]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iclass.c
Add @iceman1001 s presco and pyramid functions +
[proxmark3-svn] / armsrc / iclass.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
18 //
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
23 //
24 // + 22279: : 0c 03 e8 01
25 //
26 // ...with an incorrect answer...
27 //
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
29 //
30 // We still left the error signalling bytes in the traces like 0xbb
31 //
32 // A correct trace should look like this:
33 //
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
36 //
37 //-----------------------------------------------------------------------------
38
39 #include "proxmark3.h"
40 #include "apps.h"
41 #include "util.h"
42 #include "string.h"
43 #include "common.h"
44 #include "cmd.h"
45 // Needed for CRC in emulation mode;
46 // same construction as in ISO 14443;
47 // different initial value (CRC_ICLASS)
48 #include "iso14443crc.h"
49 #include "iso15693tools.h"
50 #include "protocols.h"
51 #include "optimized_cipher.h"
52
53 static int timeout = 4096;
54
55
56 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
57
58 //-----------------------------------------------------------------------------
59 // The software UART that receives commands from the reader, and its state
60 // variables.
61 //-----------------------------------------------------------------------------
62 static struct {
63 enum {
64 STATE_UNSYNCD,
65 STATE_START_OF_COMMUNICATION,
66 STATE_RECEIVING
67 } state;
68 uint16_t shiftReg;
69 int bitCnt;
70 int byteCnt;
71 int byteCntMax;
72 int posCnt;
73 int nOutOfCnt;
74 int OutOfCnt;
75 int syncBit;
76 int samples;
77 int highCnt;
78 int swapper;
79 int counter;
80 int bitBuffer;
81 int dropPosition;
82 uint8_t *output;
83 } Uart;
84
85 static RAMFUNC int OutOfNDecoding(int bit)
86 {
87 //int error = 0;
88 int bitright;
89
90 if(!Uart.bitBuffer) {
91 Uart.bitBuffer = bit ^ 0xFF0;
92 return FALSE;
93 }
94 else {
95 Uart.bitBuffer <<= 4;
96 Uart.bitBuffer ^= bit;
97 }
98
99 /*if(Uart.swapper) {
100 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
101 Uart.byteCnt++;
102 Uart.swapper = 0;
103 if(Uart.byteCnt > 15) { return TRUE; }
104 }
105 else {
106 Uart.swapper = 1;
107 }*/
108
109 if(Uart.state != STATE_UNSYNCD) {
110 Uart.posCnt++;
111
112 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
113 bit = 0x00;
114 }
115 else {
116 bit = 0x01;
117 }
118 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
119 bitright = 0x00;
120 }
121 else {
122 bitright = 0x01;
123 }
124 if(bit != bitright) { bit = bitright; }
125
126
127 // So, now we only have to deal with *bit*, lets see...
128 if(Uart.posCnt == 1) {
129 // measurement first half bitperiod
130 if(!bit) {
131 // Drop in first half means that we are either seeing
132 // an SOF or an EOF.
133
134 if(Uart.nOutOfCnt == 1) {
135 // End of Communication
136 Uart.state = STATE_UNSYNCD;
137 Uart.highCnt = 0;
138 if(Uart.byteCnt == 0) {
139 // Its not straightforward to show single EOFs
140 // So just leave it and do not return TRUE
141 Uart.output[0] = 0xf0;
142 Uart.byteCnt++;
143 }
144 else {
145 return TRUE;
146 }
147 }
148 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
149 // When not part of SOF or EOF, it is an error
150 Uart.state = STATE_UNSYNCD;
151 Uart.highCnt = 0;
152 //error = 4;
153 }
154 }
155 }
156 else {
157 // measurement second half bitperiod
158 // Count the bitslot we are in... (ISO 15693)
159 Uart.nOutOfCnt++;
160
161 if(!bit) {
162 if(Uart.dropPosition) {
163 if(Uart.state == STATE_START_OF_COMMUNICATION) {
164 //error = 1;
165 }
166 else {
167 //error = 7;
168 }
169 // It is an error if we already have seen a drop in current frame
170 Uart.state = STATE_UNSYNCD;
171 Uart.highCnt = 0;
172 }
173 else {
174 Uart.dropPosition = Uart.nOutOfCnt;
175 }
176 }
177
178 Uart.posCnt = 0;
179
180
181 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
182 Uart.nOutOfCnt = 0;
183
184 if(Uart.state == STATE_START_OF_COMMUNICATION) {
185 if(Uart.dropPosition == 4) {
186 Uart.state = STATE_RECEIVING;
187 Uart.OutOfCnt = 256;
188 }
189 else if(Uart.dropPosition == 3) {
190 Uart.state = STATE_RECEIVING;
191 Uart.OutOfCnt = 4;
192 //Uart.output[Uart.byteCnt] = 0xdd;
193 //Uart.byteCnt++;
194 }
195 else {
196 Uart.state = STATE_UNSYNCD;
197 Uart.highCnt = 0;
198 }
199 Uart.dropPosition = 0;
200 }
201 else {
202 // RECEIVING DATA
203 // 1 out of 4
204 if(!Uart.dropPosition) {
205 Uart.state = STATE_UNSYNCD;
206 Uart.highCnt = 0;
207 //error = 9;
208 }
209 else {
210 Uart.shiftReg >>= 2;
211
212 // Swap bit order
213 Uart.dropPosition--;
214 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
215 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
216
217 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
218 Uart.bitCnt += 2;
219 Uart.dropPosition = 0;
220
221 if(Uart.bitCnt == 8) {
222 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
223 Uart.byteCnt++;
224 Uart.bitCnt = 0;
225 Uart.shiftReg = 0;
226 }
227 }
228 }
229 }
230 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
231 // RECEIVING DATA
232 // 1 out of 256
233 if(!Uart.dropPosition) {
234 Uart.state = STATE_UNSYNCD;
235 Uart.highCnt = 0;
236 //error = 3;
237 }
238 else {
239 Uart.dropPosition--;
240 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
241 Uart.byteCnt++;
242 Uart.bitCnt = 0;
243 Uart.shiftReg = 0;
244 Uart.nOutOfCnt = 0;
245 Uart.dropPosition = 0;
246 }
247 }
248
249 /*if(error) {
250 Uart.output[Uart.byteCnt] = 0xAA;
251 Uart.byteCnt++;
252 Uart.output[Uart.byteCnt] = error & 0xFF;
253 Uart.byteCnt++;
254 Uart.output[Uart.byteCnt] = 0xAA;
255 Uart.byteCnt++;
256 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
257 Uart.byteCnt++;
258 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
259 Uart.byteCnt++;
260 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
261 Uart.byteCnt++;
262 Uart.output[Uart.byteCnt] = 0xAA;
263 Uart.byteCnt++;
264 return TRUE;
265 }*/
266 }
267
268 }
269 else {
270 bit = Uart.bitBuffer & 0xf0;
271 bit >>= 4;
272 bit ^= 0x0F; // drops become 1s ;-)
273 if(bit) {
274 // should have been high or at least (4 * 128) / fc
275 // according to ISO this should be at least (9 * 128 + 20) / fc
276 if(Uart.highCnt == 8) {
277 // we went low, so this could be start of communication
278 // it turns out to be safer to choose a less significant
279 // syncbit... so we check whether the neighbour also represents the drop
280 Uart.posCnt = 1; // apparently we are busy with our first half bit period
281 Uart.syncBit = bit & 8;
282 Uart.samples = 3;
283 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
284 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
285 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
286 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
287 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
288 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
289 Uart.syncBit = 8;
290
291 // the first half bit period is expected in next sample
292 Uart.posCnt = 0;
293 Uart.samples = 3;
294 }
295 }
296 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
297
298 Uart.syncBit <<= 4;
299 Uart.state = STATE_START_OF_COMMUNICATION;
300 Uart.bitCnt = 0;
301 Uart.byteCnt = 0;
302 Uart.nOutOfCnt = 0;
303 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
304 Uart.dropPosition = 0;
305 Uart.shiftReg = 0;
306 //error = 0;
307 }
308 else {
309 Uart.highCnt = 0;
310 }
311 }
312 else {
313 if(Uart.highCnt < 8) {
314 Uart.highCnt++;
315 }
316 }
317 }
318
319 return FALSE;
320 }
321
322 //=============================================================================
323 // Manchester
324 //=============================================================================
325
326 static struct {
327 enum {
328 DEMOD_UNSYNCD,
329 DEMOD_START_OF_COMMUNICATION,
330 DEMOD_START_OF_COMMUNICATION2,
331 DEMOD_START_OF_COMMUNICATION3,
332 DEMOD_SOF_COMPLETE,
333 DEMOD_MANCHESTER_D,
334 DEMOD_MANCHESTER_E,
335 DEMOD_END_OF_COMMUNICATION,
336 DEMOD_END_OF_COMMUNICATION2,
337 DEMOD_MANCHESTER_F,
338 DEMOD_ERROR_WAIT
339 } state;
340 int bitCount;
341 int posCount;
342 int syncBit;
343 uint16_t shiftReg;
344 int buffer;
345 int buffer2;
346 int buffer3;
347 int buff;
348 int samples;
349 int len;
350 enum {
351 SUB_NONE,
352 SUB_FIRST_HALF,
353 SUB_SECOND_HALF,
354 SUB_BOTH
355 } sub;
356 uint8_t *output;
357 } Demod;
358
359 static RAMFUNC int ManchesterDecoding(int v)
360 {
361 int bit;
362 int modulation;
363 int error = 0;
364
365 bit = Demod.buffer;
366 Demod.buffer = Demod.buffer2;
367 Demod.buffer2 = Demod.buffer3;
368 Demod.buffer3 = v;
369
370 if(Demod.buff < 3) {
371 Demod.buff++;
372 return FALSE;
373 }
374
375 if(Demod.state==DEMOD_UNSYNCD) {
376 Demod.output[Demod.len] = 0xfa;
377 Demod.syncBit = 0;
378 //Demod.samples = 0;
379 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
380
381 if(bit & 0x08) {
382 Demod.syncBit = 0x08;
383 }
384
385 if(bit & 0x04) {
386 if(Demod.syncBit) {
387 bit <<= 4;
388 }
389 Demod.syncBit = 0x04;
390 }
391
392 if(bit & 0x02) {
393 if(Demod.syncBit) {
394 bit <<= 2;
395 }
396 Demod.syncBit = 0x02;
397 }
398
399 if(bit & 0x01 && Demod.syncBit) {
400 Demod.syncBit = 0x01;
401 }
402
403 if(Demod.syncBit) {
404 Demod.len = 0;
405 Demod.state = DEMOD_START_OF_COMMUNICATION;
406 Demod.sub = SUB_FIRST_HALF;
407 Demod.bitCount = 0;
408 Demod.shiftReg = 0;
409 Demod.samples = 0;
410 if(Demod.posCount) {
411 //if(trigger) LED_A_OFF(); // Not useful in this case...
412 switch(Demod.syncBit) {
413 case 0x08: Demod.samples = 3; break;
414 case 0x04: Demod.samples = 2; break;
415 case 0x02: Demod.samples = 1; break;
416 case 0x01: Demod.samples = 0; break;
417 }
418 // SOF must be long burst... otherwise stay unsynced!!!
419 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
420 Demod.state = DEMOD_UNSYNCD;
421 }
422 }
423 else {
424 // SOF must be long burst... otherwise stay unsynced!!!
425 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
426 Demod.state = DEMOD_UNSYNCD;
427 error = 0x88;
428 }
429
430 }
431 error = 0;
432
433 }
434 }
435 else {
436 modulation = bit & Demod.syncBit;
437 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
438
439 Demod.samples += 4;
440
441 if(Demod.posCount==0) {
442 Demod.posCount = 1;
443 if(modulation) {
444 Demod.sub = SUB_FIRST_HALF;
445 }
446 else {
447 Demod.sub = SUB_NONE;
448 }
449 }
450 else {
451 Demod.posCount = 0;
452 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
453 if(Demod.state!=DEMOD_ERROR_WAIT) {
454 Demod.state = DEMOD_ERROR_WAIT;
455 Demod.output[Demod.len] = 0xaa;
456 error = 0x01;
457 }
458 }*/
459 //else if(modulation) {
460 if(modulation) {
461 if(Demod.sub == SUB_FIRST_HALF) {
462 Demod.sub = SUB_BOTH;
463 }
464 else {
465 Demod.sub = SUB_SECOND_HALF;
466 }
467 }
468 else if(Demod.sub == SUB_NONE) {
469 if(Demod.state == DEMOD_SOF_COMPLETE) {
470 Demod.output[Demod.len] = 0x0f;
471 Demod.len++;
472 Demod.state = DEMOD_UNSYNCD;
473 // error = 0x0f;
474 return TRUE;
475 }
476 else {
477 Demod.state = DEMOD_ERROR_WAIT;
478 error = 0x33;
479 }
480 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
481 Demod.state = DEMOD_ERROR_WAIT;
482 Demod.output[Demod.len] = 0xaa;
483 error = 0x01;
484 }*/
485 }
486
487 switch(Demod.state) {
488 case DEMOD_START_OF_COMMUNICATION:
489 if(Demod.sub == SUB_BOTH) {
490 //Demod.state = DEMOD_MANCHESTER_D;
491 Demod.state = DEMOD_START_OF_COMMUNICATION2;
492 Demod.posCount = 1;
493 Demod.sub = SUB_NONE;
494 }
495 else {
496 Demod.output[Demod.len] = 0xab;
497 Demod.state = DEMOD_ERROR_WAIT;
498 error = 0xd2;
499 }
500 break;
501 case DEMOD_START_OF_COMMUNICATION2:
502 if(Demod.sub == SUB_SECOND_HALF) {
503 Demod.state = DEMOD_START_OF_COMMUNICATION3;
504 }
505 else {
506 Demod.output[Demod.len] = 0xab;
507 Demod.state = DEMOD_ERROR_WAIT;
508 error = 0xd3;
509 }
510 break;
511 case DEMOD_START_OF_COMMUNICATION3:
512 if(Demod.sub == SUB_SECOND_HALF) {
513 // Demod.state = DEMOD_MANCHESTER_D;
514 Demod.state = DEMOD_SOF_COMPLETE;
515 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
516 //Demod.len++;
517 }
518 else {
519 Demod.output[Demod.len] = 0xab;
520 Demod.state = DEMOD_ERROR_WAIT;
521 error = 0xd4;
522 }
523 break;
524 case DEMOD_SOF_COMPLETE:
525 case DEMOD_MANCHESTER_D:
526 case DEMOD_MANCHESTER_E:
527 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
528 // 00001111 = 1 (0 in 14443)
529 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
530 Demod.bitCount++;
531 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
532 Demod.state = DEMOD_MANCHESTER_D;
533 }
534 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
535 Demod.bitCount++;
536 Demod.shiftReg >>= 1;
537 Demod.state = DEMOD_MANCHESTER_E;
538 }
539 else if(Demod.sub == SUB_BOTH) {
540 Demod.state = DEMOD_MANCHESTER_F;
541 }
542 else {
543 Demod.state = DEMOD_ERROR_WAIT;
544 error = 0x55;
545 }
546 break;
547
548 case DEMOD_MANCHESTER_F:
549 // Tag response does not need to be a complete byte!
550 if(Demod.len > 0 || Demod.bitCount > 0) {
551 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
552 Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
553 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
554 Demod.len++;
555 }
556
557 Demod.state = DEMOD_UNSYNCD;
558 return TRUE;
559 }
560 else {
561 Demod.output[Demod.len] = 0xad;
562 Demod.state = DEMOD_ERROR_WAIT;
563 error = 0x03;
564 }
565 break;
566
567 case DEMOD_ERROR_WAIT:
568 Demod.state = DEMOD_UNSYNCD;
569 break;
570
571 default:
572 Demod.output[Demod.len] = 0xdd;
573 Demod.state = DEMOD_UNSYNCD;
574 break;
575 }
576
577 /*if(Demod.bitCount>=9) {
578 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
579 Demod.len++;
580
581 Demod.parityBits <<= 1;
582 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
583
584 Demod.bitCount = 0;
585 Demod.shiftReg = 0;
586 }*/
587 if(Demod.bitCount>=8) {
588 Demod.shiftReg >>= 1;
589 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
590 Demod.len++;
591 Demod.bitCount = 0;
592 Demod.shiftReg = 0;
593 }
594
595 if(error) {
596 Demod.output[Demod.len] = 0xBB;
597 Demod.len++;
598 Demod.output[Demod.len] = error & 0xFF;
599 Demod.len++;
600 Demod.output[Demod.len] = 0xBB;
601 Demod.len++;
602 Demod.output[Demod.len] = bit & 0xFF;
603 Demod.len++;
604 Demod.output[Demod.len] = Demod.buffer & 0xFF;
605 Demod.len++;
606 // Look harder ;-)
607 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
608 Demod.len++;
609 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
610 Demod.len++;
611 Demod.output[Demod.len] = 0xBB;
612 Demod.len++;
613 return TRUE;
614 }
615
616 }
617
618 } // end (state != UNSYNCED)
619
620 return FALSE;
621 }
622
623 //=============================================================================
624 // Finally, a `sniffer' for iClass communication
625 // Both sides of communication!
626 //=============================================================================
627
628 //-----------------------------------------------------------------------------
629 // Record the sequence of commands sent by the reader to the tag, with
630 // triggering so that we start recording at the point that the tag is moved
631 // near the reader.
632 //-----------------------------------------------------------------------------
633 void RAMFUNC SnoopIClass(void)
634 {
635
636
637 // We won't start recording the frames that we acquire until we trigger;
638 // a good trigger condition to get started is probably when we see a
639 // response from the tag.
640 //int triggered = FALSE; // FALSE to wait first for card
641
642 // The command (reader -> tag) that we're receiving.
643 // The length of a received command will in most cases be no more than 18 bytes.
644 // So 32 should be enough!
645 #define ICLASS_BUFFER_SIZE 32
646 uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
647 // The response (tag -> reader) that we're receiving.
648 uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
649
650 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
651
652 // free all BigBuf memory
653 BigBuf_free();
654 // The DMA buffer, used to stream samples from the FPGA
655 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
656
657 set_tracing(TRUE);
658 clear_trace();
659 iso14a_set_trigger(FALSE);
660
661 int lastRxCounter;
662 uint8_t *upTo;
663 int smpl;
664 int maxBehindBy = 0;
665
666 // Count of samples received so far, so that we can include timing
667 // information in the trace buffer.
668 int samples = 0;
669 rsamples = 0;
670
671 // Set up the demodulator for tag -> reader responses.
672 Demod.output = tagToReaderResponse;
673 Demod.len = 0;
674 Demod.state = DEMOD_UNSYNCD;
675
676 // Setup for the DMA.
677 FpgaSetupSsc();
678 upTo = dmaBuf;
679 lastRxCounter = DMA_BUFFER_SIZE;
680 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
681
682 // And the reader -> tag commands
683 memset(&Uart, 0, sizeof(Uart));
684 Uart.output = readerToTagCmd;
685 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
686 Uart.state = STATE_UNSYNCD;
687
688 // And put the FPGA in the appropriate mode
689 // Signal field is off with the appropriate LED
690 LED_D_OFF();
691 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
692 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
693
694 uint32_t time_0 = GetCountSspClk();
695 uint32_t time_start = 0;
696 uint32_t time_stop = 0;
697
698 int div = 0;
699 //int div2 = 0;
700 int decbyte = 0;
701 int decbyter = 0;
702
703 // And now we loop, receiving samples.
704 for(;;) {
705 LED_A_ON();
706 WDT_HIT();
707 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
708 (DMA_BUFFER_SIZE-1);
709 if(behindBy > maxBehindBy) {
710 maxBehindBy = behindBy;
711 if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
712 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
713 goto done;
714 }
715 }
716 if(behindBy < 1) continue;
717
718 LED_A_OFF();
719 smpl = upTo[0];
720 upTo++;
721 lastRxCounter -= 1;
722 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
723 upTo -= DMA_BUFFER_SIZE;
724 lastRxCounter += DMA_BUFFER_SIZE;
725 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
726 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
727 }
728
729 //samples += 4;
730 samples += 1;
731
732 if(smpl & 0xF) {
733 decbyte ^= (1 << (3 - div));
734 }
735
736 // FOR READER SIDE COMMUMICATION...
737
738 decbyter <<= 2;
739 decbyter ^= (smpl & 0x30);
740
741 div++;
742
743 if((div + 1) % 2 == 0) {
744 smpl = decbyter;
745 if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
746 rsamples = samples - Uart.samples;
747 time_stop = (GetCountSspClk()-time_0) << 4;
748 LED_C_ON();
749
750 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
751 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
752 if(tracing) {
753 uint8_t parity[MAX_PARITY_SIZE];
754 GetParity(Uart.output, Uart.byteCnt, parity);
755 LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE);
756 }
757
758
759 /* And ready to receive another command. */
760 Uart.state = STATE_UNSYNCD;
761 /* And also reset the demod code, which might have been */
762 /* false-triggered by the commands from the reader. */
763 Demod.state = DEMOD_UNSYNCD;
764 LED_B_OFF();
765 Uart.byteCnt = 0;
766 }else{
767 time_start = (GetCountSspClk()-time_0) << 4;
768 }
769 decbyter = 0;
770 }
771
772 if(div > 3) {
773 smpl = decbyte;
774 if(ManchesterDecoding(smpl & 0x0F)) {
775 time_stop = (GetCountSspClk()-time_0) << 4;
776
777 rsamples = samples - Demod.samples;
778 LED_B_ON();
779
780 if(tracing) {
781 uint8_t parity[MAX_PARITY_SIZE];
782 GetParity(Demod.output, Demod.len, parity);
783 LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE);
784 }
785
786 // And ready to receive another response.
787 memset(&Demod, 0, sizeof(Demod));
788 Demod.output = tagToReaderResponse;
789 Demod.state = DEMOD_UNSYNCD;
790 LED_C_OFF();
791 }else{
792 time_start = (GetCountSspClk()-time_0) << 4;
793 }
794
795 div = 0;
796 decbyte = 0x00;
797 }
798 //}
799
800 if(BUTTON_PRESS()) {
801 DbpString("cancelled_a");
802 goto done;
803 }
804 }
805
806 DbpString("COMMAND FINISHED");
807
808 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
809 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
810
811 done:
812 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
813 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
814 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
815 LED_A_OFF();
816 LED_B_OFF();
817 LED_C_OFF();
818 LED_D_OFF();
819 }
820
821 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
822 int i;
823 for(i = 0; i < 8; i++) {
824 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
825 }
826 }
827
828 //-----------------------------------------------------------------------------
829 // Wait for commands from reader
830 // Stop when button is pressed
831 // Or return TRUE when command is captured
832 //-----------------------------------------------------------------------------
833 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
834 {
835 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
836 // only, since we are receiving, not transmitting).
837 // Signal field is off with the appropriate LED
838 LED_D_OFF();
839 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
840
841 // Now run a `software UART' on the stream of incoming samples.
842 Uart.output = received;
843 Uart.byteCntMax = maxLen;
844 Uart.state = STATE_UNSYNCD;
845
846 for(;;) {
847 WDT_HIT();
848
849 if(BUTTON_PRESS()) return FALSE;
850
851 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
852 AT91C_BASE_SSC->SSC_THR = 0x00;
853 }
854 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
855 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
856
857 if(OutOfNDecoding(b & 0x0f)) {
858 *len = Uart.byteCnt;
859 return TRUE;
860 }
861 }
862 }
863 }
864
865 static uint8_t encode4Bits(const uint8_t b)
866 {
867 uint8_t c = b & 0xF;
868 // OTA, the least significant bits first
869 // The columns are
870 // 1 - Bit value to send
871 // 2 - Reversed (big-endian)
872 // 3 - Encoded
873 // 4 - Hex values
874
875 switch(c){
876 // 1 2 3 4
877 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
878 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
879 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
880 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
881 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
882 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
883 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
884 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
885 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
886 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
887 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
888 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
889 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
890 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
891 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
892 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
893
894 }
895 }
896
897 //-----------------------------------------------------------------------------
898 // Prepare tag messages
899 //-----------------------------------------------------------------------------
900 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
901 {
902
903 /*
904 * SOF comprises 3 parts;
905 * * An unmodulated time of 56.64 us
906 * * 24 pulses of 423.75 KHz (fc/32)
907 * * A logic 1, which starts with an unmodulated time of 18.88us
908 * followed by 8 pulses of 423.75kHz (fc/32)
909 *
910 *
911 * EOF comprises 3 parts:
912 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
913 * time of 18.88us.
914 * - 24 pulses of fc/32
915 * - An unmodulated time of 56.64 us
916 *
917 *
918 * A logic 0 starts with 8 pulses of fc/32
919 * followed by an unmodulated time of 256/fc (~18,88us).
920 *
921 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
922 * 8 pulses of fc/32 (also 18.88us)
923 *
924 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
925 * works like this.
926 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
927 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
928 *
929 * In this mode the SOF can be written as 00011101 = 0x1D
930 * The EOF can be written as 10111000 = 0xb8
931 * A logic 1 is 01
932 * A logic 0 is 10
933 *
934 * */
935
936 int i;
937
938 ToSendReset();
939
940 // Send SOF
941 ToSend[++ToSendMax] = 0x1D;
942
943 for(i = 0; i < len; i++) {
944 uint8_t b = cmd[i];
945 ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
946 ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
947 }
948
949 // Send EOF
950 ToSend[++ToSendMax] = 0xB8;
951 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
952 // Convert from last byte pos to length
953 ToSendMax++;
954 }
955
956 // Only SOF
957 static void CodeIClassTagSOF()
958 {
959 //So far a dummy implementation, not used
960 //int lastProxToAirDuration =0;
961
962 ToSendReset();
963 // Send SOF
964 ToSend[++ToSendMax] = 0x1D;
965 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
966
967 // Convert from last byte pos to length
968 ToSendMax++;
969 }
970 #define MODE_SIM_CSN 0
971 #define MODE_EXIT_AFTER_MAC 1
972 #define MODE_FULLSIM 2
973
974 int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
975 /**
976 * @brief SimulateIClass simulates an iClass card.
977 * @param arg0 type of simulation
978 * - 0 uses the first 8 bytes in usb data as CSN
979 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
980 * in the usb data. This mode collects MAC from the reader, in order to do an offline
981 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
982 * - Other : Uses the default CSN (031fec8af7ff12e0)
983 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
984 * @param arg2
985 * @param datain
986 */
987 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
988 {
989 uint32_t simType = arg0;
990 uint32_t numberOfCSNS = arg1;
991 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
992
993 // Enable and clear the trace
994 set_tracing(TRUE);
995 clear_trace();
996 //Use the emulator memory for SIM
997 uint8_t *emulator = BigBuf_get_EM_addr();
998
999 if(simType == 0) {
1000 // Use the CSN from commandline
1001 memcpy(emulator, datain, 8);
1002 doIClassSimulation(MODE_SIM_CSN,NULL);
1003 }else if(simType == 1)
1004 {
1005 //Default CSN
1006 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1007 // Use the CSN from commandline
1008 memcpy(emulator, csn_crc, 8);
1009 doIClassSimulation(MODE_SIM_CSN,NULL);
1010 }
1011 else if(simType == 2)
1012 {
1013
1014 uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
1015 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
1016 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1017 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1018 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1019 int i = 0;
1020 for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
1021 {
1022 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1023
1024 memcpy(emulator, datain+(i*8), 8);
1025 if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
1026 {
1027 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1028 return; // Button pressed
1029 }
1030 }
1031 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1032
1033 }else if(simType == 3){
1034 //This is 'full sim' mode, where we use the emulator storage for data.
1035 doIClassSimulation(MODE_FULLSIM, NULL);
1036 }
1037 else{
1038 // We may want a mode here where we hardcode the csns to use (from proxclone).
1039 // That will speed things up a little, but not required just yet.
1040 Dbprintf("The mode is not implemented, reserved for future use");
1041 }
1042 Dbprintf("Done...");
1043
1044 }
1045 void AppendCrc(uint8_t* data, int len)
1046 {
1047 ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
1048 }
1049
1050 /**
1051 * @brief Does the actual simulation
1052 * @param csn - csn to use
1053 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1054 */
1055 int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
1056 {
1057 // free eventually allocated BigBuf memory
1058 BigBuf_free_keep_EM();
1059
1060 State cipher_state;
1061 // State cipher_state_reserve;
1062 uint8_t *csn = BigBuf_get_EM_addr();
1063 uint8_t *emulator = csn;
1064 uint8_t sof_data[] = { 0x0F} ;
1065 // CSN followed by two CRC bytes
1066 uint8_t anticoll_data[10] = { 0 };
1067 uint8_t csn_data[10] = { 0 };
1068 memcpy(csn_data,csn,sizeof(csn_data));
1069 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1070
1071 // Construct anticollision-CSN
1072 rotateCSN(csn_data,anticoll_data);
1073
1074 // Compute CRC on both CSNs
1075 ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
1076 ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
1077
1078 uint8_t diversified_key[8] = { 0 };
1079 // e-Purse
1080 uint8_t card_challenge_data[8] = { 0x00 };
1081 if(simulationMode == MODE_FULLSIM)
1082 {
1083 //The diversified key should be stored on block 3
1084 //Get the diversified key from emulator memory
1085 memcpy(diversified_key, emulator+(8*3),8);
1086
1087 //Card challenge, a.k.a e-purse is on block 2
1088 memcpy(card_challenge_data,emulator + (8 * 2) , 8);
1089 //Precalculate the cipher state, feeding it the CC
1090 cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
1091
1092 }
1093
1094 int exitLoop = 0;
1095 // Reader 0a
1096 // Tag 0f
1097 // Reader 0c
1098 // Tag anticoll. CSN
1099 // Reader 81 anticoll. CSN
1100 // Tag CSN
1101
1102 uint8_t *modulated_response;
1103 int modulated_response_size = 0;
1104 uint8_t* trace_data = NULL;
1105 int trace_data_size = 0;
1106
1107
1108 // Respond SOF -- takes 1 bytes
1109 uint8_t *resp_sof = BigBuf_malloc(2);
1110 int resp_sof_Len;
1111
1112 // Anticollision CSN (rotated CSN)
1113 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1114 uint8_t *resp_anticoll = BigBuf_malloc(28);
1115 int resp_anticoll_len;
1116
1117 // CSN
1118 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1119 uint8_t *resp_csn = BigBuf_malloc(30);
1120 int resp_csn_len;
1121
1122 // e-Purse
1123 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1124 uint8_t *resp_cc = BigBuf_malloc(20);
1125 int resp_cc_len;
1126
1127 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1128 int len;
1129
1130 // Prepare card messages
1131 ToSendMax = 0;
1132
1133 // First card answer: SOF
1134 CodeIClassTagSOF();
1135 memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
1136
1137 // Anticollision CSN
1138 CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
1139 memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
1140
1141 // CSN
1142 CodeIClassTagAnswer(csn_data, sizeof(csn_data));
1143 memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
1144
1145 // e-Purse
1146 CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
1147 memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
1148
1149 //This is used for responding to READ-block commands or other data which is dynamically generated
1150 //First the 'trace'-data, not encoded for FPGA
1151 uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1152 //Then storage for the modulated data
1153 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1154 uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2);
1155
1156 // Start from off (no field generated)
1157 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1158 //SpinDelay(200);
1159 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1160 SpinDelay(100);
1161 StartCountSspClk();
1162 // We need to listen to the high-frequency, peak-detected path.
1163 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1164 FpgaSetupSsc();
1165
1166 // To control where we are in the protocol
1167 int cmdsRecvd = 0;
1168 uint32_t time_0 = GetCountSspClk();
1169 uint32_t t2r_time =0;
1170 uint32_t r2t_time =0;
1171
1172 LED_A_ON();
1173 bool buttonPressed = false;
1174 uint8_t response_delay = 1;
1175 while(!exitLoop) {
1176 response_delay = 1;
1177 LED_B_OFF();
1178 //Signal tracer
1179 // Can be used to get a trigger for an oscilloscope..
1180 LED_C_OFF();
1181
1182 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1183 buttonPressed = true;
1184 break;
1185 }
1186 r2t_time = GetCountSspClk();
1187 //Signal tracer
1188 LED_C_ON();
1189
1190 // Okay, look at the command now.
1191 if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
1192 // Reader in anticollission phase
1193 modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
1194 trace_data = sof_data;
1195 trace_data_size = sizeof(sof_data);
1196 } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
1197 // Reader asks for anticollission CSN
1198 modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
1199 trace_data = anticoll_data;
1200 trace_data_size = sizeof(anticoll_data);
1201 //DbpString("Reader requests anticollission CSN:");
1202 } else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
1203 // Reader selects anticollission CSN.
1204 // Tag sends the corresponding real CSN
1205 modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
1206 trace_data = csn_data;
1207 trace_data_size = sizeof(csn_data);
1208 //DbpString("Reader selects anticollission CSN:");
1209 } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
1210 // Read e-purse (88 02)
1211 modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
1212 trace_data = card_challenge_data;
1213 trace_data_size = sizeof(card_challenge_data);
1214 LED_B_ON();
1215 } else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
1216 // Reader random and reader MAC!!!
1217 if(simulationMode == MODE_FULLSIM)
1218 {
1219 //NR, from reader, is in receivedCmd +1
1220 opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
1221
1222 trace_data = data_generic_trace;
1223 trace_data_size = 4;
1224 CodeIClassTagAnswer(trace_data , trace_data_size);
1225 memcpy(data_response, ToSend, ToSendMax);
1226 modulated_response = data_response;
1227 modulated_response_size = ToSendMax;
1228 response_delay = 0;//We need to hurry here...
1229 //exitLoop = true;
1230 }else
1231 { //Not fullsim, we don't respond
1232 // We do not know what to answer, so lets keep quiet
1233 modulated_response = resp_sof; modulated_response_size = 0;
1234 trace_data = NULL;
1235 trace_data_size = 0;
1236 if (simulationMode == MODE_EXIT_AFTER_MAC){
1237 // dbprintf:ing ...
1238 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1239 ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1240 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1241 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1242 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1243 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1244 if (reader_mac_buf != NULL)
1245 {
1246 memcpy(reader_mac_buf,receivedCmd+1,8);
1247 }
1248 exitLoop = true;
1249 }
1250 }
1251
1252 } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
1253 // Reader ends the session
1254 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1255 trace_data = NULL;
1256 trace_data_size = 0;
1257 } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
1258 //Read block
1259 uint16_t blk = receivedCmd[1];
1260 //Take the data...
1261 memcpy(data_generic_trace, emulator+(blk << 3),8);
1262 //Add crc
1263 AppendCrc(data_generic_trace, 8);
1264 trace_data = data_generic_trace;
1265 trace_data_size = 10;
1266 CodeIClassTagAnswer(trace_data , trace_data_size);
1267 memcpy(data_response, ToSend, ToSendMax);
1268 modulated_response = data_response;
1269 modulated_response_size = ToSendMax;
1270 }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
1271 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1272 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1273 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1274 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1275
1276 //Take the data...
1277 memcpy(data_generic_trace, receivedCmd+2,8);
1278 //Add crc
1279 AppendCrc(data_generic_trace, 8);
1280 trace_data = data_generic_trace;
1281 trace_data_size = 10;
1282 CodeIClassTagAnswer(trace_data , trace_data_size);
1283 memcpy(data_response, ToSend, ToSendMax);
1284 modulated_response = data_response;
1285 modulated_response_size = ToSendMax;
1286 }
1287 else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
1288 {//Pagesel
1289 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1290 //Chips with a single page will not answer to this command
1291 // It appears we're fine ignoring this.
1292 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1293 }
1294 else {
1295 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1296 // Never seen this command before
1297 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1298 len,
1299 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1300 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1301 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1302 // Do not respond
1303 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1304 trace_data = NULL;
1305 trace_data_size = 0;
1306 }
1307
1308 if(cmdsRecvd > 100) {
1309 //DbpString("100 commands later...");
1310 //break;
1311 }
1312 else {
1313 cmdsRecvd++;
1314 }
1315 /**
1316 A legit tag has about 380us delay between reader EOT and tag SOF.
1317 **/
1318 if(modulated_response_size > 0) {
1319 SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
1320 t2r_time = GetCountSspClk();
1321 }
1322
1323 if (tracing) {
1324 uint8_t parity[MAX_PARITY_SIZE];
1325 GetParity(receivedCmd, len, parity);
1326 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE);
1327
1328 if (trace_data != NULL) {
1329 GetParity(trace_data, trace_data_size, parity);
1330 LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE);
1331 }
1332 if(!tracing) {
1333 DbpString("Trace full");
1334 //break;
1335 }
1336
1337 }
1338 }
1339
1340 //Dbprintf("%x", cmdsRecvd);
1341 LED_A_OFF();
1342 LED_B_OFF();
1343 LED_C_OFF();
1344
1345 if(buttonPressed)
1346 {
1347 DbpString("Button pressed");
1348 }
1349 return buttonPressed;
1350 }
1351
1352 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1353 {
1354 int i = 0, d=0;//, u = 0, d = 0;
1355 uint8_t b = 0;
1356
1357 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1358 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
1359
1360 AT91C_BASE_SSC->SSC_THR = 0x00;
1361 FpgaSetupSsc();
1362 while(!BUTTON_PRESS()) {
1363 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1364 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1365 }
1366 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1367 b = 0x00;
1368 if(d < delay) {
1369 d++;
1370 }
1371 else {
1372 if( i < respLen){
1373 b = resp[i];
1374 //Hack
1375 //b = 0xAC;
1376 }
1377 i++;
1378 }
1379 AT91C_BASE_SSC->SSC_THR = b;
1380 }
1381
1382 // if (i > respLen +4) break;
1383 if (i > respLen +1) break;
1384 }
1385
1386 return 0;
1387 }
1388
1389 /// THE READER CODE
1390
1391 //-----------------------------------------------------------------------------
1392 // Transmit the command (to the tag) that was placed in ToSend[].
1393 //-----------------------------------------------------------------------------
1394 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1395 {
1396 int c;
1397 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1398 AT91C_BASE_SSC->SSC_THR = 0x00;
1399 FpgaSetupSsc();
1400
1401 if (wait)
1402 {
1403 if(*wait < 10) *wait = 10;
1404
1405 for(c = 0; c < *wait;) {
1406 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1407 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1408 c++;
1409 }
1410 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1411 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1412 (void)r;
1413 }
1414 WDT_HIT();
1415 }
1416
1417 }
1418
1419
1420 uint8_t sendbyte;
1421 bool firstpart = TRUE;
1422 c = 0;
1423 for(;;) {
1424 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1425
1426 // DOUBLE THE SAMPLES!
1427 if(firstpart) {
1428 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1429 }
1430 else {
1431 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1432 c++;
1433 }
1434 if(sendbyte == 0xff) {
1435 sendbyte = 0xfe;
1436 }
1437 AT91C_BASE_SSC->SSC_THR = sendbyte;
1438 firstpart = !firstpart;
1439
1440 if(c >= len) {
1441 break;
1442 }
1443 }
1444 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1445 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1446 (void)r;
1447 }
1448 WDT_HIT();
1449 }
1450 if (samples && wait) *samples = (c + *wait) << 3;
1451 }
1452
1453
1454 //-----------------------------------------------------------------------------
1455 // Prepare iClass reader command to send to FPGA
1456 //-----------------------------------------------------------------------------
1457 void CodeIClassCommand(const uint8_t * cmd, int len)
1458 {
1459 int i, j, k;
1460 uint8_t b;
1461
1462 ToSendReset();
1463
1464 // Start of Communication: 1 out of 4
1465 ToSend[++ToSendMax] = 0xf0;
1466 ToSend[++ToSendMax] = 0x00;
1467 ToSend[++ToSendMax] = 0x0f;
1468 ToSend[++ToSendMax] = 0x00;
1469
1470 // Modulate the bytes
1471 for (i = 0; i < len; i++) {
1472 b = cmd[i];
1473 for(j = 0; j < 4; j++) {
1474 for(k = 0; k < 4; k++) {
1475 if(k == (b & 3)) {
1476 ToSend[++ToSendMax] = 0x0f;
1477 }
1478 else {
1479 ToSend[++ToSendMax] = 0x00;
1480 }
1481 }
1482 b >>= 2;
1483 }
1484 }
1485
1486 // End of Communication
1487 ToSend[++ToSendMax] = 0x00;
1488 ToSend[++ToSendMax] = 0x00;
1489 ToSend[++ToSendMax] = 0xf0;
1490 ToSend[++ToSendMax] = 0x00;
1491
1492 // Convert from last character reference to length
1493 ToSendMax++;
1494 }
1495
1496 void ReaderTransmitIClass(uint8_t* frame, int len)
1497 {
1498 int wait = 0;
1499 int samples = 0;
1500
1501 // This is tied to other size changes
1502 CodeIClassCommand(frame,len);
1503
1504 // Select the card
1505 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1506 if(trigger)
1507 LED_A_ON();
1508
1509 // Store reader command in buffer
1510 if (tracing) {
1511 uint8_t par[MAX_PARITY_SIZE];
1512 GetParity(frame, len, par);
1513 LogTrace(frame, len, rsamples, rsamples, par, TRUE);
1514 }
1515 }
1516
1517 //-----------------------------------------------------------------------------
1518 // Wait a certain time for tag response
1519 // If a response is captured return TRUE
1520 // If it takes too long return FALSE
1521 //-----------------------------------------------------------------------------
1522 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1523 {
1524 // buffer needs to be 512 bytes
1525 int c;
1526
1527 // Set FPGA mode to "reader listen mode", no modulation (listen
1528 // only, since we are receiving, not transmitting).
1529 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1530
1531 // Now get the answer from the card
1532 Demod.output = receivedResponse;
1533 Demod.len = 0;
1534 Demod.state = DEMOD_UNSYNCD;
1535
1536 uint8_t b;
1537 if (elapsed) *elapsed = 0;
1538
1539 bool skip = FALSE;
1540
1541 c = 0;
1542 for(;;) {
1543 WDT_HIT();
1544
1545 if(BUTTON_PRESS()) return FALSE;
1546
1547 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1548 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1549 if (elapsed) (*elapsed)++;
1550 }
1551 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1552 if(c < timeout) { c++; } else { return FALSE; }
1553 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1554 skip = !skip;
1555 if(skip) continue;
1556
1557 if(ManchesterDecoding(b & 0x0f)) {
1558 *samples = c << 3;
1559 return TRUE;
1560 }
1561 }
1562 }
1563 }
1564
1565 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1566 {
1567 int samples = 0;
1568 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
1569 rsamples += samples;
1570 if (tracing) {
1571 uint8_t parity[MAX_PARITY_SIZE];
1572 GetParity(receivedAnswer, Demod.len, parity);
1573 LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE);
1574 }
1575 if(samples == 0) return FALSE;
1576 return Demod.len;
1577 }
1578
1579 void setupIclassReader()
1580 {
1581 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1582 // Reset trace buffer
1583 set_tracing(TRUE);
1584 clear_trace();
1585
1586 // Setup SSC
1587 FpgaSetupSsc();
1588 // Start from off (no field generated)
1589 // Signal field is off with the appropriate LED
1590 LED_D_OFF();
1591 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1592 SpinDelay(200);
1593
1594 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1595
1596 // Now give it time to spin up.
1597 // Signal field is on with the appropriate LED
1598 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1599 SpinDelay(200);
1600 LED_A_ON();
1601
1602 }
1603
1604 bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
1605 {
1606 while(retries-- > 0)
1607 {
1608 ReaderTransmitIClass(command, cmdsize);
1609 if(expected_size == ReaderReceiveIClass(resp)){
1610 return true;
1611 }
1612 }
1613 return false;//Error
1614 }
1615
1616 /**
1617 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1618 * @param card_data where the CSN and CC are stored for return
1619 * @return 0 = fail
1620 * 1 = Got CSN
1621 * 2 = Got CSN and CC
1622 */
1623 uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key)
1624 {
1625 static uint8_t act_all[] = { 0x0a };
1626 //static uint8_t identify[] = { 0x0c };
1627 static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
1628 static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1629 static uint8_t readcheck_cc[]= { 0x88, 0x02 };
1630 if (use_credit_key)
1631 readcheck_cc[0] = 0x18;
1632 else
1633 readcheck_cc[0] = 0x88;
1634
1635 uint8_t resp[ICLASS_BUFFER_SIZE];
1636
1637 uint8_t read_status = 0;
1638
1639 // Send act_all
1640 ReaderTransmitIClass(act_all, 1);
1641 // Card present?
1642 if(!ReaderReceiveIClass(resp)) return read_status;//Fail
1643 //Send Identify
1644 ReaderTransmitIClass(identify, 1);
1645 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1646 uint8_t len = ReaderReceiveIClass(resp);
1647 if(len != 10) return read_status;//Fail
1648
1649 //Copy the Anti-collision CSN to our select-packet
1650 memcpy(&select[1],resp,8);
1651 //Select the card
1652 ReaderTransmitIClass(select, sizeof(select));
1653 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1654 len = ReaderReceiveIClass(resp);
1655 if(len != 10) return read_status;//Fail
1656
1657 //Success - level 1, we got CSN
1658 //Save CSN in response data
1659 memcpy(card_data,resp,8);
1660
1661 //Flag that we got to at least stage 1, read CSN
1662 read_status = 1;
1663
1664 // Card selected, now read e-purse (cc)
1665 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1666 if(ReaderReceiveIClass(resp) == 8) {
1667 //Save CC (e-purse) in response data
1668 memcpy(card_data+8,resp,8);
1669 read_status++;
1670 }
1671
1672 return read_status;
1673 }
1674 uint8_t handshakeIclassTag(uint8_t *card_data){
1675 return handshakeIclassTag_ext(card_data, false);
1676 }
1677
1678
1679 // Reader iClass Anticollission
1680 void ReaderIClass(uint8_t arg0) {
1681
1682 uint8_t card_data[6 * 8]={0};
1683 memset(card_data, 0xFF, sizeof(card_data));
1684 uint8_t last_csn[8]={0};
1685
1686 //Read conf block CRC(0x01) => 0xfa 0x22
1687 uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22};
1688 //Read conf block CRC(0x05) => 0xde 0x64
1689 uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64};
1690
1691
1692 int read_status= 0;
1693 uint8_t result_status = 0;
1694 bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
1695 bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
1696 bool use_credit_key = false;
1697 if (arg0 & FLAG_ICLASS_READER_CEDITKEY)
1698 use_credit_key = true;
1699 set_tracing(TRUE);
1700 setupIclassReader();
1701
1702 uint16_t tryCnt=0;
1703 while(!BUTTON_PRESS())
1704 {
1705 if (try_once && tryCnt > 5) break;
1706 tryCnt++;
1707 if(!tracing) {
1708 DbpString("Trace full");
1709 break;
1710 }
1711 WDT_HIT();
1712
1713 read_status = handshakeIclassTag_ext(card_data, use_credit_key);
1714
1715 if(read_status == 0) continue;
1716 if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
1717 if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC;
1718
1719 // handshakeIclass returns CSN|CC, but the actual block
1720 // layout is CSN|CONFIG|CC, so here we reorder the data,
1721 // moving CC forward 8 bytes
1722 memcpy(card_data+16,card_data+8, 8);
1723 //Read block 1, config
1724 if(arg0 & FLAG_ICLASS_READER_CONF)
1725 {
1726 if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf),card_data+8, 10, 10))
1727 {
1728 result_status |= FLAG_ICLASS_READER_CONF;
1729 } else {
1730 Dbprintf("Failed to dump config block");
1731 }
1732 }
1733
1734 //Read block 5, AA
1735 if(arg0 & FLAG_ICLASS_READER_AA){
1736 if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA),card_data+(8*4), 10, 10))
1737 {
1738 result_status |= FLAG_ICLASS_READER_AA;
1739 } else {
1740 //Dbprintf("Failed to dump AA block");
1741 }
1742 }
1743
1744 // 0 : CSN
1745 // 1 : Configuration
1746 // 2 : e-purse
1747 // (3,4 write-only, kc and kd)
1748 // 5 Application issuer area
1749 //
1750 //Then we can 'ship' back the 8 * 5 bytes of data,
1751 // with 0xFF:s in block 3 and 4.
1752
1753 LED_B_ON();
1754 //Send back to client, but don't bother if we already sent this
1755 if(memcmp(last_csn, card_data, 8) != 0)
1756 {
1757 // If caller requires that we get CC, continue until we got it
1758 if( (arg0 & read_status & FLAG_ICLASS_READER_CC) || !(arg0 & FLAG_ICLASS_READER_CC))
1759 {
1760 cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data));
1761 if(abort_after_read) {
1762 LED_A_OFF();
1763 return;
1764 }
1765 //Save that we already sent this....
1766 memcpy(last_csn, card_data, 8);
1767 }
1768
1769 }
1770 LED_B_OFF();
1771 }
1772 cmd_send(CMD_ACK,0,0,0,card_data, 0);
1773 LED_A_OFF();
1774 }
1775
1776 void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
1777
1778 uint8_t card_data[USB_CMD_DATA_SIZE]={0};
1779 uint16_t block_crc_LUT[255] = {0};
1780
1781 {//Generate a lookup table for block crc
1782 for(int block = 0; block < 255; block++){
1783 char bl = block;
1784 block_crc_LUT[block] = iclass_crc16(&bl ,1);
1785 }
1786 }
1787 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1788
1789 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1790 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1791
1792 uint16_t crc = 0;
1793 uint8_t cardsize=0;
1794 uint8_t mem=0;
1795
1796 static struct memory_t{
1797 int k16;
1798 int book;
1799 int k2;
1800 int lockauth;
1801 int keyaccess;
1802 } memory;
1803
1804 uint8_t resp[ICLASS_BUFFER_SIZE];
1805
1806 setupIclassReader();
1807 set_tracing(TRUE);
1808
1809 while(!BUTTON_PRESS()) {
1810
1811 WDT_HIT();
1812
1813 if(!tracing) {
1814 DbpString("Trace full");
1815 break;
1816 }
1817
1818 uint8_t read_status = handshakeIclassTag(card_data);
1819 if(read_status < 2) continue;
1820
1821 //for now replay captured auth (as cc not updated)
1822 memcpy(check+5,MAC,4);
1823
1824 if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
1825 {
1826 Dbprintf("Error: Authentication Fail!");
1827 continue;
1828 }
1829
1830 //first get configuration block (block 1)
1831 crc = block_crc_LUT[1];
1832 read[1]=1;
1833 read[2] = crc >> 8;
1834 read[3] = crc & 0xff;
1835
1836 if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
1837 {
1838 Dbprintf("Dump config (block 1) failed");
1839 continue;
1840 }
1841
1842 mem=resp[5];
1843 memory.k16= (mem & 0x80);
1844 memory.book= (mem & 0x20);
1845 memory.k2= (mem & 0x8);
1846 memory.lockauth= (mem & 0x2);
1847 memory.keyaccess= (mem & 0x1);
1848
1849 cardsize = memory.k16 ? 255 : 32;
1850 WDT_HIT();
1851 //Set card_data to all zeroes, we'll fill it with data
1852 memset(card_data,0x0,USB_CMD_DATA_SIZE);
1853 uint8_t failedRead =0;
1854 uint32_t stored_data_length =0;
1855 //then loop around remaining blocks
1856 for(int block=0; block < cardsize; block++){
1857
1858 read[1]= block;
1859 crc = block_crc_LUT[block];
1860 read[2] = crc >> 8;
1861 read[3] = crc & 0xff;
1862
1863 if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
1864 {
1865 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1866 block, resp[0], resp[1], resp[2],
1867 resp[3], resp[4], resp[5],
1868 resp[6], resp[7]);
1869
1870 //Fill up the buffer
1871 memcpy(card_data+stored_data_length,resp,8);
1872 stored_data_length += 8;
1873 if(stored_data_length +8 > USB_CMD_DATA_SIZE)
1874 {//Time to send this off and start afresh
1875 cmd_send(CMD_ACK,
1876 stored_data_length,//data length
1877 failedRead,//Failed blocks?
1878 0,//Not used ATM
1879 card_data, stored_data_length);
1880 //reset
1881 stored_data_length = 0;
1882 failedRead = 0;
1883 }
1884
1885 }else{
1886 failedRead = 1;
1887 stored_data_length +=8;//Otherwise, data becomes misaligned
1888 Dbprintf("Failed to dump block %d", block);
1889 }
1890 }
1891
1892 //Send off any remaining data
1893 if(stored_data_length > 0)
1894 {
1895 cmd_send(CMD_ACK,
1896 stored_data_length,//data length
1897 failedRead,//Failed blocks?
1898 0,//Not used ATM
1899 card_data, stored_data_length);
1900 }
1901 //If we got here, let's break
1902 break;
1903 }
1904 //Signal end of transmission
1905 cmd_send(CMD_ACK,
1906 0,//data length
1907 0,//Failed blocks?
1908 0,//Not used ATM
1909 card_data, 0);
1910
1911 LED_A_OFF();
1912 }
1913
1914 void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
1915 uint8_t readcheck[] = { keyType, blockNo };
1916 uint8_t resp[] = {0,0,0,0,0,0,0,0};
1917 size_t isOK = 0;
1918 isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
1919 cmd_send(CMD_ACK,isOK,0,0,0,0);
1920 }
1921
1922 void iClass_Authentication(uint8_t *MAC) {
1923 uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1924 uint8_t resp[ICLASS_BUFFER_SIZE];
1925 memcpy(check+5,MAC,4);
1926 bool isOK;
1927 isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
1928 cmd_send(CMD_ACK,isOK,0,0,0,0);
1929 }
1930 bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
1931 uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1932 char bl = blockNo;
1933 uint16_t rdCrc = iclass_crc16(&bl, 1);
1934 readcmd[2] = rdCrc >> 8;
1935 readcmd[3] = rdCrc & 0xff;
1936 uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
1937 bool isOK = false;
1938
1939 //readcmd[1] = blockNo;
1940 isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10);
1941 memcpy(readdata, resp, sizeof(resp));
1942
1943 return isOK;
1944 }
1945
1946 void iClass_ReadBlk(uint8_t blockno) {
1947 uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
1948 bool isOK = false;
1949 isOK = iClass_ReadBlock(blockno, readblockdata);
1950 cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
1951 }
1952
1953 void iClass_Dump(uint8_t blockno, uint8_t numblks) {
1954 uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
1955 bool isOK = false;
1956 uint8_t blkCnt = 0;
1957
1958 BigBuf_free();
1959 uint8_t *dataout = BigBuf_malloc(255*8);
1960 if (dataout == NULL){
1961 Dbprintf("out of memory");
1962 OnError(1);
1963 return;
1964 }
1965 memset(dataout,0xFF,255*8);
1966
1967 for (;blkCnt < numblks; blkCnt++) {
1968 isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
1969 if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
1970 isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
1971 if (!isOK) {
1972 Dbprintf("Block %02X failed to read", blkCnt+blockno);
1973 break;
1974 }
1975 }
1976 memcpy(dataout+(blkCnt*8),readblockdata,8);
1977 }
1978 //return pointer to dump memory in arg3
1979 cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0);
1980 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1981 LEDsoff();
1982 BigBuf_free();
1983 }
1984
1985 bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
1986 uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1987 //uint8_t readblockdata[10];
1988 //write[1] = blockNo;
1989 memcpy(write+2, data, 12); // data + mac
1990 uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
1991 bool isOK;
1992 isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
1993 if (isOK) {
1994 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
1995 if (memcmp(write+2,resp,8)) {
1996 //error try again
1997 isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
1998 }
1999 }
2000 return isOK;
2001 }
2002
2003 void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
2004 bool isOK = iClass_WriteBlock_ext(blockNo, data);
2005 if (isOK){
2006 Dbprintf("Write block [%02x] successful",blockNo);
2007 } else {
2008 Dbprintf("Write block [%02x] failed",blockNo);
2009 }
2010 cmd_send(CMD_ACK,isOK,0,0,0,0);
2011 }
2012
2013 void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
2014 int i;
2015 int written = 0;
2016 int total_block = (endblock - startblock) + 1;
2017 for (i = 0; i < total_block;i++){
2018 // block number
2019 if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
2020 Dbprintf("Write block [%02x] successful",i + startblock);
2021 written++;
2022 } else {
2023 if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
2024 Dbprintf("Write block [%02x] successful",i + startblock);
2025 written++;
2026 } else {
2027 Dbprintf("Write block [%02x] failed",i + startblock);
2028 }
2029 }
2030 }
2031 if (written == total_block)
2032 Dbprintf("Clone complete");
2033 else
2034 Dbprintf("Clone incomplete");
2035
2036 cmd_send(CMD_ACK,1,0,0,0,0);
2037 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2038 LEDsoff();
2039 }
Impressum, Datenschutz