]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/hitag2.c
Added undec to un-decimate data on the client side, so we can use all those sweet...
[proxmark3-svn] / armsrc / hitag2.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Hitag2 emulation (preliminary test version)
7 //
8 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
9 //-----------------------------------------------------------------------------
10 // Hitag2 complete rewrite of the code
11 // - Fixed modulation/encoding issues
12 // - Rewrote code for transponder emulation
13 // - Added snooping of transponder communication
14 // - Added reader functionality
15 //
16 // (c) 2012 Roel Verdult
17 //-----------------------------------------------------------------------------
18
19 #include "proxmark3.h"
20 #include "apps.h"
21 #include "util.h"
22 #include "hitag2.h"
23 #include "string.h"
24
25 static bool bQuiet;
26
27 bool bCrypto;
28 bool bAuthenticating;
29 bool bPwd;
30 bool bSuccessful;
31
32 int LogTraceHitag(const uint8_t * btBytes, int iBits, int iSamples, uint32_t dwParity, int bReader)
33 {
34 // Return when trace is full
35 if (traceLen >= TRACE_SIZE) return FALSE;
36
37 // Trace the random, i'm curious
38 rsamples += iSamples;
39 trace[traceLen++] = ((rsamples >> 0) & 0xff);
40 trace[traceLen++] = ((rsamples >> 8) & 0xff);
41 trace[traceLen++] = ((rsamples >> 16) & 0xff);
42 trace[traceLen++] = ((rsamples >> 24) & 0xff);
43 if (!bReader) {
44 trace[traceLen - 1] |= 0x80;
45 }
46 trace[traceLen++] = ((dwParity >> 0) & 0xff);
47 trace[traceLen++] = ((dwParity >> 8) & 0xff);
48 trace[traceLen++] = ((dwParity >> 16) & 0xff);
49 trace[traceLen++] = ((dwParity >> 24) & 0xff);
50 trace[traceLen++] = iBits;
51 memcpy(trace + traceLen, btBytes, nbytes(iBits));
52 traceLen += nbytes(iBits);
53 return TRUE;
54 }
55
56 struct hitag2_tag {
57 uint32_t uid;
58 enum {
59 TAG_STATE_RESET = 0x01, // Just powered up, awaiting GetSnr
60 TAG_STATE_ACTIVATING = 0x02 , // In activation phase (password mode), sent UID, awaiting reader password
61 TAG_STATE_ACTIVATED = 0x03, // Activation complete, awaiting read/write commands
62 TAG_STATE_WRITING = 0x04, // In write command, awaiting sector contents to be written
63 } state;
64 unsigned int active_sector;
65 byte_t crypto_active;
66 uint64_t cs;
67 byte_t sectors[12][4];
68 };
69
70 static struct hitag2_tag tag = {
71 .state = TAG_STATE_RESET,
72 .sectors = { // Password mode: | Crypto mode:
73 [0] = { 0x02, 0x4e, 0x02, 0x20}, // UID | UID
74 [1] = { 0x4d, 0x49, 0x4b, 0x52}, // Password RWD | 32 bit LSB key
75 [2] = { 0x20, 0xf0, 0x4f, 0x4e}, // Reserved | 16 bit MSB key, 16 bit reserved
76 [3] = { 0x0e, 0xaa, 0x48, 0x54}, // Configuration, password TAG | Configuration, password TAG
77 [4] = { 0x46, 0x5f, 0x4f, 0x4b}, // Data: F_OK
78 [5] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU
79 [6] = { 0xaa, 0xaa, 0xaa, 0xaa}, // Data: ....
80 [7] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU
81 [8] = { 0x00, 0x00, 0x00, 0x00}, // RSK Low
82 [9] = { 0x00, 0x00, 0x00, 0x00}, // RSK High
83 [10] = { 0x00, 0x00, 0x00, 0x00}, // RCF
84 [11] = { 0x00, 0x00, 0x00, 0x00}, // SYNC
85 },
86 };
87
88 //#define TRACE_LENGTH 3000
89 //uint8_t *trace = (uint8_t *) BigBuf;
90 //int traceLen = 0;
91 //int rsamples = 0;
92
93 #define AUTH_TABLE_OFFSET FREE_BUFFER_OFFSET
94 #define AUTH_TABLE_LENGTH FREE_BUFFER_SIZE
95 byte_t* auth_table = (byte_t *)BigBuf+AUTH_TABLE_OFFSET;
96 size_t auth_table_pos = 0;
97 size_t auth_table_len = AUTH_TABLE_LENGTH;
98
99 byte_t password[4];
100 byte_t NrAr[8];
101 byte_t key[8];
102 uint64_t cipher_state;
103
104 /* Following is a modified version of cryptolib.com/ciphers/hitag2/ */
105 // Software optimized 48-bit Philips/NXP Mifare Hitag2 PCF7936/46/47/52 stream cipher algorithm by I.C. Wiener 2006-2007.
106 // For educational purposes only.
107 // No warranties or guarantees of any kind.
108 // This code is released into the public domain by its author.
109
110 // Basic macros:
111
112 #define u8 uint8_t
113 #define u32 uint32_t
114 #define u64 uint64_t
115 #define rev8(x) ((((x)>>7)&1)+((((x)>>6)&1)<<1)+((((x)>>5)&1)<<2)+((((x)>>4)&1)<<3)+((((x)>>3)&1)<<4)+((((x)>>2)&1)<<5)+((((x)>>1)&1)<<6)+(((x)&1)<<7))
116 #define rev16(x) (rev8 (x)+(rev8 (x>> 8)<< 8))
117 #define rev32(x) (rev16(x)+(rev16(x>>16)<<16))
118 #define rev64(x) (rev32(x)+(rev32(x>>32)<<32))
119 #define bit(x,n) (((x)>>(n))&1)
120 #define bit32(x,n) ((((x)[(n)>>5])>>((n)))&1)
121 #define inv32(x,i,n) ((x)[(i)>>5]^=((u32)(n))<<((i)&31))
122 #define rotl64(x, n) ((((u64)(x))<<((n)&63))+(((u64)(x))>>((0-(n))&63)))
123
124 // Single bit Hitag2 functions:
125
126 #define i4(x,a,b,c,d) ((u32)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8))
127
128 static const u32 ht2_f4a = 0x2C79; // 0010 1100 0111 1001
129 static const u32 ht2_f4b = 0x6671; // 0110 0110 0111 0001
130 static const u32 ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011
131
132 static u32 _f20 (const u64 x)
133 {
134 u32 i5;
135
136 i5 = ((ht2_f4a >> i4 (x, 1, 2, 4, 5)) & 1)* 1
137 + ((ht2_f4b >> i4 (x, 7,11,13,14)) & 1)* 2
138 + ((ht2_f4b >> i4 (x,16,20,22,25)) & 1)* 4
139 + ((ht2_f4b >> i4 (x,27,28,30,32)) & 1)* 8
140 + ((ht2_f4a >> i4 (x,33,42,43,45)) & 1)*16;
141
142 return (ht2_f5c >> i5) & 1;
143 }
144
145 static u64 _hitag2_init (const u64 key, const u32 serial, const u32 IV)
146 {
147 u32 i;
148 u64 x = ((key & 0xFFFF) << 32) + serial;
149
150 for (i = 0; i < 32; i++)
151 {
152 x >>= 1;
153 x += (u64) (_f20 (x) ^ (((IV >> i) ^ (key >> (i+16))) & 1)) << 47;
154 }
155 return x;
156 }
157
158 static u64 _hitag2_round (u64 *state)
159 {
160 u64 x = *state;
161
162 x = (x >> 1) +
163 ((((x >> 0) ^ (x >> 2) ^ (x >> 3) ^ (x >> 6)
164 ^ (x >> 7) ^ (x >> 8) ^ (x >> 16) ^ (x >> 22)
165 ^ (x >> 23) ^ (x >> 26) ^ (x >> 30) ^ (x >> 41)
166 ^ (x >> 42) ^ (x >> 43) ^ (x >> 46) ^ (x >> 47)) & 1) << 47);
167
168 *state = x;
169 return _f20 (x);
170 }
171
172 static u32 _hitag2_byte (u64 * x)
173 {
174 u32 i, c;
175
176 for (i = 0, c = 0; i < 8; i++) c += (u32) _hitag2_round (x) << (i^7);
177 return c;
178 }
179
180 int hitag2_reset(void)
181 {
182 tag.state = TAG_STATE_RESET;
183 tag.crypto_active = 0;
184 return 0;
185 }
186
187 int hitag2_init(void)
188 {
189 // memcpy(&tag, &resetdata, sizeof(tag));
190 hitag2_reset();
191 return 0;
192 }
193
194 static void hitag2_cipher_reset(struct hitag2_tag *tag, const byte_t *iv)
195 {
196 uint64_t key = ((uint64_t)tag->sectors[2][2]) |
197 ((uint64_t)tag->sectors[2][3] << 8) |
198 ((uint64_t)tag->sectors[1][0] << 16) |
199 ((uint64_t)tag->sectors[1][1] << 24) |
200 ((uint64_t)tag->sectors[1][2] << 32) |
201 ((uint64_t)tag->sectors[1][3] << 40);
202 uint32_t uid = ((uint32_t)tag->sectors[0][0]) |
203 ((uint32_t)tag->sectors[0][1] << 8) |
204 ((uint32_t)tag->sectors[0][2] << 16) |
205 ((uint32_t)tag->sectors[0][3] << 24);
206 uint32_t iv_ = (((uint32_t)(iv[0]))) |
207 (((uint32_t)(iv[1])) << 8) |
208 (((uint32_t)(iv[2])) << 16) |
209 (((uint32_t)(iv[3])) << 24);
210 tag->cs = _hitag2_init(rev64(key), rev32(uid), rev32(iv_));
211 }
212
213 static int hitag2_cipher_authenticate(uint64_t* cs, const byte_t *authenticator_is)
214 {
215 byte_t authenticator_should[4];
216 authenticator_should[0] = ~_hitag2_byte(cs);
217 authenticator_should[1] = ~_hitag2_byte(cs);
218 authenticator_should[2] = ~_hitag2_byte(cs);
219 authenticator_should[3] = ~_hitag2_byte(cs);
220 return (memcmp(authenticator_should, authenticator_is, 4) == 0);
221 }
222
223 static int hitag2_cipher_transcrypt(uint64_t* cs, byte_t *data, unsigned int bytes, unsigned int bits)
224 {
225 int i;
226 for(i=0; i<bytes; i++) data[i] ^= _hitag2_byte(cs);
227 for(i=0; i<bits; i++) data[bytes] ^= _hitag2_round(cs) << (7-i);
228 return 0;
229 }
230
231 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
232 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
233 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
234 // T0 = TIMER_CLOCK1 / 125000 = 192
235 #define T0 192
236
237 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
238 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
239
240 #define HITAG_FRAME_LEN 20
241 #define HITAG_T_STOP 36 /* T_EOF should be > 36 */
242 #define HITAG_T_LOW 8 /* T_LOW should be 4..10 */
243 #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
244 #define HITAG_T_1_MIN 25 /* T[1] should be 26..30 */
245 //#define HITAG_T_EOF 40 /* T_EOF should be > 36 */
246 #define HITAG_T_EOF 80 /* T_EOF should be > 36 */
247 #define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */
248 #define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */
249 #define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */
250
251 #define HITAG_T_TAG_ONE_HALF_PERIOD 10
252 #define HITAG_T_TAG_TWO_HALF_PERIOD 25
253 #define HITAG_T_TAG_THREE_HALF_PERIOD 41
254 #define HITAG_T_TAG_FOUR_HALF_PERIOD 57
255
256 #define HITAG_T_TAG_HALF_PERIOD 16
257 #define HITAG_T_TAG_FULL_PERIOD 32
258
259 #define HITAG_T_TAG_CAPTURE_ONE_HALF 13
260 #define HITAG_T_TAG_CAPTURE_TWO_HALF 25
261 #define HITAG_T_TAG_CAPTURE_THREE_HALF 41
262 #define HITAG_T_TAG_CAPTURE_FOUR_HALF 57
263
264
265 static void hitag_send_bit(int bit) {
266 LED_A_ON();
267 // Reset clock for the next bit
268 AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
269
270 // Fixed modulation, earlier proxmark version used inverted signal
271 if(bit == 0) {
272 // Manchester: Unloaded, then loaded |__--|
273 LOW(GPIO_SSC_DOUT);
274 while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_HALF_PERIOD);
275 HIGH(GPIO_SSC_DOUT);
276 while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_FULL_PERIOD);
277 } else {
278 // Manchester: Loaded, then unloaded |--__|
279 HIGH(GPIO_SSC_DOUT);
280 while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_HALF_PERIOD);
281 LOW(GPIO_SSC_DOUT);
282 while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_FULL_PERIOD);
283 }
284 LED_A_OFF();
285 }
286
287 static void hitag_send_frame(const byte_t* frame, size_t frame_len)
288 {
289 // Send start of frame
290 for(size_t i=0; i<5; i++) {
291 hitag_send_bit(1);
292 }
293
294 // Send the content of the frame
295 for(size_t i=0; i<frame_len; i++) {
296 hitag_send_bit((frame[i/8] >> (7-(i%8)))&1);
297 }
298
299 // Drop the modulation
300 LOW(GPIO_SSC_DOUT);
301 }
302
303 void hitag2_handle_reader_command(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen)
304 {
305 byte_t rx_air[HITAG_FRAME_LEN];
306
307 // Copy the (original) received frame how it is send over the air
308 memcpy(rx_air,rx,nbytes(rxlen));
309
310 if(tag.crypto_active) {
311 hitag2_cipher_transcrypt(&(tag.cs),rx,rxlen/8,rxlen%8);
312 }
313
314 // Reset the transmission frame length
315 *txlen = 0;
316
317 // Try to find out which command was send by selecting on length (in bits)
318 switch (rxlen) {
319 // Received 11000 from the reader, request for UID, send UID
320 case 05: {
321 // Always send over the air in the clear plaintext mode
322 if(rx_air[0] != 0xC0) {
323 // Unknown frame ?
324 return;
325 }
326 *txlen = 32;
327 memcpy(tx,tag.sectors[0],4);
328 tag.crypto_active = 0;
329 }
330 break;
331
332 // Read/Write command: ..xx x..y yy with yyy == ~xxx, xxx is sector number
333 case 10: {
334 unsigned int sector = (~( ((rx[0]<<2)&0x04) | ((rx[1]>>6)&0x03) ) & 0x07);
335 // Verify complement of sector index
336 if(sector != ((rx[0]>>3)&0x07)) {
337 //DbpString("Transmission error (read/write)");
338 return;
339 }
340
341 switch (rx[0] & 0xC6) {
342 // Read command: 11xx x00y
343 case 0xC0:
344 memcpy(tx,tag.sectors[sector],4);
345 *txlen = 32;
346 break;
347
348 // Inverted Read command: 01xx x10y
349 case 0x44:
350 for (size_t i=0; i<4; i++) {
351 tx[i] = tag.sectors[sector][i] ^ 0xff;
352 }
353 *txlen = 32;
354 break;
355
356 // Write command: 10xx x01y
357 case 0x82:
358 // Prepare write, acknowledge by repeating command
359 memcpy(tx,rx,nbytes(rxlen));
360 *txlen = rxlen;
361 tag.active_sector = sector;
362 tag.state=TAG_STATE_WRITING;
363 break;
364
365 // Unknown command
366 default:
367 Dbprintf("Uknown command: %02x %02x",rx[0],rx[1]);
368 return;
369 break;
370 }
371 }
372 break;
373
374 // Writing data or Reader password
375 case 32: {
376 if(tag.state == TAG_STATE_WRITING) {
377 // These are the sector contents to be written. We don't have to do anything else.
378 memcpy(tag.sectors[tag.active_sector],rx,nbytes(rxlen));
379 tag.state=TAG_STATE_RESET;
380 return;
381 } else {
382 // Received RWD password, respond with configuration and our password
383 if(memcmp(rx,tag.sectors[1],4) != 0) {
384 DbpString("Reader password is wrong");
385 return;
386 }
387 *txlen = 32;
388 memcpy(tx,tag.sectors[3],4);
389 }
390 }
391 break;
392
393 // Received RWD authentication challenge and respnse
394 case 64: {
395 // Store the authentication attempt
396 if (auth_table_len < (AUTH_TABLE_LENGTH-8)) {
397 memcpy(auth_table+auth_table_len,rx,8);
398 auth_table_len += 8;
399 }
400
401 // Reset the cipher state
402 hitag2_cipher_reset(&tag,rx);
403 // Check if the authentication was correct
404 if(!hitag2_cipher_authenticate(&(tag.cs),rx+4)) {
405 // The reader failed to authenticate, do nothing
406 Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x Failed!",rx[0],rx[1],rx[2],rx[3],rx[4],rx[5],rx[6],rx[7]);
407 return;
408 }
409 // Succesful, but commented out reporting back to the Host, this may delay to much.
410 // Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x OK!",rx[0],rx[1],rx[2],rx[3],rx[4],rx[5],rx[6],rx[7]);
411
412 // Activate encryption algorithm for all further communication
413 tag.crypto_active = 1;
414
415 // Use the tag password as response
416 memcpy(tx,tag.sectors[3],4);
417 *txlen = 32;
418 }
419 break;
420 }
421
422 // LogTraceHitag(rx,rxlen,0,0,false);
423 // LogTraceHitag(tx,*txlen,0,0,true);
424
425 if(tag.crypto_active) {
426 hitag2_cipher_transcrypt(&(tag.cs), tx, *txlen/8, *txlen%8);
427 }
428 }
429
430 static void hitag_reader_send_bit(int bit) {
431 LED_A_ON();
432 // Reset clock for the next bit
433 AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
434
435 // Binary puls length modulation (BPLM) is used to encode the data stream
436 // This means that a transmission of a one takes longer than that of a zero
437
438 // Enable modulation, which means, drop the the field
439 HIGH(GPIO_SSC_DOUT);
440
441 // Wait for 4-10 times the carrier period
442 while(AT91C_BASE_TC0->TC_CV < T0*6);
443 // SpinDelayUs(8*8);
444
445 // Disable modulation, just activates the field again
446 LOW(GPIO_SSC_DOUT);
447
448 if(bit == 0) {
449 // Zero bit: |_-|
450 while(AT91C_BASE_TC0->TC_CV < T0*22);
451 // SpinDelayUs(16*8);
452 } else {
453 // One bit: |_--|
454 while(AT91C_BASE_TC0->TC_CV < T0*28);
455 // SpinDelayUs(22*8);
456 }
457 LED_A_OFF();
458 }
459
460 static void hitag_reader_send_frame(const byte_t* frame, size_t frame_len)
461 {
462 // Send the content of the frame
463 for(size_t i=0; i<frame_len; i++) {
464 hitag_reader_send_bit((frame[i/8] >> (7-(i%8)))&1);
465 }
466 // Send EOF
467 AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
468 // Enable modulation, which means, drop the the field
469 HIGH(GPIO_SSC_DOUT);
470 // Wait for 4-10 times the carrier period
471 while(AT91C_BASE_TC0->TC_CV < T0*6);
472 // Disable modulation, just activates the field again
473 LOW(GPIO_SSC_DOUT);
474 }
475
476 size_t blocknr;
477
478 bool hitag2_password(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
479 // Reset the transmission frame length
480 *txlen = 0;
481
482 // Try to find out which command was send by selecting on length (in bits)
483 switch (rxlen) {
484 // No answer, try to resurrect
485 case 0: {
486 // Stop if there is no answer (after sending password)
487 if (bPwd) {
488 DbpString("Password failed!");
489 return false;
490 }
491 *txlen = 5;
492 memcpy(tx,"\xc0",nbytes(*txlen));
493 } break;
494
495 // Received UID, tag password
496 case 32: {
497 if (!bPwd) {
498 *txlen = 32;
499 memcpy(tx,password,4);
500 bPwd = true;
501 memcpy(tag.sectors[blocknr],rx,4);
502 blocknr++;
503 } else {
504
505 if(blocknr == 1){
506 //store password in block1, the TAG answers with Block3, but we need the password in memory
507 memcpy(tag.sectors[blocknr],tx,4);
508 }else{
509 memcpy(tag.sectors[blocknr],rx,4);
510 }
511
512 blocknr++;
513 if (blocknr > 7) {
514 DbpString("Read succesful!");
515 bSuccessful = true;
516 return false;
517 }
518 *txlen = 10;
519 tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2);
520 tx[1] = ((blocknr^7) << 6);
521 }
522 } break;
523
524 // Unexpected response
525 default: {
526 Dbprintf("Uknown frame length: %d",rxlen);
527 return false;
528 } break;
529 }
530 return true;
531 }
532
533 bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
534 // Reset the transmission frame length
535 *txlen = 0;
536
537 if(bCrypto) {
538 hitag2_cipher_transcrypt(&cipher_state,rx,rxlen/8,rxlen%8);
539 }
540
541 // Try to find out which command was send by selecting on length (in bits)
542 switch (rxlen) {
543 // No answer, try to resurrect
544 case 0: {
545 // Stop if there is no answer while we are in crypto mode (after sending NrAr)
546 if (bCrypto) {
547 // Failed during authentication
548 if (bAuthenticating) {
549 DbpString("Authentication failed!");
550 return false;
551 } else {
552 // Failed reading a block, could be (read/write) locked, skip block and re-authenticate
553 if (blocknr == 1) {
554 // Write the low part of the key in memory
555 memcpy(tag.sectors[1],key+2,4);
556 } else if (blocknr == 2) {
557 // Write the high part of the key in memory
558 tag.sectors[2][0] = 0x00;
559 tag.sectors[2][1] = 0x00;
560 tag.sectors[2][2] = key[0];
561 tag.sectors[2][3] = key[1];
562 } else {
563 // Just put zero's in the memory (of the unreadable block)
564 memset(tag.sectors[blocknr],0x00,4);
565 }
566 blocknr++;
567 bCrypto = false;
568 }
569 } else {
570 *txlen = 5;
571 memcpy(tx,"\xc0",nbytes(*txlen));
572 }
573 } break;
574
575 // Received UID, crypto tag answer
576 case 32: {
577 if (!bCrypto) {
578 uint64_t ui64key = key[0] | ((uint64_t)key[1]) << 8 | ((uint64_t)key[2]) << 16 | ((uint64_t)key[3]) << 24 | ((uint64_t)key[4]) << 32 | ((uint64_t)key[5]) << 40;
579 uint32_t ui32uid = rx[0] | ((uint32_t)rx[1]) << 8 | ((uint32_t)rx[2]) << 16 | ((uint32_t)rx[3]) << 24;
580 cipher_state = _hitag2_init(rev64(ui64key), rev32(ui32uid), 0);
581 memset(tx,0x00,4);
582 memset(tx+4,0xff,4);
583 hitag2_cipher_transcrypt(&cipher_state,tx+4,4,0);
584 *txlen = 64;
585 bCrypto = true;
586 bAuthenticating = true;
587 } else {
588 // Check if we received answer tag (at)
589 if (bAuthenticating) {
590 bAuthenticating = false;
591 } else {
592 // Store the received block
593 memcpy(tag.sectors[blocknr],rx,4);
594 blocknr++;
595 }
596 if (blocknr > 7) {
597 DbpString("Read succesful!");
598 bSuccessful = true;
599 return false;
600 }
601 *txlen = 10;
602 tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2);
603 tx[1] = ((blocknr^7) << 6);
604 }
605 } break;
606
607 // Unexpected response
608 default: {
609 Dbprintf("Uknown frame length: %d",rxlen);
610 return false;
611 } break;
612 }
613
614
615 if(bCrypto) {
616 // We have to return now to avoid double encryption
617 if (!bAuthenticating) {
618 hitag2_cipher_transcrypt(&cipher_state,tx,*txlen/8,*txlen%8);
619 }
620 }
621
622 return true;
623 }
624
625
626 bool hitag2_authenticate(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
627 // Reset the transmission frame length
628 *txlen = 0;
629
630 // Try to find out which command was send by selecting on length (in bits)
631 switch (rxlen) {
632 // No answer, try to resurrect
633 case 0: {
634 // Stop if there is no answer while we are in crypto mode (after sending NrAr)
635 if (bCrypto) {
636 DbpString("Authentication failed!");
637 return false;
638 }
639 *txlen = 5;
640 memcpy(tx,"\xc0",nbytes(*txlen));
641 } break;
642
643 // Received UID, crypto tag answer
644 case 32: {
645 if (!bCrypto) {
646 *txlen = 64;
647 memcpy(tx,NrAr,8);
648 bCrypto = true;
649 } else {
650 DbpString("Authentication succesful!");
651 // We are done... for now
652 return false;
653 }
654 } break;
655
656 // Unexpected response
657 default: {
658 Dbprintf("Uknown frame length: %d",rxlen);
659 return false;
660 } break;
661 }
662
663 return true;
664 }
665
666 bool hitag2_test_auth_attempts(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
667 // Reset the transmission frame length
668 *txlen = 0;
669
670 // Try to find out which command was send by selecting on length (in bits)
671 switch (rxlen) {
672 // No answer, try to resurrect
673 case 0: {
674 // Stop if there is no answer while we are in crypto mode (after sending NrAr)
675 if (bCrypto) {
676 Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x Failed, removed entry!",NrAr[0],NrAr[1],NrAr[2],NrAr[3],NrAr[4],NrAr[5],NrAr[6],NrAr[7]);
677
678 // Removing failed entry from authentiations table
679 memcpy(auth_table+auth_table_pos,auth_table+auth_table_pos+8,8);
680 auth_table_len -= 8;
681
682 // Return if we reached the end of the authentiactions table
683 bCrypto = false;
684 if (auth_table_pos == auth_table_len) {
685 return false;
686 }
687
688 // Copy the next authentication attempt in row (at the same position, b/c we removed last failed entry)
689 memcpy(NrAr,auth_table+auth_table_pos,8);
690 }
691 *txlen = 5;
692 memcpy(tx,"\xc0",nbytes(*txlen));
693 } break;
694
695 // Received UID, crypto tag answer, or read block response
696 case 32: {
697 if (!bCrypto) {
698 *txlen = 64;
699 memcpy(tx,NrAr,8);
700 bCrypto = true;
701 } else {
702 Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x OK",NrAr[0],NrAr[1],NrAr[2],NrAr[3],NrAr[4],NrAr[5],NrAr[6],NrAr[7]);
703 bCrypto = false;
704 if ((auth_table_pos+8) == auth_table_len) {
705 return false;
706 }
707 auth_table_pos += 8;
708 memcpy(NrAr,auth_table+auth_table_pos,8);
709 }
710 } break;
711
712 default: {
713 Dbprintf("Uknown frame length: %d",rxlen);
714 return false;
715 } break;
716 }
717
718 return true;
719 }
720
721 void SnoopHitag(uint32_t type) {
722 int frame_count;
723 int response;
724 int overflow;
725 bool rising_edge;
726 bool reader_frame;
727 int lastbit;
728 bool bSkip;
729 int tag_sof;
730 byte_t rx[HITAG_FRAME_LEN];
731 size_t rxlen=0;
732
733 // Clean up trace and prepare it for storing frames
734 iso14a_set_tracing(TRUE);
735 iso14a_clear_trace();
736
737 auth_table_len = 0;
738 auth_table_pos = 0;
739 memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
740
741 DbpString("Starting Hitag2 snoop");
742 LED_D_ON();
743
744 // Set up eavesdropping mode, frequency divisor which will drive the FPGA
745 // and analog mux selection.
746 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
747 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE);
748 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
749 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
750 RELAY_OFF();
751
752 // Configure output pin that is connected to the FPGA (for modulating)
753 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
754 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
755
756 // Disable modulation, we are going to eavesdrop, not modulate ;)
757 LOW(GPIO_SSC_DOUT);
758
759 // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
760 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
761 AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
762
763 // Disable timer during configuration
764 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
765
766 // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
767 // external trigger rising edge, load RA on rising edge of TIOA.
768 uint32_t t1_channel_mode = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH;
769 AT91C_BASE_TC1->TC_CMR = t1_channel_mode;
770
771 // Enable and reset counter
772 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
773
774 // Reset the received frame, frame count and timing info
775 memset(rx,0x00,sizeof(rx));
776 frame_count = 0;
777 response = 0;
778 overflow = 0;
779 reader_frame = false;
780 lastbit = 1;
781 bSkip = true;
782 tag_sof = 4;
783
784 while(!BUTTON_PRESS()) {
785 // Watchdog hit
786 WDT_HIT();
787
788 // Receive frame, watch for at most T0*EOF periods
789 while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) {
790 // Check if rising edge in modulation is detected
791 if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
792 // Retrieve the new timing values
793 int ra = (AT91C_BASE_TC1->TC_RA/T0);
794
795 // Find out if we are dealing with a rising or falling edge
796 rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0;
797
798 // Shorter periods will only happen with reader frames
799 if (!reader_frame && rising_edge && ra < HITAG_T_TAG_CAPTURE_ONE_HALF) {
800 // Switch from tag to reader capture
801 LED_C_OFF();
802 reader_frame = true;
803 memset(rx,0x00,sizeof(rx));
804 rxlen = 0;
805 }
806
807 // Only handle if reader frame and rising edge, or tag frame and falling edge
808 if (reader_frame != rising_edge) {
809 overflow += ra;
810 continue;
811 }
812
813 // Add the buffered timing values of earlier captured edges which were skipped
814 ra += overflow;
815 overflow = 0;
816
817 if (reader_frame) {
818 LED_B_ON();
819 // Capture reader frame
820 if(ra >= HITAG_T_STOP) {
821 if (rxlen != 0) {
822 //DbpString("wierd0?");
823 }
824 // Capture the T0 periods that have passed since last communication or field drop (reset)
825 response = (ra - HITAG_T_LOW);
826 } else if(ra >= HITAG_T_1_MIN ) {
827 // '1' bit
828 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
829 rxlen++;
830 } else if(ra >= HITAG_T_0_MIN) {
831 // '0' bit
832 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
833 rxlen++;
834 } else {
835 // Ignore wierd value, is to small to mean anything
836 }
837 } else {
838 LED_C_ON();
839 // Capture tag frame (manchester decoding using only falling edges)
840 if(ra >= HITAG_T_EOF) {
841 if (rxlen != 0) {
842 //DbpString("wierd1?");
843 }
844 // Capture the T0 periods that have passed since last communication or field drop (reset)
845 // We always recieve a 'one' first, which has the falling edge after a half period |-_|
846 response = ra-HITAG_T_TAG_HALF_PERIOD;
847 } else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
848 // Manchester coding example |-_|_-|-_| (101)
849 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
850 rxlen++;
851 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
852 rxlen++;
853 } else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
854 // Manchester coding example |_-|...|_-|-_| (0...01)
855 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
856 rxlen++;
857 // We have to skip this half period at start and add the 'one' the second time
858 if (!bSkip) {
859 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
860 rxlen++;
861 }
862 lastbit = !lastbit;
863 bSkip = !bSkip;
864 } else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
865 // Manchester coding example |_-|_-| (00) or |-_|-_| (11)
866 if (tag_sof) {
867 // Ignore bits that are transmitted during SOF
868 tag_sof--;
869 } else {
870 // bit is same as last bit
871 rx[rxlen / 8] |= lastbit << (7-(rxlen%8));
872 rxlen++;
873 }
874 } else {
875 // Ignore wierd value, is to small to mean anything
876 }
877 }
878 }
879 }
880
881 // Check if frame was captured
882 if(rxlen > 0) {
883 frame_count++;
884 if (!LogTraceHitag(rx,rxlen,response,0,reader_frame)) {
885 DbpString("Trace full");
886 break;
887 }
888
889 // Check if we recognize a valid authentication attempt
890 if (nbytes(rxlen) == 8) {
891 // Store the authentication attempt
892 if (auth_table_len < (AUTH_TABLE_LENGTH-8)) {
893 memcpy(auth_table+auth_table_len,rx,8);
894 auth_table_len += 8;
895 }
896 }
897
898 // Reset the received frame and response timing info
899 memset(rx,0x00,sizeof(rx));
900 response = 0;
901 reader_frame = false;
902 lastbit = 1;
903 bSkip = true;
904 tag_sof = 4;
905 overflow = 0;
906
907 LED_B_OFF();
908 LED_C_OFF();
909 } else {
910 // Save the timer overflow, will be 0 when frame was received
911 overflow += (AT91C_BASE_TC1->TC_CV/T0);
912 }
913 // Reset the frame length
914 rxlen = 0;
915 // Reset the timer to restart while-loop that receives frames
916 AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
917 }
918 LED_A_ON();
919 LED_B_OFF();
920 LED_C_OFF();
921 LED_D_OFF();
922 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
923 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
924 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
925 LED_A_OFF();
926
927 // Dbprintf("frame received: %d",frame_count);
928 // Dbprintf("Authentication Attempts: %d",(auth_table_len/8));
929 // DbpString("All done");
930 }
931
932 void SimulateHitagTag(bool tag_mem_supplied, byte_t* data) {
933 int frame_count;
934 int response;
935 int overflow;
936 byte_t rx[HITAG_FRAME_LEN];
937 size_t rxlen=0;
938 byte_t tx[HITAG_FRAME_LEN];
939 size_t txlen=0;
940 bool bQuitTraceFull = false;
941 bQuiet = false;
942
943 // Clean up trace and prepare it for storing frames
944 iso14a_set_tracing(TRUE);
945 iso14a_clear_trace();
946 auth_table_len = 0;
947 auth_table_pos = 0;
948 memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
949
950 DbpString("Starting Hitag2 simulation");
951 LED_D_ON();
952 hitag2_init();
953
954 if (tag_mem_supplied) {
955 DbpString("Loading hitag2 memory...");
956 memcpy((byte_t*)tag.sectors,data,48);
957 }
958
959 uint32_t block = 0;
960 for (size_t i=0; i<12; i++) {
961 for (size_t j=0; j<4; j++) {
962 block <<= 8;
963 block |= tag.sectors[i][j];
964 }
965 Dbprintf("| %d | %08x |",i,block);
966 }
967
968 // Set up simulator mode, frequency divisor which will drive the FPGA
969 // and analog mux selection.
970 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
971 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
972 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
973 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
974 RELAY_OFF();
975
976 // Configure output pin that is connected to the FPGA (for modulating)
977 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
978 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
979
980 // Disable modulation at default, which means release resistance
981 LOW(GPIO_SSC_DOUT);
982
983 // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
984 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
985
986 // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
987 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
988 AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
989
990 // Disable timer during configuration
991 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
992
993 // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
994 // external trigger rising edge, load RA on rising edge of TIOA.
995 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
996
997 // Reset the received frame, frame count and timing info
998 memset(rx,0x00,sizeof(rx));
999 frame_count = 0;
1000 response = 0;
1001 overflow = 0;
1002
1003 // Enable and reset counter
1004 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1005
1006 while(!BUTTON_PRESS()) {
1007 // Watchdog hit
1008 WDT_HIT();
1009
1010 // Receive frame, watch for at most T0*EOF periods
1011 while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) {
1012 // Check if rising edge in modulation is detected
1013 if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
1014 // Retrieve the new timing values
1015 int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow;
1016 overflow = 0;
1017
1018 // Reset timer every frame, we have to capture the last edge for timing
1019 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1020
1021 LED_B_ON();
1022
1023 // Capture reader frame
1024 if(ra >= HITAG_T_STOP) {
1025 if (rxlen != 0) {
1026 //DbpString("wierd0?");
1027 }
1028 // Capture the T0 periods that have passed since last communication or field drop (reset)
1029 response = (ra - HITAG_T_LOW);
1030 } else if(ra >= HITAG_T_1_MIN ) {
1031 // '1' bit
1032 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
1033 rxlen++;
1034 } else if(ra >= HITAG_T_0_MIN) {
1035 // '0' bit
1036 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
1037 rxlen++;
1038 } else {
1039 // Ignore wierd value, is to small to mean anything
1040 }
1041 }
1042 }
1043
1044 // Check if frame was captured
1045 if(rxlen > 4) {
1046 frame_count++;
1047 if (!bQuiet) {
1048 if (!LogTraceHitag(rx,rxlen,response,0,true)) {
1049 DbpString("Trace full");
1050 if (bQuitTraceFull) {
1051 break;
1052 } else {
1053 bQuiet = true;
1054 }
1055 }
1056 }
1057
1058 // Disable timer 1 with external trigger to avoid triggers during our own modulation
1059 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
1060
1061 // Process the incoming frame (rx) and prepare the outgoing frame (tx)
1062 hitag2_handle_reader_command(rx,rxlen,tx,&txlen);
1063
1064 // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit,
1065 // not that since the clock counts since the rising edge, but T_Wait1 is
1066 // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low)
1067 // periods. The gap time T_Low varies (4..10). All timer values are in
1068 // terms of T0 units
1069 while(AT91C_BASE_TC0->TC_CV < T0*(HITAG_T_WAIT_1-HITAG_T_LOW));
1070
1071 // Send and store the tag answer (if there is any)
1072 if (txlen) {
1073 // Transmit the tag frame
1074 hitag_send_frame(tx,txlen);
1075 // Store the frame in the trace
1076 if (!bQuiet) {
1077 if (!LogTraceHitag(tx,txlen,0,0,false)) {
1078 DbpString("Trace full");
1079 if (bQuitTraceFull) {
1080 break;
1081 } else {
1082 bQuiet = true;
1083 }
1084 }
1085 }
1086 }
1087
1088 // Reset the received frame and response timing info
1089 memset(rx,0x00,sizeof(rx));
1090 response = 0;
1091
1092 // Enable and reset external trigger in timer for capturing future frames
1093 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1094 LED_B_OFF();
1095 }
1096 // Reset the frame length
1097 rxlen = 0;
1098 // Save the timer overflow, will be 0 when frame was received
1099 overflow += (AT91C_BASE_TC1->TC_CV/T0);
1100 // Reset the timer to restart while-loop that receives frames
1101 AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
1102 }
1103 LED_B_OFF();
1104 LED_D_OFF();
1105 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
1106 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
1107 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1108
1109 DbpString("Sim Stopped");
1110
1111 }
1112
1113 void ReaderHitag(hitag_function htf, hitag_data* htd) {
1114 int frame_count;
1115 int response;
1116 byte_t rx[HITAG_FRAME_LEN];
1117 size_t rxlen=0;
1118 byte_t txbuf[HITAG_FRAME_LEN];
1119 byte_t* tx = txbuf;
1120 size_t txlen=0;
1121 int lastbit;
1122 bool bSkip;
1123 int reset_sof;
1124 int tag_sof;
1125 int t_wait = HITAG_T_WAIT_MAX;
1126 bool bStop;
1127 bool bQuitTraceFull = false;
1128
1129 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1130 // Reset the return status
1131 bSuccessful = false;
1132
1133 // Clean up trace and prepare it for storing frames
1134 iso14a_set_tracing(TRUE);
1135 iso14a_clear_trace();
1136 DbpString("Starting Hitag reader family");
1137
1138 // Check configuration
1139 switch(htf) {
1140 case RHT2F_PASSWORD: {
1141 Dbprintf("List identifier in password mode");
1142 memcpy(password,htd->pwd.password,4);
1143 blocknr = 0;
1144 bQuitTraceFull = false;
1145 bQuiet = false;
1146 bPwd = false;
1147 } break;
1148
1149 case RHT2F_AUTHENTICATE: {
1150 DbpString("Authenticating using nr,ar pair:");
1151 memcpy(NrAr,htd->auth.NrAr,8);
1152 Dbhexdump(8,NrAr,false);
1153 bQuiet = false;
1154 bCrypto = false;
1155 bAuthenticating = false;
1156 bQuitTraceFull = true;
1157 } break;
1158
1159 case RHT2F_CRYPTO: {
1160 DbpString("Authenticating using key:");
1161 memcpy(key,htd->crypto.key,4); //HACK; 4 or 6?? I read both in the code.
1162 Dbhexdump(6,key,false);
1163 blocknr = 0;
1164 bQuiet = false;
1165 bCrypto = false;
1166 bAuthenticating = false;
1167 bQuitTraceFull = true;
1168 } break;
1169
1170 case RHT2F_TEST_AUTH_ATTEMPTS: {
1171 Dbprintf("Testing %d authentication attempts",(auth_table_len/8));
1172 auth_table_pos = 0;
1173 memcpy(NrAr,auth_table,8);
1174 bQuitTraceFull = false;
1175 bQuiet = false;
1176 bCrypto = false;
1177 } break;
1178
1179 default: {
1180 Dbprintf("Error, unknown function: %d",htf);
1181 return;
1182 } break;
1183 }
1184
1185 LED_D_ON();
1186 hitag2_init();
1187
1188 // Configure output and enable pin that is connected to the FPGA (for modulating)
1189 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
1190 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
1191
1192 // Set fpga in edge detect with reader field, we can modulate as reader now
1193 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
1194
1195 // Set Frequency divisor which will drive the FPGA and analog mux selection
1196 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1197 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1198 RELAY_OFF();
1199
1200 // Disable modulation at default, which means enable the field
1201 LOW(GPIO_SSC_DOUT);
1202
1203 // Give it a bit of time for the resonant antenna to settle.
1204 SpinDelay(30);
1205
1206 // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
1207 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
1208
1209 // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
1210 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
1211 AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
1212
1213 // Disable timer during configuration
1214 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
1215
1216 // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
1217 // external trigger rising edge, load RA on falling edge of TIOA.
1218 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
1219
1220 // Enable and reset counters
1221 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1222 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1223
1224 // Reset the received frame, frame count and timing info
1225 frame_count = 0;
1226 response = 0;
1227 lastbit = 1;
1228 bStop = false;
1229
1230 // Tag specific configuration settings (sof, timings, etc.)
1231 if (htf < 10){
1232 // hitagS settings
1233 reset_sof = 1;
1234 t_wait = 200;
1235 DbpString("Configured for hitagS reader");
1236 } else if (htf < 20) {
1237 // hitag1 settings
1238 reset_sof = 1;
1239 t_wait = 200;
1240 DbpString("Configured for hitag1 reader");
1241 } else if (htf < 30) {
1242 // hitag2 settings
1243 reset_sof = 4;
1244 t_wait = HITAG_T_WAIT_2;
1245 DbpString("Configured for hitag2 reader");
1246 } else {
1247 Dbprintf("Error, unknown hitag reader type: %d",htf);
1248 return;
1249 }
1250
1251 while(!bStop && !BUTTON_PRESS()) {
1252 // Watchdog hit
1253 WDT_HIT();
1254
1255 // Check if frame was captured and store it
1256 if(rxlen > 0) {
1257 frame_count++;
1258 if (!bQuiet) {
1259 if (!LogTraceHitag(rx,rxlen,response,0,false)) {
1260 DbpString("Trace full");
1261 if (bQuitTraceFull) {
1262 break;
1263 } else {
1264 bQuiet = true;
1265 }
1266 }
1267 }
1268 }
1269
1270 // By default reset the transmission buffer
1271 tx = txbuf;
1272 switch(htf) {
1273 case RHT2F_PASSWORD: {
1274 bStop = !hitag2_password(rx,rxlen,tx,&txlen);
1275 } break;
1276 case RHT2F_AUTHENTICATE: {
1277 bStop = !hitag2_authenticate(rx,rxlen,tx,&txlen);
1278 } break;
1279 case RHT2F_CRYPTO: {
1280 bStop = !hitag2_crypto(rx,rxlen,tx,&txlen);
1281 } break;
1282 case RHT2F_TEST_AUTH_ATTEMPTS: {
1283 bStop = !hitag2_test_auth_attempts(rx,rxlen,tx,&txlen);
1284 } break;
1285 default: {
1286 Dbprintf("Error, unknown function: %d",htf);
1287 return;
1288 } break;
1289 }
1290
1291 // Send and store the reader command
1292 // Disable timer 1 with external trigger to avoid triggers during our own modulation
1293 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
1294
1295 // Wait for HITAG_T_WAIT_2 carrier periods after the last tag bit before transmitting,
1296 // Since the clock counts since the last falling edge, a 'one' means that the
1297 // falling edge occured halfway the period. with respect to this falling edge,
1298 // we need to wait (T_Wait2 + half_tag_period) when the last was a 'one'.
1299 // All timer values are in terms of T0 units
1300 while(AT91C_BASE_TC0->TC_CV < T0*(t_wait+(HITAG_T_TAG_HALF_PERIOD*lastbit)));
1301
1302 // Transmit the reader frame
1303 hitag_reader_send_frame(tx,txlen);
1304
1305 // Enable and reset external trigger in timer for capturing future frames
1306 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1307
1308 // Add transmitted frame to total count
1309 if(txlen > 0) {
1310 frame_count++;
1311 if (!bQuiet) {
1312 // Store the frame in the trace
1313 if (!LogTraceHitag(tx,txlen,HITAG_T_WAIT_2,0,true)) {
1314 if (bQuitTraceFull) {
1315 break;
1316 } else {
1317 bQuiet = true;
1318 }
1319 }
1320 }
1321 }
1322
1323 // Reset values for receiving frames
1324 memset(rx,0x00,sizeof(rx));
1325 rxlen = 0;
1326 lastbit = 1;
1327 bSkip = true;
1328 tag_sof = reset_sof;
1329 response = 0;
1330
1331 // Receive frame, watch for at most T0*EOF periods
1332 while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_WAIT_MAX) {
1333 // Check if falling edge in tag modulation is detected
1334 if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
1335 // Retrieve the new timing values
1336 int ra = (AT91C_BASE_TC1->TC_RA/T0);
1337
1338 // Reset timer every frame, we have to capture the last edge for timing
1339 AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
1340
1341 LED_B_ON();
1342
1343 // Capture tag frame (manchester decoding using only falling edges)
1344 if(ra >= HITAG_T_EOF) {
1345 if (rxlen != 0) {
1346 //DbpString("wierd1?");
1347 }
1348 // Capture the T0 periods that have passed since last communication or field drop (reset)
1349 // We always recieve a 'one' first, which has the falling edge after a half period |-_|
1350 response = ra-HITAG_T_TAG_HALF_PERIOD;
1351 } else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
1352 // Manchester coding example |-_|_-|-_| (101)
1353 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
1354 rxlen++;
1355 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
1356 rxlen++;
1357 } else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
1358 // Manchester coding example |_-|...|_-|-_| (0...01)
1359 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
1360 rxlen++;
1361 // We have to skip this half period at start and add the 'one' the second time
1362 if (!bSkip) {
1363 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
1364 rxlen++;
1365 }
1366 lastbit = !lastbit;
1367 bSkip = !bSkip;
1368 } else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
1369 // Manchester coding example |_-|_-| (00) or |-_|-_| (11)
1370 if (tag_sof) {
1371 // Ignore bits that are transmitted during SOF
1372 tag_sof--;
1373 } else {
1374 // bit is same as last bit
1375 rx[rxlen / 8] |= lastbit << (7-(rxlen%8));
1376 rxlen++;
1377 }
1378 } else {
1379 // Ignore wierd value, is to small to mean anything
1380 }
1381 }
1382
1383 // We can break this loop if we received the last bit from a frame
1384 if (AT91C_BASE_TC1->TC_CV > T0*HITAG_T_EOF) {
1385 if (rxlen>0) break;
1386 }
1387 }
1388 }
1389 LED_B_OFF();
1390 LED_D_OFF();
1391 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
1392 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
1393 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1394 Dbprintf("frame received: %d",frame_count);
1395 DbpString("All done");
1396 cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48);
1397 }
Impressum, Datenschutz