1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
37 #include "protocols.h"
40 #define abs(x) ( ((x)<0) ? -(x) : (x) )
42 //=============================================================================
43 // A buffer where we can queue things up to be sent through the FPGA, for
44 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
45 // is the order in which they go out on the wire.
46 //=============================================================================
48 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
49 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
52 struct common_area common_area
__attribute__((section(".commonarea")));
54 void ToSendReset(void)
60 void ToSendStuffBit(int b
) {
63 ToSend
[ToSendMax
] = 0;
68 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
) {
83 byte_t len
= strlen(str
);
84 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
88 void DbpIntegers(int x1
, int x2
, int x3
) {
89 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
93 void Dbprintf(const char *fmt
, ...) {
94 // should probably limit size here; oh well, let's just use a big buffer
95 char output_string
[128] = {0x00};
99 kvsprintf(fmt
, output_string
, 10, ap
);
102 DbpString(output_string
);
105 // prints HEX & ASCII
106 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
112 l
= (len
>8) ? 8 : len
;
119 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
122 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
124 Dbprintf("%*D",l
,d
," ");
131 //-----------------------------------------------------------------------------
132 // Read an ADC channel and block till it completes, then return the result
133 // in ADC units (0 to 1023). Also a routine to average 32 samples and
135 //-----------------------------------------------------------------------------
136 static int ReadAdc(int ch
)
140 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
141 AT91C_BASE_ADC
->ADC_MR
=
142 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
143 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
144 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
146 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
147 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
148 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
151 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
153 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
155 // Note: with the "historic" values in the comments above, the error was 34% !!!
157 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
159 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
161 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
163 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
167 int AvgAdc(int ch
) // was static - merlok
172 for(i
= 0; i
< 32; ++i
)
175 return (a
+ 15) >> 5;
178 void MeasureAntennaTuning(void) {
179 uint8_t LF_Results
[256];
180 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
181 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
186 * Sweeps the useful LF range of the proxmark from
187 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
188 * read the voltage in the antenna, the result left
189 * in the buffer is a graph which should clearly show
190 * the resonating frequency of your LF antenna
191 * ( hopefully around 95 if it is tuned to 125kHz!)
194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
195 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
197 for (i
=255; i
>=19; i
--) {
199 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
201 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
202 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
203 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
205 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
206 if(LF_Results
[i
] > peak
) {
208 peak
= LF_Results
[i
];
214 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
217 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
218 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
219 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
221 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
223 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
229 void MeasureAntennaTuningHf(void) {
230 int vHf
= 0; // in mV
232 DbpString("Measuring HF antenna, press button to exit");
234 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
235 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
240 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
242 Dbprintf("%d mV",vHf
);
243 if (BUTTON_PRESS()) break;
246 DbpString("cancelled");
247 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
251 void ReadMem(int addr
) {
252 const uint8_t *data
= ((uint8_t *)addr
);
254 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
255 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
258 /* osimage version information is linked in */
259 extern struct version_information version_information
;
260 /* bootrom version information is pointed to from _bootphase1_version_pointer */
261 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
262 void SendVersion(void)
264 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
265 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
267 /* Try to find the bootrom version information. Expect to find a pointer at
268 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
269 * pointer, then use it.
271 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
273 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
274 strcat(VersionString
, "bootrom version information appears invalid\n");
276 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
277 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
280 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
281 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
283 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
284 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
286 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
287 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
289 // Send Chip ID and used flash memory
290 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
291 uint32_t compressed_data_section_size
= common_area
.arg1
;
292 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
295 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
296 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
297 void printUSBSpeed(void)
299 Dbprintf("USB Speed:");
300 Dbprintf(" Sending USB packets to client...");
302 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
303 uint8_t *test_data
= BigBuf_get_addr();
306 uint32_t start_time
= end_time
= GetTickCount();
307 uint32_t bytes_transferred
= 0;
310 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
311 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
312 end_time
= GetTickCount();
313 bytes_transferred
+= USB_CMD_DATA_SIZE
;
317 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
318 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
319 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
320 1000 * bytes_transferred
/ (end_time
- start_time
));
325 * Prints runtime information about the PM3.
327 void SendStatus(void) {
328 BigBuf_print_status();
330 printConfig(); //LF Sampling config
333 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
334 Dbprintf(" ToSendMax..........%d", ToSendMax
);
335 Dbprintf(" ToSendBit..........%d", ToSendBit
);
336 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
338 cmd_send(CMD_ACK
,1,0,0,0,0);
341 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
344 void StandAloneMode()
346 DbpString("Stand-alone mode! No PC necessary.");
347 // Oooh pretty -- notify user we're in elite samy mode now
349 LED(LED_ORANGE
, 200);
351 LED(LED_ORANGE
, 200);
353 LED(LED_ORANGE
, 200);
355 LED(LED_ORANGE
, 200);
360 #ifdef WITH_ISO14443a_StandAlone
361 void StandAloneMode14a()
364 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
367 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
368 int cardRead
[OPTS
] = {0};
369 uint8_t readUID
[10] = {0};
370 uint32_t uid_1st
[OPTS
]={0};
371 uint32_t uid_2nd
[OPTS
]={0};
372 uint32_t uid_tmp1
= 0;
373 uint32_t uid_tmp2
= 0;
374 iso14a_card_select_t hi14a_card
[OPTS
];
376 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
378 LED(selected
+ 1, 0);
386 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
390 LED(selected
+ 1, 0);
394 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
395 /* need this delay to prevent catching some weird data */
397 /* Code for reading from 14a tag */
398 uint8_t uid
[10] = {0};
400 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
405 if (BUTTON_PRESS()) {
406 if (cardRead
[selected
]) {
407 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
410 else if (cardRead
[(selected
+1)%OPTS
]) {
411 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
412 selected
= (selected
+1)%OPTS
;
413 break; // playing = 1;
416 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
420 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
424 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
425 memcpy(readUID
,uid
,10*sizeof(uint8_t));
426 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
427 // Set UID byte order
428 for (int i
=0; i
<4; i
++)
430 dst
= (uint8_t *)&uid_tmp2
;
431 for (int i
=0; i
<4; i
++)
433 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
434 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
438 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
439 uid_1st
[selected
] = (uid_tmp1
)>>8;
440 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
443 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
444 uid_1st
[selected
] = uid_tmp1
;
445 uid_2nd
[selected
] = uid_tmp2
;
451 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
452 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
455 LED(LED_ORANGE
, 200);
457 LED(LED_ORANGE
, 200);
460 LED(selected
+ 1, 0);
462 // Next state is replay:
465 cardRead
[selected
] = 1;
467 /* MF Classic UID clone */
468 else if (iGotoClone
==1)
472 LED(selected
+ 1, 0);
473 LED(LED_ORANGE
, 250);
476 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
478 // wait for button to be released
479 // Delay cloning until card is in place
480 while(BUTTON_PRESS())
483 Dbprintf("Starting clone. [Bank: %u]", selected
);
484 // need this delay to prevent catching some weird data
486 // Begin clone function here:
487 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
488 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
489 memcpy(c.d.asBytes, data, 16);
492 Block read is similar:
493 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
494 We need to imitate that call with blockNo 0 to set a uid.
496 The get and set commands are handled in this file:
497 // Work with "magic Chinese" card
498 case CMD_MIFARE_CSETBLOCK:
499 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
501 case CMD_MIFARE_CGETBLOCK:
502 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
505 mfCSetUID provides example logic for UID set workflow:
506 -Read block0 from card in field with MifareCGetBlock()
507 -Configure new values without replacing reserved bytes
508 memcpy(block0, uid, 4); // Copy UID bytes from byte array
510 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
511 Bytes 5-7 are reserved SAK and ATQA for mifare classic
512 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
514 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
515 // arg0 = Flags, arg1=blockNo
516 MifareCGetBlock(params
, 0, oldBlock0
);
517 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
518 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
522 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
523 memcpy(newBlock0
,oldBlock0
,16);
524 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
526 newBlock0
[0] = uid_1st
[selected
]>>24;
527 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
528 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
529 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
530 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
532 // arg0 = workFlags, arg1 = blockNo, datain
533 MifareCSetBlock(params
, 0, newBlock0
);
534 MifareCGetBlock(params
, 0, testBlock0
);
536 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
537 DbpString("Cloned successfull!");
538 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
541 selected
= (selected
+ 1) % OPTS
;
543 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
548 LED(selected
+ 1, 0);
550 // Change where to record (or begin playing)
551 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
554 LED(selected
+ 1, 0);
556 // Begin transmitting
560 DbpString("Playing");
563 int button_action
= BUTTON_HELD(1000);
564 if (button_action
== 0) { // No button action, proceed with sim
565 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
566 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
567 num_to_bytes(uid_1st
[selected
], 3, data
);
568 num_to_bytes(uid_2nd
[selected
], 4, data
);
570 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
571 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
572 DbpString("Mifare Classic");
573 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
575 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
576 DbpString("Mifare Ultralight");
577 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
579 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
580 DbpString("Mifare DESFire");
581 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
584 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
585 SimulateIso14443aTag(1, flags
, data
);
588 else if (button_action
== BUTTON_SINGLE_CLICK
) {
589 selected
= (selected
+ 1) % OPTS
;
590 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
594 else if (button_action
== BUTTON_HOLD
) {
595 Dbprintf("Playtime over. Begin cloning...");
602 /* We pressed a button so ignore it here with a delay */
605 LED(selected
+ 1, 0);
608 while(BUTTON_PRESS())
614 // samy's sniff and repeat routine
618 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
620 int high
[OPTS
], low
[OPTS
];
625 // Turn on selected LED
626 LED(selected
+ 1, 0);
632 // Was our button held down or pressed?
633 int button_pressed
= BUTTON_HELD(1000);
636 // Button was held for a second, begin recording
637 if (button_pressed
> 0 && cardRead
== 0)
640 LED(selected
+ 1, 0);
644 DbpString("Starting recording");
646 // wait for button to be released
647 while(BUTTON_PRESS())
650 /* need this delay to prevent catching some weird data */
653 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
654 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
657 LED(selected
+ 1, 0);
658 // Finished recording
659 // If we were previously playing, set playing off
660 // so next button push begins playing what we recorded
664 else if (button_pressed
> 0 && cardRead
== 1) {
666 LED(selected
+ 1, 0);
670 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
672 // wait for button to be released
673 while(BUTTON_PRESS())
676 /* need this delay to prevent catching some weird data */
679 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
680 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
683 LED(selected
+ 1, 0);
684 // Finished recording
686 // If we were previously playing, set playing off
687 // so next button push begins playing what we recorded
692 // Change where to record (or begin playing)
693 else if (button_pressed
) {
694 // Next option if we were previously playing
696 selected
= (selected
+ 1) % OPTS
;
700 LED(selected
+ 1, 0);
702 // Begin transmitting
706 DbpString("Playing");
707 // wait for button to be released
708 while(BUTTON_PRESS())
711 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
712 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
713 DbpString("Done playing");
715 if (BUTTON_HELD(1000) > 0) {
716 DbpString("Exiting");
721 /* We pressed a button so ignore it here with a delay */
724 // when done, we're done playing, move to next option
725 selected
= (selected
+ 1) % OPTS
;
728 LED(selected
+ 1, 0);
731 while(BUTTON_PRESS())
740 Listen and detect an external reader. Determine the best location
744 Inside the ListenReaderField() function, there is two mode.
745 By default, when you call the function, you will enter mode 1.
746 If you press the PM3 button one time, you will enter mode 2.
747 If you press the PM3 button a second time, you will exit the function.
749 DESCRIPTION OF MODE 1:
750 This mode just listens for an external reader field and lights up green
751 for HF and/or red for LF. This is the original mode of the detectreader
754 DESCRIPTION OF MODE 2:
755 This mode will visually represent, using the LEDs, the actual strength of the
756 current compared to the maximum current detected. Basically, once you know
757 what kind of external reader is present, it will help you spot the best location to place
758 your antenna. You will probably not get some good results if there is a LF and a HF reader
759 at the same place! :-)
763 static const char LIGHT_SCHEME
[] = {
764 0x0, /* ---- | No field detected */
765 0x1, /* X--- | 14% of maximum current detected */
766 0x2, /* -X-- | 29% of maximum current detected */
767 0x4, /* --X- | 43% of maximum current detected */
768 0x8, /* ---X | 57% of maximum current detected */
769 0xC, /* --XX | 71% of maximum current detected */
770 0xE, /* -XXX | 86% of maximum current detected */
771 0xF, /* XXXX | 100% of maximum current detected */
773 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
775 void ListenReaderField(int limit
) {
778 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
780 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
781 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
782 int mode
=1, display_val
, display_max
, i
;
784 // switch off FPGA - we don't want to measure our own signal
785 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
786 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
790 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
792 if(limit
!= HF_ONLY
) {
793 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
797 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
799 if (limit
!= LF_ONLY
) {
800 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
805 if (BUTTON_PRESS()) {
810 DbpString("Signal Strength Mode");
814 DbpString("Stopped");
822 if (limit
!= HF_ONLY
) {
824 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
830 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
831 // see if there's a significant change
832 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
833 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
840 if (limit
!= LF_ONLY
) {
842 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
848 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
849 // see if there's a significant change
850 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
851 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
859 if (limit
== LF_ONLY
) {
861 display_max
= lf_max
;
862 } else if (limit
== HF_ONLY
) {
864 display_max
= hf_max
;
865 } else { /* Pick one at random */
866 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
868 display_max
= hf_max
;
871 display_max
= lf_max
;
874 for (i
=0; i
<LIGHT_LEN
; i
++) {
875 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
876 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
877 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
878 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
879 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
887 void UsbPacketReceived(uint8_t *packet
, int len
)
889 UsbCommand
*c
= (UsbCommand
*)packet
;
891 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
895 case CMD_SET_LF_SAMPLING_CONFIG
:
896 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
898 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
899 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
901 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
902 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
904 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
905 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
907 case CMD_HID_DEMOD_FSK
:
908 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
910 case CMD_HID_SIM_TAG
:
911 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
913 case CMD_FSK_SIM_TAG
:
914 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
916 case CMD_ASK_SIM_TAG
:
917 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
919 case CMD_PSK_SIM_TAG
:
920 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
922 case CMD_HID_CLONE_TAG
:
923 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
925 case CMD_IO_DEMOD_FSK
:
926 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
928 case CMD_IO_CLONE_TAG
:
929 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
931 case CMD_EM410X_DEMOD
:
932 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
934 case CMD_EM410X_WRITE_TAG
:
935 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
937 case CMD_READ_TI_TYPE
:
940 case CMD_WRITE_TI_TYPE
:
941 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
943 case CMD_SIMULATE_TAG_125K
:
945 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
948 case CMD_LF_SIMULATE_BIDIR
:
949 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
951 case CMD_INDALA_CLONE_TAG
:
952 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
954 case CMD_INDALA_CLONE_TAG_L
:
955 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
957 case CMD_T55XX_READ_BLOCK
:
958 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
960 case CMD_T55XX_WRITE_BLOCK
:
961 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
963 case CMD_T55XX_WAKEUP
:
964 T55xxWakeUp(c
->arg
[0]);
966 case CMD_T55XX_RESET_READ
:
969 case CMD_PCF7931_READ
:
972 case CMD_PCF7931_WRITE
:
973 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
975 case CMD_EM4X_READ_WORD
:
976 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
978 case CMD_EM4X_WRITE_WORD
:
979 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
981 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
982 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
984 case CMD_VIKING_CLONE_TAG
:
985 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
990 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
991 SnoopHitag(c
->arg
[0]);
993 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
994 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
996 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
997 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1001 #ifdef WITH_ISO15693
1002 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1003 AcquireRawAdcSamplesIso15693();
1005 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1006 RecordRawAdcSamplesIso15693();
1009 case CMD_ISO_15693_COMMAND
:
1010 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1013 case CMD_ISO_15693_FIND_AFI
:
1014 BruteforceIso15693Afi(c
->arg
[0]);
1017 case CMD_ISO_15693_DEBUG
:
1018 SetDebugIso15693(c
->arg
[0]);
1021 case CMD_READER_ISO_15693
:
1022 ReaderIso15693(c
->arg
[0]);
1024 case CMD_SIMTAG_ISO_15693
:
1025 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1030 case CMD_SIMULATE_TAG_LEGIC_RF
:
1031 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1034 case CMD_WRITER_LEGIC_RF
:
1035 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1038 case CMD_READER_LEGIC_RF
:
1039 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1043 #ifdef WITH_ISO14443b
1044 case CMD_READ_SRI512_TAG
:
1045 ReadSTMemoryIso14443b(0x0F);
1047 case CMD_READ_SRIX4K_TAG
:
1048 ReadSTMemoryIso14443b(0x7F);
1050 case CMD_SNOOP_ISO_14443B
:
1053 case CMD_SIMULATE_TAG_ISO_14443B
:
1054 SimulateIso14443bTag();
1056 case CMD_ISO_14443B_COMMAND
:
1057 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1061 #ifdef WITH_ISO14443a
1062 case CMD_SNOOP_ISO_14443a
:
1063 SniffIso14443a(c
->arg
[0]);
1065 case CMD_READER_ISO_14443a
:
1068 case CMD_SIMULATE_TAG_ISO_14443a
:
1069 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1072 case CMD_EPA_PACE_COLLECT_NONCE
:
1073 EPA_PACE_Collect_Nonce(c
);
1075 case CMD_EPA_PACE_REPLAY
:
1079 case CMD_READER_MIFARE
:
1080 ReaderMifare(c
->arg
[0], c
->arg
[1]);
1082 case CMD_MIFARE_READBL
:
1083 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1085 case CMD_MIFAREU_READBL
:
1086 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1088 case CMD_MIFAREUC_AUTH
:
1089 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1091 case CMD_MIFAREU_READCARD
:
1092 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1094 case CMD_MIFAREUC_SETPWD
:
1095 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1097 case CMD_MIFARE_READSC
:
1098 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1100 case CMD_MIFARE_WRITEBL
:
1101 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1103 //case CMD_MIFAREU_WRITEBL_COMPAT:
1104 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1106 case CMD_MIFAREU_WRITEBL
:
1107 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1109 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1110 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1112 case CMD_MIFARE_NESTED
:
1113 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1115 case CMD_MIFARE_CHKKEYS
:
1116 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1118 case CMD_SIMULATE_MIFARE_CARD
:
1119 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1123 case CMD_MIFARE_SET_DBGMODE
:
1124 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1126 case CMD_MIFARE_EML_MEMCLR
:
1127 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1129 case CMD_MIFARE_EML_MEMSET
:
1130 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1132 case CMD_MIFARE_EML_MEMGET
:
1133 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1135 case CMD_MIFARE_EML_CARDLOAD
:
1136 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1139 // Work with "magic Chinese" card
1140 case CMD_MIFARE_CSETBLOCK
:
1141 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1143 case CMD_MIFARE_CGETBLOCK
:
1144 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1146 case CMD_MIFARE_CIDENT
:
1151 case CMD_MIFARE_SNIFFER
:
1152 SniffMifare(c
->arg
[0]);
1156 case CMD_MIFARE_DESFIRE_READBL
: break;
1157 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1158 case CMD_MIFARE_DESFIRE_AUTH1
:
1159 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1161 case CMD_MIFARE_DESFIRE_AUTH2
:
1162 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1164 case CMD_MIFARE_DES_READER
:
1165 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1167 case CMD_MIFARE_DESFIRE_INFO
:
1168 MifareDesfireGetInformation();
1170 case CMD_MIFARE_DESFIRE
:
1171 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1174 case CMD_MIFARE_COLLECT_NONCES
:
1178 case CMD_EMV_TRANSACTION
:
1181 case CMD_EMV_GET_RANDOM_NUM
:
1184 case CMD_EMV_LOAD_VALUE
:
1185 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1187 case CMD_EMV_DUMP_CARD
:
1191 // Makes use of ISO14443a FPGA Firmware
1192 case CMD_SNOOP_ICLASS
:
1195 case CMD_SIMULATE_TAG_ICLASS
:
1196 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1198 case CMD_READER_ICLASS
:
1199 ReaderIClass(c
->arg
[0]);
1201 case CMD_READER_ICLASS_REPLAY
:
1202 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1204 case CMD_ICLASS_EML_MEMSET
:
1205 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1207 case CMD_ICLASS_WRITEBLOCK
:
1208 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1210 case CMD_ICLASS_READCHECK
: // auth step 1
1211 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1213 case CMD_ICLASS_READBLOCK
:
1214 iClass_ReadBlk(c
->arg
[0]);
1216 case CMD_ICLASS_AUTHENTICATION
: //check
1217 iClass_Authentication(c
->d
.asBytes
);
1219 case CMD_ICLASS_DUMP
:
1220 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1222 case CMD_ICLASS_CLONE
:
1223 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1227 case CMD_HF_SNIFFER
:
1228 HfSnoop(c
->arg
[0], c
->arg
[1]);
1232 case CMD_BUFF_CLEAR
:
1236 case CMD_MEASURE_ANTENNA_TUNING
:
1237 MeasureAntennaTuning();
1240 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1241 MeasureAntennaTuningHf();
1244 case CMD_LISTEN_READER_FIELD
:
1245 ListenReaderField(c
->arg
[0]);
1248 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1249 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1251 LED_D_OFF(); // LED D indicates field ON or OFF
1254 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1257 uint8_t *BigBuf
= BigBuf_get_addr();
1259 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1260 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1261 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1263 // Trigger a finish downloading signal with an ACK frame
1264 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1268 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1269 uint8_t *b
= BigBuf_get_addr();
1270 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1271 cmd_send(CMD_ACK
,0,0,0,0,0);
1278 case CMD_SET_LF_DIVISOR
:
1279 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1280 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1283 case CMD_SET_ADC_MUX
:
1285 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1286 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1287 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1288 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1299 cmd_send(CMD_ACK
,0,0,0,0,0);
1309 case CMD_SETUP_WRITE
:
1310 case CMD_FINISH_WRITE
:
1311 case CMD_HARDWARE_RESET
:
1314 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1316 // We're going to reset, and the bootrom will take control.
1320 case CMD_START_FLASH
:
1321 if(common_area
.flags
.bootrom_present
) {
1322 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1325 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1329 case CMD_DEVICE_INFO
: {
1330 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1331 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1332 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1336 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1341 void __attribute__((noreturn
)) AppMain(void)
1345 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1346 /* Initialize common area */
1347 memset(&common_area
, 0, sizeof(common_area
));
1348 common_area
.magic
= COMMON_AREA_MAGIC
;
1349 common_area
.version
= 1;
1351 common_area
.flags
.osimage_present
= 1;
1361 // The FPGA gets its clock from us from PCK0 output, so set that up.
1362 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1363 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1364 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1365 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1366 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1367 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1368 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1371 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1373 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1375 // Load the FPGA image, which we have stored in our flash.
1376 // (the HF version by default)
1377 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1385 byte_t rx
[sizeof(UsbCommand
)];
1390 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1392 UsbPacketReceived(rx
,rx_len
);
1397 #ifndef WITH_ISO14443a_StandAlone
1398 if (BUTTON_HELD(1000) > 0)
1402 #ifdef WITH_ISO14443a
1403 #ifdef WITH_ISO14443a_StandAlone
1404 if (BUTTON_HELD(1000) > 0)
1405 StandAloneMode14a();