1 //-----------------------------------------------------------------------------
3 // Jonathan Westhues, April 2006
4 //-----------------------------------------------------------------------------
8 pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
10 ssp_frame, ssp_din, ssp_dout, ssp_clk,
12 subcarrier_frequency, minor_mode
15 output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
19 output ssp_frame, ssp_din, ssp_clk;
21 input [1:0] subcarrier_frequency;
22 input [3:0] minor_mode;
24 assign adc_clk = ck_1356meg; // sample frequency is 13,56 MHz
26 // When we're a reader, we just need to do the BPSK demod; but when we're an
27 // eavesdropper, we also need to pick out the commands sent by the reader,
28 // using AM. Do this the same way that we do it for the simulated tag.
29 reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev;
30 reg [11:0] has_been_low_for;
31 always @(negedge adc_clk)
33 if(& adc_d[7:0]) after_hysteresis <= 1'b1;
34 else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;
38 has_been_low_for <= 7'b0;
42 if(has_been_low_for == 12'd4095)
44 has_been_low_for <= 12'd0;
45 after_hysteresis <= 1'b1;
48 has_been_low_for <= has_been_low_for + 1;
53 // Let us report a correlation every 64 samples. I.e.
54 // one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier,
55 // one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers,
56 // one Q/I pair for each subcarrier cyle for the 212kHz subcarrier.
57 // We need a 6-bit counter for the timing.
59 always @(negedge adc_clk)
61 corr_i_cnt <= corr_i_cnt + 1;
65 // A couple of registers in which to accumulate the correlations. From the 64 samples
66 // we would add at most 32 times the difference between unmodulated and modulated signal. It should
67 // be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%.
68 // 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign.
69 // Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the
70 // maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits.
71 // Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits.
72 reg signed [13:0] corr_i_accum;
73 reg signed [13:0] corr_q_accum;
74 // we will report maximum 8 significant bits
75 reg signed [7:0] corr_i_out;
76 reg signed [7:0] corr_q_out;
79 // the amplitude of the subcarrier is sqrt(ci^2 + cq^2).
80 // approximate by amplitude = max(|ci|,|cq|) + 1/2*min(|ci|,|cq|)
81 reg [13:0] corr_amplitude, abs_ci, abs_cq, max_ci_cq;
82 reg [12:0] min_ci_cq_2; // min_ci_cq / 2
86 if (corr_i_accum[13] == 1'b0)
87 abs_ci <= corr_i_accum;
89 abs_ci <= -corr_i_accum;
91 if (corr_q_accum[13] == 1'b0)
92 abs_cq <= corr_q_accum;
94 abs_cq <= -corr_q_accum;
99 min_ci_cq_2 <= abs_cq / 2;
104 min_ci_cq_2 <= abs_ci / 2;
107 corr_amplitude <= max_ci_cq + min_ci_cq_2;
112 // The subcarrier reference signals
118 if (subcarrier_frequency == `FPGA_HF_READER_SUBCARRIER_848_KHZ)
120 subcarrier_I = ~corr_i_cnt[3];
121 subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]);
123 else if (subcarrier_frequency == `FPGA_HF_READER_SUBCARRIER_212_KHZ)
125 subcarrier_I = ~corr_i_cnt[5];
126 subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]);
130 subcarrier_I = ~corr_i_cnt[4];
131 subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]);
136 // ADC data appears on the rising edge, so sample it on the falling edge
137 always @(negedge adc_clk)
139 // These are the correlators: we correlate against in-phase and quadrature
140 // versions of our reference signal, and keep the (signed) results or the
141 // resulting amplitude to send out later over the SSP.
142 if (corr_i_cnt == 6'd0)
144 if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE)
146 // send amplitude plus 2 bits reader signal
147 corr_i_out <= corr_amplitude[13:6];
148 corr_q_out <= {corr_amplitude[5:0], after_hysteresis_prev_prev, after_hysteresis_prev};
150 else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ)
152 // Send 7 most significant bits of in phase tag signal (signed), plus 1 bit reader signal
153 if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
154 corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev};
155 else // truncate to maximum value
156 if (corr_i_accum[13] == 1'b0)
157 corr_i_out <= {7'b0111111, after_hysteresis_prev_prev};
159 corr_i_out <= {7'b1000000, after_hysteresis_prev_prev};
160 // Send 7 most significant bits of quadrature phase tag signal (signed), plus 1 bit reader signal
161 if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111)
162 corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev};
163 else // truncate to maximum value
164 if (corr_q_accum[13] == 1'b0)
165 corr_q_out <= {7'b0111111, after_hysteresis_prev};
167 corr_q_out <= {7'b1000000, after_hysteresis_prev};
169 else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE)
172 corr_i_out <= {2'b00, corr_amplitude[13:8]};
173 corr_q_out <= corr_amplitude[7:0];
175 else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_IQ)
177 // Send 8 bits of in phase tag signal
178 if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
179 corr_i_out <= corr_i_accum[11:4];
180 else // truncate to maximum value
181 if (corr_i_accum[13] == 1'b0)
182 corr_i_out <= 8'b01111111;
184 corr_i_out <= 8'b10000000;
185 // Send 8 bits of quadrature phase tag signal
186 if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111)
187 corr_q_out <= corr_q_accum[11:4];
188 else // truncate to maximum value
189 if (corr_q_accum[13] == 1'b0)
190 corr_q_out <= 8'b01111111;
192 corr_q_out <= 8'b10000000;
195 // for each Q/I pair report two reader signal samples when sniffing. Store the 1st.
196 after_hysteresis_prev_prev <= after_hysteresis;
197 // Initialize next correlation.
198 // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate.
199 corr_i_accum <= $signed({1'b0,adc_d});
200 corr_q_accum <= $signed({1'b0,adc_d});
205 corr_i_accum <= corr_i_accum + $signed({1'b0,adc_d});
207 corr_i_accum <= corr_i_accum - $signed({1'b0,adc_d});
210 corr_q_accum <= corr_q_accum + $signed({1'b0,adc_d});
212 corr_q_accum <= corr_q_accum - $signed({1'b0,adc_d});
215 // for each Q/I pair report two reader signal samples when sniffing. Store the 2nd.
216 if (corr_i_cnt == 6'd32)
217 after_hysteresis_prev <= after_hysteresis;
219 // Then the result from last time is serialized and send out to the ARM.
220 // We get one report each cycle, and each report is 16 bits, so the
221 // ssp_clk should be the adc_clk divided by 64/16 = 4.
222 // ssp_clk frequency = 13,56MHz / 4 = 3.39MHz
224 if (corr_i_cnt[1:0] == 2'b00)
226 // Don't shift if we just loaded new data, obviously.
227 if (corr_i_cnt != 6'd0)
229 corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
230 corr_q_out[7:1] <= corr_q_out[6:0];
237 // ssp clock and frame signal for communication to and from ARM
241 always @(negedge adc_clk)
243 if (corr_i_cnt[1:0] == 2'b00)
245 if (corr_i_cnt[1:0] == 2'b10)
248 // set ssp_frame signal for corr_i_cnt = 1..3
249 // (send one frame with 16 Bits)
250 if (corr_i_cnt == 6'd1)
252 if (corr_i_cnt == 6'd5)
257 assign ssp_din = corr_i_out[7];
262 reg [3:0] jam_counter;
264 always @(negedge adc_clk)
266 if (corr_i_cnt == 6'd0)
268 jam_counter <= jam_counter + 1;
269 jam_signal <= jam_counter[1] ^ jam_counter[3];
278 if (minor_mode == `FPGA_HF_READER_MODE_SEND_SHALLOW_MOD)
283 else if (minor_mode == `FPGA_HF_READER_MODE_SEND_FULL_MOD)
285 pwr_hi = ck_1356meg & ~ssp_dout;
288 else if (minor_mode == `FPGA_HF_READER_MODE_SEND_JAM)
290 pwr_hi = ck_1356meg & jam_signal;
293 else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ
294 || minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE
295 || minor_mode == `FPGA_HF_READER_MODE_SNIFF_PHASE)
300 else // receiving from tag
308 assign pwr_oe1 = 1'b0;
309 assign pwr_oe3 = 1'b0;
312 assign pwr_lo = 1'b0;
313 assign pwr_oe2 = 1'b0;
316 assign dbg = corr_i_cnt[3];