= 32 ){
866 //if no errors allowed - keep start within the first clock
867 if (! maxErr
&& size
> clk
[ clkCnt
]* 2 + tol
&& clk
[ clkCnt
]< 128 ) loopCnt
= clk
[ clkCnt
]* 2 ;
868 bestErr
[ clkCnt
]= 1000 ;
869 //try lining up the peaks by moving starting point (try first few clocks)
870 for ( ii
= 0 ; ii
< loopCnt
; ii
++){
871 if ( dest
[ ii
] < peak
&& dest
[ ii
] > low
) continue ;
874 // now that we have the first one lined up test rest of wave array
875 loopEnd
= (( size
- ii
- tol
) / clk
[ clkCnt
]) - 1 ;
876 for ( i
= 0 ; i
< loopEnd
; ++ i
){
877 arrLoc
= ii
+ ( i
* clk
[ clkCnt
]);
878 if ( dest
[ arrLoc
] >= peak
|| dest
[ arrLoc
] <= low
){
879 } else if ( dest
[ arrLoc
- tol
] >= peak
|| dest
[ arrLoc
- tol
] <= low
){
880 } else if ( dest
[ arrLoc
+ tol
] >= peak
|| dest
[ arrLoc
+ tol
] <= low
){
881 } else { //error no peak detected
885 //if we found no errors then we can stop here and a low clock (common clocks)
886 // this is correct one - return this clock
887 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, err %d, startpos %d, endpos %d" , clk
[ clkCnt
], errCnt
, ii
, i
);
888 if ( errCnt
== 0 && clkCnt
< 7 ) {
889 if (! clockFnd
) * clock
= clk
[ clkCnt
];
892 //if we found errors see if it is lowest so far and save it as best run
893 if ( errCnt
< bestErr
[ clkCnt
]){
894 bestErr
[ clkCnt
]= errCnt
;
895 bestStart
[ clkCnt
]= ii
;
901 for ( iii
= 1 ; iii
< clkEnd
; ++ iii
){
902 if ( bestErr
[ iii
] < bestErr
[ best
]){
903 if ( bestErr
[ iii
] == 0 ) bestErr
[ iii
]= 1 ;
904 // current best bit to error ratio vs new bit to error ratio
905 if ( ( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ iii
])/ bestErr
[ iii
] ){
909 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d" , clk
[ iii
], bestErr
[ iii
], clk
[ best
], bestStart
[ best
]);
911 if (! clockFnd
) * clock
= clk
[ best
];
912 return bestStart
[ best
];
916 //detect psk clock by reading each phase shift
917 // a phase shift is determined by measuring the sample length of each wave
918 int DetectPSKClock ( uint8_t dest
[], size_t size
, int clock
)
920 uint8_t clk
[]={ 255 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 }; //255 is not a valid clock
921 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
922 if ( size
== 0 ) return 0 ;
923 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
925 //if we already have a valid clock quit
928 if ( clk
[ i
] == clock
) return clock
;
930 size_t waveStart
= 0 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
931 uint8_t clkCnt
, fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
932 uint16_t peakcnt
= 0 , errCnt
= 0 , waveLenCnt
= 0 ;
933 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
934 uint16_t peaksdet
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
935 fc
= countFC ( dest
, size
, 0 );
936 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
937 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: FC: %d" , fc
);
939 //find first full wave
940 for ( i
= 160 ; i
< loopCnt
; i
++){
941 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
942 if ( waveStart
== 0 ) {
944 //prnt("DEBUG: waveStart: %d",waveStart);
947 //prnt("DEBUG: waveEnd: %d",waveEnd);
948 waveLenCnt
= waveEnd
- waveStart
;
949 if ( waveLenCnt
> fc
){
950 firstFullWave
= waveStart
;
951 fullWaveLen
= waveLenCnt
;
958 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %d, waveLen: %d" , firstFullWave
, fullWaveLen
);
960 //test each valid clock from greatest to smallest to see which lines up
961 for ( clkCnt
= 7 ; clkCnt
>= 1 ; clkCnt
--){
962 lastClkBit
= firstFullWave
; //set end of wave as clock align
966 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %d" , clk
[ clkCnt
], lastClkBit
);
968 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< loopCnt
- 2 ; i
++){
969 //top edge of wave = start of new wave
970 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
971 if ( waveStart
== 0 ) {
976 waveLenCnt
= waveEnd
- waveStart
;
977 if ( waveLenCnt
> fc
){
978 //if this wave is a phase shift
979 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d" , waveStart
, waveLenCnt
, lastClkBit
+ clk
[ clkCnt
]- tol
, i
+ 1 , fc
);
980 if ( i
+ 1 >= lastClkBit
+ clk
[ clkCnt
] - tol
){ //should be a clock bit
982 lastClkBit
+= clk
[ clkCnt
];
983 } else if ( i
< lastClkBit
+ 8 ){
984 //noise after a phase shift - ignore
985 } else { //phase shift before supposed to based on clock
988 } else if ( i
+ 1 > lastClkBit
+ clk
[ clkCnt
] + tol
+ fc
){
989 lastClkBit
+= clk
[ clkCnt
]; //no phase shift but clock bit
998 if ( errCnt
<= bestErr
[ clkCnt
]) bestErr
[ clkCnt
]= errCnt
;
999 if ( peakcnt
> peaksdet
[ clkCnt
]) peaksdet
[ clkCnt
]= peakcnt
;
1001 //all tested with errors
1002 //return the highest clk with the most peaks found
1004 for ( i
= 7 ; i
>= 1 ; i
--){
1005 if ( peaksdet
[ i
] > peaksdet
[ best
]) {
1008 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d" , clk
[ i
], peaksdet
[ i
], bestErr
[ i
], clk
[ best
]);
1013 int DetectStrongNRZClk ( uint8_t * dest
, size_t size
, int peak
, int low
){
1014 //find shortest transition from high to low
1016 size_t transition1
= 0 ;
1017 int lowestTransition
= 255 ;
1018 bool lastWasHigh
= false ;
1020 //find first valid beginning of a high or low wave
1021 while (( dest
[ i
] >= peak
|| dest
[ i
] <= low
) && ( i
< size
))
1023 while (( dest
[ i
] < peak
&& dest
[ i
] > low
) && ( i
< size
))
1025 lastWasHigh
= ( dest
[ i
] >= peak
);
1027 if ( i
== size
) return 0 ;
1030 for (; i
< size
; i
++) {
1031 if (( dest
[ i
] >= peak
&& ! lastWasHigh
) || ( dest
[ i
] <= low
&& lastWasHigh
)) {
1032 lastWasHigh
= ( dest
[ i
] >= peak
);
1033 if ( i
- transition1
< lowestTransition
) lowestTransition
= i
- transition1
;
1037 if ( lowestTransition
== 255 ) lowestTransition
= 0 ;
1038 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: detectstrongNRZclk smallest wave: %d" , lowestTransition
);
1039 return lowestTransition
;
1043 //detect nrz clock by reading #peaks vs no peaks(or errors)
1044 int DetectNRZClock ( uint8_t dest
[], size_t size
, int clock
)
1047 uint8_t clk
[]={ 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
1048 size_t loopCnt
= 4096 ; //don't need to loop through entire array...
1049 if ( size
== 0 ) return 0 ;
1050 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1051 //if we already have a valid clock quit
1053 if ( clk
[ i
] == clock
) return clock
;
1055 //get high and low peak
1057 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return 0 ;
1059 int lowestTransition
= DetectStrongNRZClk ( dest
, size
- 20 , peak
, low
);
1063 uint16_t smplCnt
= 0 ;
1064 int16_t peakcnt
= 0 ;
1065 int16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1066 uint16_t maxPeak
= 255 ;
1067 bool firstpeak
= false ;
1068 //test for large clipped waves
1069 for ( i
= 0 ; i
< loopCnt
; i
++){
1070 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
){
1071 if (! firstpeak
) continue ;
1076 if ( maxPeak
> smplCnt
){
1078 //prnt("maxPk: %d",maxPeak);
1081 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1086 bool errBitHigh
= 0 ;
1088 uint8_t ignoreCnt
= 0 ;
1089 uint8_t ignoreWindow
= 4 ;
1090 bool lastPeakHigh
= 0 ;
1093 //test each valid clock from smallest to greatest to see which lines up
1094 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
1095 //ignore clocks smaller than smallest peak
1096 if ( clk
[ clkCnt
] < maxPeak
- ( clk
[ clkCnt
]/ 4 )) continue ;
1097 //try lining up the peaks by moving starting point (try first 256)
1098 for ( ii
= 20 ; ii
< loopCnt
; ++ ii
){
1099 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
1103 lastBit
= ii
- clk
[ clkCnt
];
1104 //loop through to see if this start location works
1105 for ( i
= ii
; i
< size
- 20 ; ++ i
) {
1106 //if we are at a clock bit
1107 if (( i
>= lastBit
+ clk
[ clkCnt
] - tol
) && ( i
<= lastBit
+ clk
[ clkCnt
] + tol
)) {
1109 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
) {
1110 //if same peak don't count it
1111 if (( dest
[ i
] >= peak
&& ! lastPeakHigh
) || ( dest
[ i
] <= low
&& lastPeakHigh
)) {
1114 lastPeakHigh
= ( dest
[ i
] >= peak
);
1117 ignoreCnt
= ignoreWindow
;
1118 lastBit
+= clk
[ clkCnt
];
1119 } else if ( i
== lastBit
+ clk
[ clkCnt
] + tol
) {
1120 lastBit
+= clk
[ clkCnt
];
1122 //else if not a clock bit and no peaks
1123 } else if ( dest
[ i
] < peak
&& dest
[ i
] > low
){
1126 if ( errBitHigh
== true ) peakcnt
--;
1131 // else if not a clock bit but we have a peak
1132 } else if (( dest
[ i
]>= peak
|| dest
[ i
]<= low
) && (! bitHigh
)) {
1133 //error bar found no clock...
1137 if ( peakcnt
> peaksdet
[ clkCnt
]) {
1138 peaksdet
[ clkCnt
]= peakcnt
;
1145 for ( iii
= 7 ; iii
> 0 ; iii
--){
1146 if (( peaksdet
[ iii
] >= ( peaksdet
[ best
]- 1 )) && ( peaksdet
[ iii
] <= peaksdet
[ best
]+ 1 ) && lowestTransition
) {
1147 if ( clk
[ iii
] > ( lowestTransition
- ( clk
[ iii
]/ 8 )) && clk
[ iii
] < ( lowestTransition
+ ( clk
[ iii
]/ 8 ))) {
1150 } else if ( peaksdet
[ iii
] > peaksdet
[ best
]){
1153 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d" , clk
[ iii
], peaksdet
[ iii
], maxPeak
, clk
[ best
], lowestTransition
);
1160 // convert psk1 demod to psk2 demod
1161 // only transition waves are 1s
1162 void psk1TOpsk2 ( uint8_t * BitStream
, size_t size
)
1165 uint8_t lastBit
= BitStream
[ 0 ];
1166 for (; i
< size
; i
++){
1167 if ( BitStream
[ i
]== 7 ){
1169 } else if ( lastBit
!= BitStream
[ i
]){
1170 lastBit
= BitStream
[ i
];
1180 // convert psk2 demod to psk1 demod
1181 // from only transition waves are 1s to phase shifts change bit
1182 void psk2TOpsk1 ( uint8_t * BitStream
, size_t size
)
1185 for ( size_t i
= 0 ; i
< size
; i
++){
1186 if ( BitStream
[ i
]== 1 ){
1194 // redesigned by marshmellow adjusted from existing decode functions
1195 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1196 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
)
1198 //26 bit 40134 format (don't know other formats)
1199 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1200 uint8_t preamble_i
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
1201 size_t startidx
= 0 ;
1202 if (! preambleSearch ( bitStream
, preamble
, sizeof ( preamble
), size
, & startidx
)){
1203 // if didn't find preamble try again inverting
1204 if (! preambleSearch ( bitStream
, preamble_i
, sizeof ( preamble_i
), size
, & startidx
)) return - 1 ;
1207 if (* size
!= 64 && * size
!= 224 ) return - 2 ;
1209 for ( size_t i
= startidx
; i
< * size
; i
++)
1212 return ( int ) startidx
;
1215 // by marshmellow - demodulate NRZ wave
1216 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1217 int nrzRawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
){
1218 if ( justNoise ( dest
, * size
)) return - 1 ;
1219 * clk
= DetectNRZClock ( dest
, * size
, * clk
);
1220 if (* clk
== 0 ) return - 2 ;
1221 size_t i
, gLen
= 4096 ;
1222 if ( gLen
>* size
) gLen
= * size
- 20 ;
1224 if ( getHiLo ( dest
, gLen
, & high
, & low
, 75 , 75 ) < 1 ) return - 3 ; //25% fuzz on high 25% fuzz on low
1227 //convert wave samples to 1's and 0's
1228 for ( i
= 20 ; i
< * size
- 20 ; i
++){
1229 if ( dest
[ i
] >= high
) bit
= 1 ;
1230 if ( dest
[ i
] <= low
) bit
= 0 ;
1233 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1236 for ( i
= 21 ; i
< * size
- 20 ; i
++) {
1237 //if transition detected or large number of same bits - store the passed bits
1238 if ( dest
[ i
] != dest
[ i
- 1 ] || ( i
- lastBit
) == ( 10 * * clk
)) {
1239 memset ( dest
+ numBits
, dest
[ i
- 1 ] ^ * invert
, ( i
- lastBit
+ (* clk
/ 4 )) / * clk
);
1240 numBits
+= ( i
- lastBit
+ (* clk
/ 4 )) / * clk
;
1249 //detects the bit clock for FSK given the high and low Field Clocks
1250 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1252 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
1253 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1254 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1255 uint8_t rfLensFnd
= 0 ;
1256 uint8_t lastFCcnt
= 0 ;
1257 uint16_t fcCounter
= 0 ;
1258 uint16_t rfCounter
= 0 ;
1259 uint8_t firstBitFnd
= 0 ;
1261 if ( size
== 0 ) return 0 ;
1263 uint8_t fcTol
= (( fcHigh
* 100 - fcLow
* 100 )/ 2 + 50 )/ 100 ; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1268 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1269 // prime i to first peak / up transition
1270 for ( i
= 160 ; i
< size
- 20 ; i
++)
1271 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
1274 for (; i
< size
- 20 ; i
++){
1278 if ( BitStream
[ i
] <= BitStream
[ i
- 1 ] || BitStream
[ i
] < BitStream
[ i
+ 1 ])
1281 // if we got less than the small fc + tolerance then set it to the small fc
1282 if ( fcCounter
< fcLow
+ fcTol
)
1284 else //set it to the large fc
1287 //look for bit clock (rf/xx)
1288 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1289 //not the same size as the last wave - start of new bit sequence
1290 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
1291 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1292 if ( rfLens
[ ii
] >= ( rfCounter
- 4 ) && rfLens
[ ii
] <= ( rfCounter
+ 4 )){
1298 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
1299 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1300 rfCnts
[ rfLensFnd
]++;
1301 rfLens
[ rfLensFnd
++] = rfCounter
;
1307 lastFCcnt
= fcCounter
;
1311 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
1313 for ( i
= 0 ; i
< 15 ; i
++){
1314 //get highest 2 RF values (might need to get more values to compare or compare all?)
1315 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
1316 rfHighest3
= rfHighest2
;
1317 rfHighest2
= rfHighest
;
1319 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
1320 rfHighest3
= rfHighest2
;
1322 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
1325 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: RF %d, cnts %d" , rfLens
[ i
], rfCnts
[ i
]);
1327 // set allowed clock remainder tolerance to be 1 large field clock length+1
1328 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1329 uint8_t tol1
= fcHigh
+ 1 ;
1331 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d" , rfLens
[ rfHighest
], rfLens
[ rfHighest2
], rfLens
[ rfHighest3
]);
1333 // loop to find the highest clock that has a remainder less than the tolerance
1334 // compare samples counted divided by
1335 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1337 for (; ii
>= 2 ; ii
--){
1338 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1339 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1340 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1341 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: clk %d divides into the 3 most rf values within tolerance" , clk
[ ii
]);
1348 if ( ii
< 0 ) return 0 ; // oops we went too far
1354 //countFC is to detect the field clock lengths.
1355 //counts and returns the 2 most common wave lengths
1356 //mainly used for FSK field clock detection
1357 uint16_t countFC ( uint8_t * BitStream
, size_t size
, uint8_t fskAdj
)
1359 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1360 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1361 uint8_t fcLensFnd
= 0 ;
1362 uint8_t lastFCcnt
= 0 ;
1363 uint8_t fcCounter
= 0 ;
1365 if ( size
== 0 ) return 0 ;
1367 // prime i to first up transition
1368 for ( i
= 160 ; i
< size
- 20 ; i
++)
1369 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
1372 for (; i
< size
- 20 ; i
++){
1373 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
1374 // new up transition
1377 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1378 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
1379 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1380 if (( fcCounter
== 9 ) || fcCounter
== 4 ) fcCounter
++;
1381 // save last field clock count (fc/xx)
1382 lastFCcnt
= fcCounter
;
1384 // find which fcLens to save it to:
1385 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1386 if ( fcLens
[ ii
]== fcCounter
){
1392 if ( fcCounter
> 0 && fcLensFnd
< 15 ){
1394 fcCnts
[ fcLensFnd
]++;
1395 fcLens
[ fcLensFnd
++]= fcCounter
;
1404 uint8_t best1
= 14 , best2
= 14 , best3
= 14 ;
1406 // go through fclens and find which ones are bigest 2
1407 for ( i
= 0 ; i
< 15 ; i
++){
1408 // get the 3 best FC values
1409 if ( fcCnts
[ i
]> maxCnt1
) {
1414 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
1417 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
1420 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u" , fcLens
[ i
], fcCnts
[ i
], fcLens
[ best1
], fcLens
[ best2
]);
1422 if ( fcLens
[ best1
]== 0 ) return 0 ;
1423 uint8_t fcH
= 0 , fcL
= 0 ;
1424 if ( fcLens
[ best1
]> fcLens
[ best2
]){
1431 if (( size
- 180 )/ fcH
/ 3 > fcCnts
[ best1
]+ fcCnts
[ best2
]) {
1432 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: fc is too large: %u > %u. Not psk or fsk" ,( size
- 180 )/ fcH
/ 3 , fcCnts
[ best1
]+ fcCnts
[ best2
]);
1433 return 0 ; //lots of waves not psk or fsk
1435 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1437 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
1438 if ( fskAdj
) return fcs
;
1439 return fcLens
[ best1
];
1442 //by marshmellow - demodulate PSK1 wave
1443 //uses wave lengths (# Samples)
1444 int pskRawDemod ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
)
1446 if ( size
== 0 ) return - 1 ;
1447 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1448 if (* size
< loopCnt
) loopCnt
= * size
;
1451 uint8_t curPhase
= * invert
;
1452 size_t i
, waveStart
= 1 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1453 uint8_t fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1454 uint16_t errCnt
= 0 , waveLenCnt
= 0 ;
1455 fc
= countFC ( dest
, * size
, 0 );
1456 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1457 //PrintAndLog("DEBUG: FC: %d",fc);
1458 * clock
= DetectPSKClock ( dest
, * size
, * clock
);
1459 if (* clock
== 0 ) return - 1 ;
1460 int avgWaveVal
= 0 , lastAvgWaveVal
= 0 ;
1461 //find first phase shift
1462 for ( i
= 0 ; i
< loopCnt
; i
++){
1463 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1465 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1466 waveLenCnt
= waveEnd
- waveStart
;
1467 if ( waveLenCnt
> fc
&& waveStart
> fc
&& !( waveLenCnt
> fc
+ 2 )){ //not first peak and is a large wave but not out of whack
1468 lastAvgWaveVal
= avgWaveVal
/( waveLenCnt
);
1469 firstFullWave
= waveStart
;
1470 fullWaveLen
= waveLenCnt
;
1471 //if average wave value is > graph 0 then it is an up wave or a 1
1472 if ( lastAvgWaveVal
> 123 ) curPhase
^= 1 ; //fudge graph 0 a little 123 vs 128
1478 avgWaveVal
+= dest
[ i
+ 2 ];
1480 if ( firstFullWave
== 0 ) {
1481 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1482 // so skip a little to ensure we are past any Start Signal
1483 firstFullWave
= 160 ;
1484 memset ( dest
, curPhase
, firstFullWave
/ * clock
);
1486 memset ( dest
, curPhase
^ 1 , firstFullWave
/ * clock
);
1489 numBits
+= ( firstFullWave
/ * clock
);
1490 //set start of wave as clock align
1491 lastClkBit
= firstFullWave
;
1492 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1493 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1495 dest
[ numBits
++] = curPhase
; //set first read bit
1496 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< * size
- 3 ; i
++){
1497 //top edge of wave = start of new wave
1498 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1499 if ( waveStart
== 0 ) {
1502 avgWaveVal
= dest
[ i
+ 1 ];
1505 waveLenCnt
= waveEnd
- waveStart
;
1506 lastAvgWaveVal
= avgWaveVal
/ waveLenCnt
;
1507 if ( waveLenCnt
> fc
){
1508 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1509 //this wave is a phase shift
1510 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1511 if ( i
+ 1 >= lastClkBit
+ * clock
- tol
){ //should be a clock bit
1513 dest
[ numBits
++] = curPhase
;
1514 lastClkBit
+= * clock
;
1515 } else if ( i
< lastClkBit
+ 10 + fc
){
1516 //noise after a phase shift - ignore
1517 } else { //phase shift before supposed to based on clock
1519 dest
[ numBits
++] = 7 ;
1521 } else if ( i
+ 1 > lastClkBit
+ * clock
+ tol
+ fc
){
1522 lastClkBit
+= * clock
; //no phase shift but clock bit
1523 dest
[ numBits
++] = curPhase
;
1529 avgWaveVal
+= dest
[ i
+ 1 ];