3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2014 bla <blapost@gmail.com>
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut
[1 << 20];
25 static void __attribute__((constructor
)) fill_lut()
28 for(i
= 0; i
< 1 << 20; ++i
)
29 filterlut
[i
] = filter(i
);
31 #define filter(x) (filterlut[(x) & 0xfffff])
36 typedef struct bucket
{
41 typedef bucket_t bucket_array_t
[2][0x100];
43 typedef struct bucket_info
{
45 uint32_t *head
, *tail
;
46 } bucket_info
[2][0x100];
51 static void bucket_sort_intersect(uint32_t* const estart
, uint32_t* const estop
,
52 uint32_t* const ostart
, uint32_t* const ostop
,
53 bucket_info_t
*bucket_info
, bucket_array_t bucket
)
64 // init buckets to be empty
65 for (uint32_t i
= 0; i
< 2; i
++) {
66 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
67 bucket
[i
][j
].bp
= bucket
[i
][j
].head
;
71 // sort the lists into the buckets based on the MSB (contribution bits)
72 for (uint32_t i
= 0; i
< 2; i
++) {
73 for (p1
= start
[i
]; p1
<= stop
[i
]; p1
++) {
74 uint32_t bucket_index
= (*p1
& 0xff000000) >> 24;
75 *(bucket
[i
][bucket_index
].bp
++) = *p1
;
80 // write back intersecting buckets as sorted list.
81 // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
82 uint32_t nonempty_bucket
;
83 for (uint32_t i
= 0; i
< 2; i
++) {
86 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
87 if (bucket
[0][j
].bp
!= bucket
[0][j
].head
&& bucket
[1][j
].bp
!= bucket
[1][j
].head
) { // non-empty intersecting buckets only
88 bucket_info
->bucket_info
[i
][nonempty_bucket
].head
= p1
;
89 for (p2
= bucket
[i
][j
].head
; p2
< bucket
[i
][j
].bp
; *p1
++ = *p2
++);
90 bucket_info
->bucket_info
[i
][nonempty_bucket
].tail
= p1
- 1;
94 bucket_info
->numbuckets
= nonempty_bucket
;
99 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
101 static inline uint32_t* binsearch(uint32_t *start
, uint32_t *stop
)
103 uint32_t mid
, val
= *stop
& 0xff000000;
105 if(start
[mid
= (stop
- start
) >> 1] > val
)
113 /** update_contribution
114 * helper, calculates the partial linear feedback contributions and puts in MSB
117 update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
119 uint32_t p
= *item
>> 25;
121 p
= p
<< 1 | parity(*item
& mask1
);
122 p
= p
<< 1 | parity(*item
& mask2
);
123 *item
= p
<< 24 | (*item
& 0xffffff);
127 * using a bit of the keystream extend the table of possible lfsr states
130 extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
133 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
134 if(filter(*tbl
) ^ filter(*tbl
| 1)) {
135 *tbl
|= filter(*tbl
) ^ bit
;
136 update_contribution(tbl
, m1
, m2
);
138 } else if(filter(*tbl
) == bit
) {
141 update_contribution(tbl
, m1
, m2
);
143 update_contribution(tbl
, m1
, m2
);
148 /** extend_table_simple
149 * using a bit of the keystream extend the table of possible lfsr states
151 static inline void extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
153 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
154 if(filter(*tbl
) ^ filter(*tbl
| 1)) { // replace
155 *tbl
|= filter(*tbl
) ^ bit
;
156 } else if(filter(*tbl
) == bit
) { // insert
163 * recursively narrow down the search space, 4 bits of keystream at a time
165 static struct Crypto1State
*
166 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
167 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
168 struct Crypto1State
*sl
, uint32_t in
, bucket_array_t bucket
)
171 bucket_info_t bucket_info
;
174 for(e
= e_head
; e
<= e_tail
; ++e
) {
175 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
176 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
178 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
179 sl
[1].odd
= sl
[1].even
= 0;
185 for(uint32_t i
= 0; i
< 4 && rem
--; i
++) {
189 extend_table(o_head
, &o_tail
, oks
& 1, LF_POLY_EVEN
<< 1 | 1,
190 LF_POLY_ODD
<< 1, 0);
194 extend_table(e_head
, &e_tail
, eks
& 1, LF_POLY_ODD
,
195 LF_POLY_EVEN
<< 1 | 1, in
& 3);
200 bucket_sort_intersect(e_head
, e_tail
, o_head
, o_tail
, &bucket_info
, bucket
);
202 for (int i
= bucket_info
.numbuckets
- 1; i
>= 0; i
--) {
203 sl
= recover(bucket_info
.bucket_info
[1][i
].head
, bucket_info
.bucket_info
[1][i
].tail
, oks
,
204 bucket_info
.bucket_info
[0][i
].head
, bucket_info
.bucket_info
[0][i
].tail
, eks
,
205 rem
, sl
, in
, bucket
);
211 * recover the state of the lfsr given 32 bits of the keystream
212 * additionally you can use the in parameter to specify the value
213 * that was fed into the lfsr at the time the keystream was generated
215 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
217 struct Crypto1State
*statelist
;
218 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
219 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
222 // split the keystream into an odd and even part
223 for(i
= 31; i
>= 0; i
-= 2)
224 oks
= oks
<< 1 | BEBIT(ks2
, i
);
225 for(i
= 30; i
>= 0; i
-= 2)
226 eks
= eks
<< 1 | BEBIT(ks2
, i
);
228 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
229 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
230 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
231 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
237 statelist
->odd
= statelist
->even
= 0;
239 // allocate memory for out of place bucket_sort
240 bucket_array_t bucket
;
241 for (uint32_t i
= 0; i
< 2; i
++)
242 for (uint32_t j
= 0; j
<= 0xff; j
++) {
243 bucket
[i
][j
].head
= malloc(sizeof(uint32_t)<<14);
244 if (!bucket
[i
][j
].head
) {
250 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
251 for(i
= 1 << 20; i
>= 0; --i
) {
252 if(filter(i
) == (oks
& 1))
254 if(filter(i
) == (eks
& 1))
258 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
259 for(i
= 0; i
< 4; i
++) {
260 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
261 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
264 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
265 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
266 // parameter into account.
267 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00); // Byte swapping
268 recover(odd_head
, odd_tail
, oks
,
269 even_head
, even_tail
, eks
, 11, statelist
, in
<< 1, bucket
);
275 for (uint32_t i
= 0; i
< 2; i
++)
276 for (uint32_t j
= 0; j
<= 0xff; j
++)
277 free(bucket
[i
][j
].head
);
282 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
283 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
284 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
285 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
286 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
287 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
288 0x7EC7EE90, 0x7F63F748, 0x79117020};
289 static const uint32_t T1
[] = {
290 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
291 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
292 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
293 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
294 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
295 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
296 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
297 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
298 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
299 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
300 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
301 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
302 /** Reverse 64 bits of keystream into possible cipher states
303 * Variation mentioned in the paper. Somewhat optimized version
305 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
307 struct Crypto1State
*statelist
, *sl
;
308 uint8_t oks
[32], eks
[32], hi
[32];
309 uint32_t low
= 0, win
= 0;
310 uint32_t *tail
, table
[1 << 16];
313 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
316 sl
->odd
= sl
->even
= 0;
318 for(i
= 30; i
>= 0; i
-= 2) {
319 oks
[i
>> 1] = BEBIT(ks2
, i
);
320 oks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
322 for(i
= 31; i
>= 0; i
-= 2) {
323 eks
[i
>> 1] = BEBIT(ks2
, i
);
324 eks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
327 for(i
= 0xfffff; i
>= 0; --i
) {
328 if (filter(i
) != oks
[0])
332 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
333 extend_table_simple(table
, &tail
, oks
[j
]);
338 for(j
= 0; j
< 19; ++j
)
339 low
= low
<< 1 | parity(i
& S1
[j
]);
340 for(j
= 0; j
< 32; ++j
)
341 hi
[j
] = parity(i
& T1
[j
]);
343 for(; tail
>= table
; --tail
) {
344 for(j
= 0; j
< 3; ++j
) {
346 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
347 if(filter(*tail
) != oks
[29 + j
])
351 for(j
= 0; j
< 19; ++j
)
352 win
= win
<< 1 | parity(*tail
& S2
[j
]);
355 for(j
= 0; j
< 32; ++j
) {
356 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
357 if(filter(win
) != eks
[j
])
361 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
362 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
365 sl
->odd
= sl
->even
= 0;
372 /** lfsr_rollback_bit
373 * Rollback the shift register in order to get previous states
375 uint8_t lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
382 t
= s
->odd
, s
->odd
= s
->even
, s
->even
= t
;
385 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
386 out
^= LF_POLY_ODD
& s
->odd
;
388 out
^= (ret
= filter(s
->odd
)) & !!fb
;
390 s
->even
|= parity(out
) << 23;
393 /** lfsr_rollback_byte
394 * Rollback the shift register in order to get previous states
396 uint8_t lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
400 for (i = 7; i >= 0; --i)
401 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
403 // unfold loop 20160112
405 ret
|= lfsr_rollback_bit(s
, BIT(in
, 7), fb
) << 7;
406 ret
|= lfsr_rollback_bit(s
, BIT(in
, 6), fb
) << 6;
407 ret
|= lfsr_rollback_bit(s
, BIT(in
, 5), fb
) << 5;
408 ret
|= lfsr_rollback_bit(s
, BIT(in
, 4), fb
) << 4;
409 ret
|= lfsr_rollback_bit(s
, BIT(in
, 3), fb
) << 3;
410 ret
|= lfsr_rollback_bit(s
, BIT(in
, 2), fb
) << 2;
411 ret
|= lfsr_rollback_bit(s
, BIT(in
, 1), fb
) << 1;
412 ret
|= lfsr_rollback_bit(s
, BIT(in
, 0), fb
) << 0;
415 /** lfsr_rollback_word
416 * Rollback the shift register in order to get previous states
418 uint32_t lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
423 for (i = 31; i >= 0; --i)
424 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
426 // unfold loop 20160112
428 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 31), fb
) << (31 ^ 24);
429 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 30), fb
) << (30 ^ 24);
430 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 29), fb
) << (29 ^ 24);
431 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 28), fb
) << (28 ^ 24);
432 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 27), fb
) << (27 ^ 24);
433 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 26), fb
) << (26 ^ 24);
434 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 25), fb
) << (25 ^ 24);
435 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 24), fb
) << (24 ^ 24);
437 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 23), fb
) << (23 ^ 24);
438 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 22), fb
) << (22 ^ 24);
439 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 21), fb
) << (21 ^ 24);
440 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 20), fb
) << (20 ^ 24);
441 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 19), fb
) << (19 ^ 24);
442 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 18), fb
) << (18 ^ 24);
443 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 17), fb
) << (17 ^ 24);
444 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 16), fb
) << (16 ^ 24);
446 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 15), fb
) << (15 ^ 24);
447 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 14), fb
) << (14 ^ 24);
448 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 13), fb
) << (13 ^ 24);
449 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 12), fb
) << (12 ^ 24);
450 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 11), fb
) << (11 ^ 24);
451 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 10), fb
) << (10 ^ 24);
452 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 9), fb
) << (9 ^ 24);
453 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 8), fb
) << (8 ^ 24);
455 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 7), fb
) << (7 ^ 24);
456 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 6), fb
) << (6 ^ 24);
457 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 5), fb
) << (5 ^ 24);
458 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 4), fb
) << (4 ^ 24);
459 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 3), fb
) << (3 ^ 24);
460 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 2), fb
) << (2 ^ 24);
461 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 1), fb
) << (1 ^ 24);
462 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 0), fb
) << (0 ^ 24);
467 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
469 static uint16_t *dist
= 0;
470 int nonce_distance(uint32_t from
, uint32_t to
)
474 dist
= malloc(2 << 16);
477 for (x
= i
= 1; i
; ++i
) {
478 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
479 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
482 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
486 static uint32_t fastfwd
[2][8] = {
487 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
488 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
493 * Is an exported helper function from the common prefix attack
494 * Described in the "dark side" paper. It returns an -1 terminated array
495 * of possible partial(21 bit) secret state.
496 * The required keystream(ks) needs to contain the keystream that was used to
497 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
498 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
500 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
502 uint32_t *candidates
= malloc(4 << 10);
503 if(!candidates
) return 0;
506 int size
= 0, i
, good
;
508 for(i
= 0; i
< 1 << 21; ++i
) {
509 for(c
= 0, good
= 1; good
&& c
< 8; ++c
) {
510 entry
= i
^ fastfwd
[isodd
][c
];
511 good
&= (BIT(ks
[c
], isodd
) == filter(entry
>> 1));
512 good
&= (BIT(ks
[c
], isodd
+ 2) == filter(entry
));
515 candidates
[size
++] = i
;
518 candidates
[size
] = -1;
524 * helper function which eliminates possible secret states using parity bits
526 static struct Crypto1State
* check_pfx_parity(uint32_t prefix
, uint32_t rresp
, uint8_t parities
[8][8], uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
)
528 uint32_t ks1
, nr
, ks2
, rr
, ks3
, c
, good
= 1;
530 for(c
= 0; good
&& c
< 8; ++c
) {
531 sl
->odd
= odd
^ fastfwd
[1][c
];
532 sl
->even
= even
^ fastfwd
[0][c
];
534 lfsr_rollback_bit(sl
, 0, 0);
535 lfsr_rollback_bit(sl
, 0, 0);
537 ks3
= lfsr_rollback_bit(sl
, 0, 0);
538 ks2
= lfsr_rollback_word(sl
, 0, 0);
539 ks1
= lfsr_rollback_word(sl
, prefix
| c
<< 5, 1);
541 nr
= ks1
^ (prefix
| c
<< 5);
544 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
545 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
546 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
547 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
548 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ ks3
;
554 /** lfsr_common_prefix
555 * Implentation of the common prefix attack.
556 * Requires the 28 bit constant prefix used as reader nonce (pfx)
557 * The reader response used (rr)
558 * The keystream used to encrypt the observed NACK's (ks)
559 * The parity bits (par)
560 * It returns a zero terminated list of possible cipher states after the
561 * tag nonce was fed in
564 struct Crypto1State
* lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8])
566 struct Crypto1State
*statelist
, *s
;
567 uint32_t *odd
, *even
, *o
, *e
, top
;
569 odd
= lfsr_prefix_ks(ks
, 1);
570 even
= lfsr_prefix_ks(ks
, 0);
572 s
= statelist
= malloc((sizeof *statelist
) << 21);
573 if(!s
|| !odd
|| !even
) {
580 for(o
= odd
; *o
+ 1; ++o
)
581 for(e
= even
; *e
+ 1; ++e
)
582 for(top
= 0; top
< 64; ++top
) {
584 *e
+= (!(top
& 7) + 1) << 21;
585 s
= check_pfx_parity(pfx
, rr
, par
, *o
, *e
, s
);
588 s
->odd
= s
->even
= 0;