]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Added undec to un-decimate data on the client side, so we can use all those sweet...
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #ifdef WITH_LCD
28 #include "LCD.h"
29 #endif
30
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend[TOSEND_BUFFER_SIZE];
41 int ToSendMax;
42 static int ToSendBit;
43 struct common_area common_area __attribute__((section(".commonarea")));
44
45 void BufferClear(void)
46 {
47 memset(BigBuf,0,sizeof(BigBuf));
48 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
49 }
50
51 void ToSendReset(void)
52 {
53 ToSendMax = -1;
54 ToSendBit = 8;
55 }
56
57 void ToSendStuffBit(int b)
58 {
59 if(ToSendBit >= 8) {
60 ToSendMax++;
61 ToSend[ToSendMax] = 0;
62 ToSendBit = 0;
63 }
64
65 if(b) {
66 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
67 }
68
69 ToSendBit++;
70
71 if(ToSendMax >= sizeof(ToSend)) {
72 ToSendBit = 0;
73 DbpString("ToSendStuffBit overflowed!");
74 }
75 }
76
77 //=============================================================================
78 // Debug print functions, to go out over USB, to the usual PC-side client.
79 //=============================================================================
80
81 void DbpString(char *str)
82 {
83 byte_t len = strlen(str);
84 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
85 }
86
87 #if 0
88 void DbpIntegers(int x1, int x2, int x3)
89 {
90 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
91 }
92 #endif
93
94 void Dbprintf(const char *fmt, ...) {
95 // should probably limit size here; oh well, let's just use a big buffer
96 char output_string[128];
97 va_list ap;
98
99 va_start(ap, fmt);
100 kvsprintf(fmt, output_string, 10, ap);
101 va_end(ap);
102
103 DbpString(output_string);
104 }
105
106 // prints HEX & ASCII
107 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
108 int l=0,i;
109 char ascii[9];
110
111 while (len>0) {
112 if (len>8) l=8;
113 else l=len;
114
115 memcpy(ascii,d,l);
116 ascii[l]=0;
117
118 // filter safe ascii
119 for (i=0;i<l;i++)
120 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
121
122 if (bAsci) {
123 Dbprintf("%-8s %*D",ascii,l,d," ");
124 } else {
125 Dbprintf("%*D",l,d," ");
126 }
127
128 len-=8;
129 d+=8;
130 }
131 }
132
133 //-----------------------------------------------------------------------------
134 // Read an ADC channel and block till it completes, then return the result
135 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 // return that.
137 //-----------------------------------------------------------------------------
138 static int ReadAdc(int ch)
139 {
140 uint32_t d;
141
142 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
143 AT91C_BASE_ADC->ADC_MR =
144 ADC_MODE_PRESCALE(32) |
145 ADC_MODE_STARTUP_TIME(16) |
146 ADC_MODE_SAMPLE_HOLD_TIME(8);
147 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
148
149 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
150 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
151 ;
152 d = AT91C_BASE_ADC->ADC_CDR[ch];
153
154 return d;
155 }
156
157 int AvgAdc(int ch) // was static - merlok
158 {
159 int i;
160 int a = 0;
161
162 for(i = 0; i < 32; i++) {
163 a += ReadAdc(ch);
164 }
165
166 return (a + 15) >> 5;
167 }
168
169 void MeasureAntennaTuning(void)
170 {
171 uint8_t LF_Results[256];
172 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
173 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
174
175 LED_B_ON();
176
177 /*
178 * Sweeps the useful LF range of the proxmark from
179 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
180 * read the voltage in the antenna, the result left
181 * in the buffer is a graph which should clearly show
182 * the resonating frequency of your LF antenna
183 * ( hopefully around 95 if it is tuned to 125kHz!)
184 */
185
186 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
187 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
188 for (i=255; i>=19; i--) {
189 WDT_HIT();
190 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
191 SpinDelay(20);
192 // Vref = 3.3V, and a 10000:240 voltage divider on the input
193 // can measure voltages up to 137500 mV
194 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
195 if (i==95) vLf125 = adcval; // voltage at 125Khz
196 if (i==89) vLf134 = adcval; // voltage at 134Khz
197
198 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
199 if(LF_Results[i] > peak) {
200 peakv = adcval;
201 peak = LF_Results[i];
202 peakf = i;
203 //ptr = i;
204 }
205 }
206
207 for (i=18; i >= 0; i--) LF_Results[i] = 0;
208
209 LED_A_ON();
210 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
211 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
213 SpinDelay(20);
214 // Vref = 3300mV, and an 10:1 voltage divider on the input
215 // can measure voltages up to 33000 mV
216 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
217
218 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),LF_Results,256);
219 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
220 LED_A_OFF();
221 LED_B_OFF();
222 return;
223 }
224
225 void MeasureAntennaTuningHf(void)
226 {
227 int vHf = 0; // in mV
228
229 DbpString("Measuring HF antenna, press button to exit");
230
231 for (;;) {
232 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
233 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
234 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
235 SpinDelay(20);
236 // Vref = 3300mV, and an 10:1 voltage divider on the input
237 // can measure voltages up to 33000 mV
238 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
239
240 Dbprintf("%d mV",vHf);
241 if (BUTTON_PRESS()) break;
242 }
243 DbpString("cancelled");
244 }
245
246
247 void SimulateTagHfListen(void)
248 {
249 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
250 uint8_t v = 0;
251 int i;
252 int p = 0;
253
254 // We're using this mode just so that I can test it out; the simulated
255 // tag mode would work just as well and be simpler.
256 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
257 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
258
259 // We need to listen to the high-frequency, peak-detected path.
260 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
261
262 FpgaSetupSsc();
263
264 i = 0;
265 for(;;) {
266 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
267 AT91C_BASE_SSC->SSC_THR = 0xff;
268 }
269 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
270 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
271
272 v <<= 1;
273 if(r & 1) {
274 v |= 1;
275 }
276 p++;
277
278 if(p >= 8) {
279 dest[i] = v;
280 v = 0;
281 p = 0;
282 i++;
283
284 if(i >= FREE_BUFFER_SIZE) {
285 break;
286 }
287 }
288 }
289 }
290 DbpString("simulate tag (now type bitsamples)");
291 }
292
293 void ReadMem(int addr)
294 {
295 const uint8_t *data = ((uint8_t *)addr);
296
297 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
298 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
299 }
300
301 /* osimage version information is linked in */
302 extern struct version_information version_information;
303 /* bootrom version information is pointed to from _bootphase1_version_pointer */
304 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
305 void SendVersion(void)
306 {
307 char temp[512]; /* Limited data payload in USB packets */
308 DbpString("Prox/RFID mark3 RFID instrument");
309
310 /* Try to find the bootrom version information. Expect to find a pointer at
311 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
312 * pointer, then use it.
313 */
314 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
315 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
316 DbpString("bootrom version information appears invalid");
317 } else {
318 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
319 DbpString(temp);
320 }
321
322 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
323 DbpString(temp);
324
325 FpgaGatherVersion(temp, sizeof(temp));
326 DbpString(temp);
327 // Send Chip ID
328 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
329 }
330
331 #ifdef WITH_LF
332 // samy's sniff and repeat routine
333 void SamyRun()
334 {
335 DbpString("Stand-alone mode! No PC necessary.");
336 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
337
338 // 3 possible options? no just 2 for now
339 #define OPTS 2
340
341 int high[OPTS], low[OPTS];
342
343 // Oooh pretty -- notify user we're in elite samy mode now
344 LED(LED_RED, 200);
345 LED(LED_ORANGE, 200);
346 LED(LED_GREEN, 200);
347 LED(LED_ORANGE, 200);
348 LED(LED_RED, 200);
349 LED(LED_ORANGE, 200);
350 LED(LED_GREEN, 200);
351 LED(LED_ORANGE, 200);
352 LED(LED_RED, 200);
353
354 int selected = 0;
355 int playing = 0;
356 int cardRead = 0;
357
358 // Turn on selected LED
359 LED(selected + 1, 0);
360
361 for (;;)
362 {
363 usb_poll();
364 WDT_HIT();
365
366 // Was our button held down or pressed?
367 int button_pressed = BUTTON_HELD(1000);
368 SpinDelay(300);
369
370 // Button was held for a second, begin recording
371 if (button_pressed > 0 && cardRead == 0)
372 {
373 LEDsoff();
374 LED(selected + 1, 0);
375 LED(LED_RED2, 0);
376
377 // record
378 DbpString("Starting recording");
379
380 // wait for button to be released
381 while(BUTTON_PRESS())
382 WDT_HIT();
383
384 /* need this delay to prevent catching some weird data */
385 SpinDelay(500);
386
387 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
388 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
389
390 LEDsoff();
391 LED(selected + 1, 0);
392 // Finished recording
393
394 // If we were previously playing, set playing off
395 // so next button push begins playing what we recorded
396 playing = 0;
397
398 cardRead = 1;
399
400 }
401
402 else if (button_pressed > 0 && cardRead == 1)
403 {
404 LEDsoff();
405 LED(selected + 1, 0);
406 LED(LED_ORANGE, 0);
407
408 // record
409 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
410
411 // wait for button to be released
412 while(BUTTON_PRESS())
413 WDT_HIT();
414
415 /* need this delay to prevent catching some weird data */
416 SpinDelay(500);
417
418 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
419 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
420
421 LEDsoff();
422 LED(selected + 1, 0);
423 // Finished recording
424
425 // If we were previously playing, set playing off
426 // so next button push begins playing what we recorded
427 playing = 0;
428
429 cardRead = 0;
430
431 }
432
433 // Change where to record (or begin playing)
434 else if (button_pressed)
435 {
436 // Next option if we were previously playing
437 if (playing)
438 selected = (selected + 1) % OPTS;
439 playing = !playing;
440
441 LEDsoff();
442 LED(selected + 1, 0);
443
444 // Begin transmitting
445 if (playing)
446 {
447 LED(LED_GREEN, 0);
448 DbpString("Playing");
449 // wait for button to be released
450 while(BUTTON_PRESS())
451 WDT_HIT();
452 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
453 CmdHIDsimTAG(high[selected], low[selected], 0);
454 DbpString("Done playing");
455 if (BUTTON_HELD(1000) > 0)
456 {
457 DbpString("Exiting");
458 LEDsoff();
459 return;
460 }
461
462 /* We pressed a button so ignore it here with a delay */
463 SpinDelay(300);
464
465 // when done, we're done playing, move to next option
466 selected = (selected + 1) % OPTS;
467 playing = !playing;
468 LEDsoff();
469 LED(selected + 1, 0);
470 }
471 else
472 while(BUTTON_PRESS())
473 WDT_HIT();
474 }
475 }
476 }
477 #endif
478
479 /*
480 OBJECTIVE
481 Listen and detect an external reader. Determine the best location
482 for the antenna.
483
484 INSTRUCTIONS:
485 Inside the ListenReaderField() function, there is two mode.
486 By default, when you call the function, you will enter mode 1.
487 If you press the PM3 button one time, you will enter mode 2.
488 If you press the PM3 button a second time, you will exit the function.
489
490 DESCRIPTION OF MODE 1:
491 This mode just listens for an external reader field and lights up green
492 for HF and/or red for LF. This is the original mode of the detectreader
493 function.
494
495 DESCRIPTION OF MODE 2:
496 This mode will visually represent, using the LEDs, the actual strength of the
497 current compared to the maximum current detected. Basically, once you know
498 what kind of external reader is present, it will help you spot the best location to place
499 your antenna. You will probably not get some good results if there is a LF and a HF reader
500 at the same place! :-)
501
502 LIGHT SCHEME USED:
503 */
504 static const char LIGHT_SCHEME[] = {
505 0x0, /* ---- | No field detected */
506 0x1, /* X--- | 14% of maximum current detected */
507 0x2, /* -X-- | 29% of maximum current detected */
508 0x4, /* --X- | 43% of maximum current detected */
509 0x8, /* ---X | 57% of maximum current detected */
510 0xC, /* --XX | 71% of maximum current detected */
511 0xE, /* -XXX | 86% of maximum current detected */
512 0xF, /* XXXX | 100% of maximum current detected */
513 };
514 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
515
516 void ListenReaderField(int limit)
517 {
518 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
519 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
520 int mode=1, display_val, display_max, i;
521
522 #define LF_ONLY 1
523 #define HF_ONLY 2
524
525 LEDsoff();
526
527 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
528
529 if(limit != HF_ONLY) {
530 Dbprintf("LF 125/134 Baseline: %d", lf_av);
531 lf_baseline = lf_av;
532 }
533
534 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
535
536 if (limit != LF_ONLY) {
537 Dbprintf("HF 13.56 Baseline: %d", hf_av);
538 hf_baseline = hf_av;
539 }
540
541 for(;;) {
542 if (BUTTON_PRESS()) {
543 SpinDelay(500);
544 switch (mode) {
545 case 1:
546 mode=2;
547 DbpString("Signal Strength Mode");
548 break;
549 case 2:
550 default:
551 DbpString("Stopped");
552 LEDsoff();
553 return;
554 break;
555 }
556 }
557 WDT_HIT();
558
559 if (limit != HF_ONLY) {
560 if(mode==1) {
561 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
562 else LED_D_OFF();
563 }
564
565 ++lf_count;
566 lf_av_new= ReadAdc(ADC_CHAN_LF);
567 // see if there's a significant change
568 if(abs(lf_av - lf_av_new) > 10) {
569 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
570 lf_av = lf_av_new;
571 if (lf_av > lf_max)
572 lf_max = lf_av;
573 lf_count= 0;
574 }
575 }
576
577 if (limit != LF_ONLY) {
578 if (mode == 1){
579 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
580 else LED_B_OFF();
581 }
582
583 ++hf_count;
584 hf_av_new= ReadAdc(ADC_CHAN_HF);
585 // see if there's a significant change
586 if(abs(hf_av - hf_av_new) > 10) {
587 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
588 hf_av = hf_av_new;
589 if (hf_av > hf_max)
590 hf_max = hf_av;
591 hf_count= 0;
592 }
593 }
594
595 if(mode == 2) {
596 if (limit == LF_ONLY) {
597 display_val = lf_av;
598 display_max = lf_max;
599 } else if (limit == HF_ONLY) {
600 display_val = hf_av;
601 display_max = hf_max;
602 } else { /* Pick one at random */
603 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
604 display_val = hf_av;
605 display_max = hf_max;
606 } else {
607 display_val = lf_av;
608 display_max = lf_max;
609 }
610 }
611 for (i=0; i<LIGHT_LEN; i++) {
612 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
613 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
614 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
615 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
616 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
617 break;
618 }
619 }
620 }
621 }
622 }
623
624 void UsbPacketReceived(uint8_t *packet, int len)
625 {
626 UsbCommand *c = (UsbCommand *)packet;
627
628 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
629
630 switch(c->cmd) {
631 #ifdef WITH_LF
632 case CMD_SET_LF_SAMPLING_CONFIG:
633 setSamplingConfig((sample_config *) c->d.asBytes);
634 break;
635 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
636 cmd_send(CMD_ACK,SampleLF(),0,0,0,0);
637 break;
638 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
639 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
640 break;
641 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
642 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
643 break;
644 case CMD_HID_DEMOD_FSK:
645 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
646 break;
647 case CMD_HID_SIM_TAG:
648 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
649 break;
650 case CMD_HID_CLONE_TAG:
651 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
652 break;
653 case CMD_IO_DEMOD_FSK:
654 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
655 break;
656 case CMD_IO_CLONE_TAG:
657 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
658 break;
659 case CMD_EM410X_DEMOD:
660 CmdEM410xdemod(c->arg[0], 0, 0, 1);
661 break;
662 case CMD_EM410X_WRITE_TAG:
663 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
664 break;
665 case CMD_READ_TI_TYPE:
666 ReadTItag();
667 break;
668 case CMD_WRITE_TI_TYPE:
669 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
670 break;
671 case CMD_SIMULATE_TAG_125K:
672 LED_A_ON();
673 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
674 LED_A_OFF();
675 break;
676 case CMD_LF_SIMULATE_BIDIR:
677 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
678 break;
679 case CMD_INDALA_CLONE_TAG:
680 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
681 break;
682 case CMD_INDALA_CLONE_TAG_L:
683 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
684 break;
685 case CMD_T55XX_READ_BLOCK:
686 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
687 break;
688 case CMD_T55XX_WRITE_BLOCK:
689 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
690 break;
691 case CMD_T55XX_READ_TRACE:
692 T55xxReadTrace();
693 break;
694 case CMD_PCF7931_READ:
695 ReadPCF7931();
696 cmd_send(CMD_ACK,0,0,0,0,0);
697 break;
698 case CMD_EM4X_READ_WORD:
699 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
700 break;
701 case CMD_EM4X_WRITE_WORD:
702 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
703 break;
704 #endif
705
706 #ifdef WITH_HITAG
707 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
708 SnoopHitag(c->arg[0]);
709 break;
710 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
711 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
712 break;
713 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
714 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
715 break;
716 #endif
717
718 #ifdef WITH_ISO15693
719 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
720 AcquireRawAdcSamplesIso15693();
721 break;
722 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
723 RecordRawAdcSamplesIso15693();
724 break;
725
726 case CMD_ISO_15693_COMMAND:
727 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
728 break;
729
730 case CMD_ISO_15693_FIND_AFI:
731 BruteforceIso15693Afi(c->arg[0]);
732 break;
733
734 case CMD_ISO_15693_DEBUG:
735 SetDebugIso15693(c->arg[0]);
736 break;
737
738 case CMD_READER_ISO_15693:
739 ReaderIso15693(c->arg[0]);
740 break;
741 case CMD_SIMTAG_ISO_15693:
742 SimTagIso15693(c->arg[0], c->d.asBytes);
743 break;
744 #endif
745
746 #ifdef WITH_LEGICRF
747 case CMD_SIMULATE_TAG_LEGIC_RF:
748 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
749 break;
750
751 case CMD_WRITER_LEGIC_RF:
752 LegicRfWriter(c->arg[1], c->arg[0]);
753 break;
754
755 case CMD_READER_LEGIC_RF:
756 LegicRfReader(c->arg[0], c->arg[1]);
757 break;
758 #endif
759
760 #ifdef WITH_ISO14443b
761 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
762 AcquireRawAdcSamplesIso14443(c->arg[0]);
763 break;
764 case CMD_READ_SRI512_TAG:
765 ReadSTMemoryIso14443(0x0F);
766 break;
767 case CMD_READ_SRIX4K_TAG:
768 ReadSTMemoryIso14443(0x7F);
769 break;
770 case CMD_SNOOP_ISO_14443:
771 SnoopIso14443();
772 break;
773 case CMD_SIMULATE_TAG_ISO_14443:
774 SimulateIso14443Tag();
775 break;
776 case CMD_ISO_14443B_COMMAND:
777 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
778 break;
779 #endif
780
781 #ifdef WITH_ISO14443a
782 case CMD_SNOOP_ISO_14443a:
783 SnoopIso14443a(c->arg[0]);
784 break;
785 case CMD_READER_ISO_14443a:
786 ReaderIso14443a(c);
787 break;
788 case CMD_SIMULATE_TAG_ISO_14443a:
789 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
790 break;
791
792 case CMD_EPA_PACE_COLLECT_NONCE:
793 EPA_PACE_Collect_Nonce(c);
794 break;
795
796 case CMD_READER_MIFARE:
797 ReaderMifare(c->arg[0]);
798 break;
799 case CMD_MIFARE_READBL:
800 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
801 break;
802 case CMD_MIFAREU_READBL:
803 MifareUReadBlock(c->arg[0],c->d.asBytes);
804 break;
805 case CMD_MIFAREU_READCARD:
806 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
807 break;
808 case CMD_MIFARE_READSC:
809 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
810 break;
811 case CMD_MIFARE_WRITEBL:
812 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
813 break;
814 case CMD_MIFAREU_WRITEBL_COMPAT:
815 MifareUWriteBlock(c->arg[0], c->d.asBytes);
816 break;
817 case CMD_MIFAREU_WRITEBL:
818 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
819 break;
820 case CMD_MIFARE_NESTED:
821 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
822 break;
823 case CMD_MIFARE_CHKKEYS:
824 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
825 break;
826 case CMD_SIMULATE_MIFARE_CARD:
827 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
828 break;
829
830 // emulator
831 case CMD_MIFARE_SET_DBGMODE:
832 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
833 break;
834 case CMD_MIFARE_EML_MEMCLR:
835 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
836 break;
837 case CMD_MIFARE_EML_MEMSET:
838 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
839 break;
840 case CMD_MIFARE_EML_MEMGET:
841 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
842 break;
843 case CMD_MIFARE_EML_CARDLOAD:
844 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
845 break;
846
847 // Work with "magic Chinese" card
848 case CMD_MIFARE_CSETBLOCK:
849 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
850 break;
851 case CMD_MIFARE_CGETBLOCK:
852 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
853 break;
854 case CMD_MIFARE_CIDENT:
855 MifareCIdent();
856 break;
857
858 // mifare sniffer
859 case CMD_MIFARE_SNIFFER:
860 SniffMifare(c->arg[0]);
861 break;
862 #endif
863
864 #ifdef WITH_ICLASS
865 // Makes use of ISO14443a FPGA Firmware
866 case CMD_SNOOP_ICLASS:
867 SnoopIClass();
868 break;
869 case CMD_SIMULATE_TAG_ICLASS:
870 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
871 break;
872 case CMD_READER_ICLASS:
873 ReaderIClass(c->arg[0]);
874 break;
875 case CMD_READER_ICLASS_REPLAY:
876 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
877 break;
878 #endif
879
880 case CMD_SIMULATE_TAG_HF_LISTEN:
881 SimulateTagHfListen();
882 break;
883
884 case CMD_BUFF_CLEAR:
885 BufferClear();
886 break;
887
888 case CMD_MEASURE_ANTENNA_TUNING:
889 MeasureAntennaTuning();
890 break;
891
892 case CMD_MEASURE_ANTENNA_TUNING_HF:
893 MeasureAntennaTuningHf();
894 break;
895
896 case CMD_LISTEN_READER_FIELD:
897 ListenReaderField(c->arg[0]);
898 break;
899
900 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
901 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
902 SpinDelay(200);
903 LED_D_OFF(); // LED D indicates field ON or OFF
904 break;
905
906 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
907
908 LED_B_ON();
909 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
910 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
911 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
912 }
913 // Trigger a finish downloading signal with an ACK frame
914 // We put a 1 in arg[0] to alert the host we're also sending sample_config
915 cmd_send(CMD_ACK,1,0,0,getSamplingConfig(),sizeof(sample_config));
916 LED_B_OFF();
917 break;
918
919 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
920 uint8_t *b = (uint8_t *)BigBuf;
921 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
922 cmd_send(CMD_ACK,0,0,0,0,0);
923 break;
924 }
925 case CMD_READ_MEM:
926 ReadMem(c->arg[0]);
927 break;
928
929 case CMD_SET_LF_DIVISOR:
930 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
931 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
932 break;
933
934 case CMD_SET_ADC_MUX:
935 switch(c->arg[0]) {
936 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
937 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
938 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
939 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
940 }
941 break;
942
943 case CMD_VERSION:
944 SendVersion();
945 break;
946
947 #ifdef WITH_LCD
948 case CMD_LCD_RESET:
949 LCDReset();
950 break;
951 case CMD_LCD:
952 LCDSend(c->arg[0]);
953 break;
954 #endif
955 case CMD_SETUP_WRITE:
956 case CMD_FINISH_WRITE:
957 case CMD_HARDWARE_RESET:
958 usb_disable();
959 SpinDelay(1000);
960 SpinDelay(1000);
961 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
962 for(;;) {
963 // We're going to reset, and the bootrom will take control.
964 }
965 break;
966
967 case CMD_START_FLASH:
968 if(common_area.flags.bootrom_present) {
969 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
970 }
971 usb_disable();
972 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
973 for(;;);
974 break;
975
976 case CMD_DEVICE_INFO: {
977 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
978 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
979 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
980 break;
981 }
982 default:
983 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
984 break;
985 }
986 }
987
988 void __attribute__((noreturn)) AppMain(void)
989 {
990 SpinDelay(100);
991
992 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
993 /* Initialize common area */
994 memset(&common_area, 0, sizeof(common_area));
995 common_area.magic = COMMON_AREA_MAGIC;
996 common_area.version = 1;
997 }
998 common_area.flags.osimage_present = 1;
999
1000 LED_D_OFF();
1001 LED_C_OFF();
1002 LED_B_OFF();
1003 LED_A_OFF();
1004
1005 // Init USB device
1006 usb_enable();
1007
1008 // The FPGA gets its clock from us from PCK0 output, so set that up.
1009 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1010 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1011 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1012 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1013 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1014 AT91C_PMC_PRES_CLK_4;
1015 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1016
1017 // Reset SPI
1018 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1019 // Reset SSC
1020 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1021
1022 // Load the FPGA image, which we have stored in our flash.
1023 // (the HF version by default)
1024 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1025
1026 StartTickCount();
1027
1028 #ifdef WITH_LCD
1029 LCDInit();
1030 #endif
1031
1032 byte_t rx[sizeof(UsbCommand)];
1033 size_t rx_len;
1034
1035 for(;;) {
1036 if (usb_poll()) {
1037 rx_len = usb_read(rx,sizeof(UsbCommand));
1038 if (rx_len) {
1039 UsbPacketReceived(rx,rx_len);
1040 }
1041 }
1042 WDT_HIT();
1043
1044 #ifdef WITH_LF
1045 if (BUTTON_HELD(1000) > 0)
1046 SamyRun();
1047 #endif
1048 }
1049 }
Impressum, Datenschutz